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COMPARING ALGORITHMS
BASED ON MARGINAL PROBLEM

Otakar Kř́ıž

The paper deals with practical aspects of decision making under uncertainty on finite
sets. The model is based on marginal problem. Numerical behaviour of 10 different algo-
rithms is compared in form of a study case on the data from the field of rheumatology.
(Five of the algorithms types were suggested by A. Perez.) The algorithms (expert systems,
inference engines) are studied in different situations (combinations of parameters).

Keywords: graphical probabilistic models, probabilistic inference, marginal problem

AMS Subject Classification: 68T37, 62E15

1. PREFACE – MEMORIES

This paper is, similarly as the whole special issue of Kybernetika dedicated to the
memory of Albert Perez and partially, it can be considered as paying off a certain
debt I feel to owe him. (By the way, this feeling is probably shared by many others
who were lucky to meet him professionally.) Though primarily interested in theory,
A. Perez always held the idea that a good theory should be applicable in an interest-
ing problem area. This brought him to close cooperation with people dealing with
biomedical diagnostics. Even when retired, in the age of eighty, he returned to his
favorite topic from the last period of active work and suggested four new algorithms
for decision making based on marginal problem. The central theme of his endeavor
was looking for a suitable approximation of an “all-explaining” probabilistic distri-
bution. This was not a purposeless but a necessary step in searching for universally
applicable methods for decision making. Naturally, he was interested in speed of
convergence of the algorithms and in their efficiency in typical examples and there-
fore he made me code the basic versions of algorithms and test their behaviour.
This feedback helped him also to find out situations when the algorithms behaved
surprisingly and to improve insight in the problem so that better refined clones of
algorithms with parameterizing could have been synthesized.
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2. INTRODUCTION

In a broader sense, the paper deals with the methodology for testing performance
of different decision making algorithms (expert systems, procedures) designed to
solve the diagnostic problem in probabilistic context on finite sets. The “diagnos-
tic” terminology is used just to ease up the orientation in semantics of different
notions. In other words, the diagnostic problem is synonymous to decision making
(or classification) in this paper.

The structure of the paper is as follows. This section is an overview of basic
concepts and facts. Section 3 describes the organisation of the tests. In Section 4,
we give a short characteristics of 10 tested algorithms. Description of the data file
from the field of rheumatology and experimental results in form of many tables are
given in Section 5. Section 6 contains evaluation of the results and finally, Section 7
is the conclusion.

2.1. Basic setting

Let us suppose (Ω,X , P ) is a probabilistic space on which random variables η, ξ1, ξ2

· · · ξn are defined. Diagnostic variable η takes its values in a finite set of diagnoses
{dj} = R(η). (Symbol R(ϑ) applied on a variable ϑ will denote its range (or
codomain) in the sequel.) It is assumed the aim of the decision making is finding
the most probable value of the η. All other variables, taking their values from
finite sets denoted as R(ξ1), R(ξ2) · · · , R(ξn) are called symptom variables since
their known values represent symptoms from which the unknown final diagnosis is
inferred during decision making. Then, the set of all possible combinations of values
of variables η, ξ1, ξ2, · · · ξn (i. e. their sample space), denoted as R(η, ξ1, ξ2, · · · ξn),
is a cartesian product of respective codomains:

R (η, ξ1, ξ2, · · · ξn) = R(η)×R(ξ1)×R(ξ2) · · ·R(ξn)

2.2. Idealized diagnostic problem

The mutual “behaviour” of η, ξ1, ξ2, · · · ξn is described completely by the joint dis-
tribution Pηξ1ξ2...ξn

induced from P and defined on R(η, ξ1, ξ2, · · · ξn) .

Suppose we are given the distribution Pηξ1,ξ2···ξn and a subset a = {ξi1 , ξi2 , · · · ξik
}

of the set {ξ1, ξ2, · · · ξn} of all symptom variables. (Subset a is called aperture to stress
it is a kind of filtering window through which we can see values of some symptom
variables only during the decision making.) Then, the diagnostic problem can be
formulated in the following way:

Diagnostic problem. Find the diagnosis da(si1 , si2 · · · sik
) that is the most prob-

able (according to the Pηξ1,ξ2···ξn) on the set

{ω ∈ Ω | ξi1(ω) = si1 & ξi2(ω) = si2 & · · · ξik
(ω) = sik

} (1)

for a given (i. e. observed) arbitrary combination (si1 , si2 · · · sik
) of values of symptom

variables from the set a.
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A sequence of three steps providing an “obvious” solution to the Diagnostic prob-
lem may be denoted as

Algorithm A0:

Step 1: Marginalization of Pηξ1ξ2···ξn
to Pη ξi1ξi2 ···ξik

= P
ηξi1 ,ξi2 ,···ξik

ηξ1ξ2···ξn
.

Step 2: Calculation of |η| numbers representing the values of conditional probability
Pη | ξi1ξi2 ···ξik

(dj |si1 , si2 · · · sik
) for individual diagnosis dj and for the given

combination (si1 , si2 · · · sik
).

Step 3: Finding the optimal diagnosis da(si1 , si2 · · · sik
):

da(si1 , si2 · · · sik
) = argmax

d ∈ R(η)

Pη |ξi1ξi2 ...ξik
(d|si1 , si2 · · · sik

). (2)

2.3. Approximations of the joint distribution

Leaving aside computational aspects, the A0 (as well as the presented diagnostic
problem formulation) has one substantial drawback: We are never given the theo-
retical distribution Pηξ1ξ2···ξn

in full and directly. (The up to now discussion was
just to expose the basic ideas and introduce notation.)

Therefore, the diagnostic problem has to be refined to cope with the “real world”.
To compensate for the loss of direct knowledge of Pηξ1ξ2···ξn , we expect to have some
indirect information about Pηξ1ξ2···ξn that will be called knowledge base and denoted
by K. It is done by postulating a set of conditions that we believe the theoretical
Pηξ1ξ2···ξn fulfills.

Instead of the unknown Pηξ1ξ2···ξn , we try to construct its approximation P̂ηξ1ξ2···ξn

that could play its role in the diagnostic problem. The set of conditions K can define
as feasible not only one distribution P̂ηξ1ξ2···ξn , but a whole family P(K) of distri-
butions complying with K. There are many ways to define the set of postulated
requirements representing the knowledge base K. One of them and the only one used
in this paper, is applying the concept of marginal problem.

2.4. Marginal problem formulation

Knowledge base K is given as a set of “small-dimensional” distributions (i. e. num-
ber of variables in the distribution is small; e. g. not exceeding 10.) postulated as
theoretical marginal distributions of the Pηξ1,ξ2...ξn . This formulation of looking for
Pηξ1,ξ2...ξn is called marginal problem, see [7]. Here, the small-dimensional distri-
butions are either explicitly given or calculated from data D. Instead of “small-
dimensional distributions in K”, the one word term “oligodistributions” will be
used in the sequel. This reflects the fact that they have usually a few of variables
si1 , si2 · · · sik

and their respective sample spaces like R(ξl) consist of a few values
only. (If the variables or sample spaces were not limited, though finite, there would
be complexity problems with algorithms.) The second reason why the term oligodis-
tributions is preferred to term marginals lies in the fact that small-dimensional dis-
tributions that are given by an expert as input need not be consistent and then,
there does not exist any joint distribution whose marginals they might be.
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Though it would be quite acceptable to select any arbitrary distribution from
P(K), it is a common practice to use, beside K, a general principle (e. g. maxi-
mal entropy principle, see [1, 5]) as an additional condition to force out uniqueness.
Then, there exist algorithms (see e. g. see [1, 2] or [9]) that construct an approxi-
mation that is called maximal entropy extension (of a set of marginals). It should
be stressed (see [1, 5]) that maximal entropy extension, beside being consistent with
input oligodistributions, uses minimal additional information.

However, for the purpose of this paper, we take up the position that any numerical
procedure that selects a distribution from P(K) or, at least, provides its conditional
probability of type Pη | ξi1ξi2 ···ξik

(dj |si1 , si2 · · · sik
), is a decision making algorithm

(denoted as) Ai. Their list is in the Section 4.

2.5. Input information for decision making

To summarize, we can encounter several types of objects when testing decision mak-
ing algorithms.

1. Knowledge base K consists of a set of oligodistributions.

K = {o1, o2, · · · ol}
Individual oligodistributions are supposed to be provided by experts or gen-
erated from a statistical material, that is referred to as data file It should be
stressed, though in general the notion of oligodistribution does not require it,
that each oligodistribution in the knowledge base K must contain the diag-
nostic variable η and the fact is actively made use of in the algorithms. Just
to explain, we presume that there is always more information about η in the
distributions that contain it than in the distributions that describe mutual
behaviour of symptom variables only and therefore, we do not let in such
oligodistributions in the knowledge base K from the very start. As η is thus
present by definition in all oligodistributions in the K, it is superfluous to men-
tion it explicitly and we will give only the names of symptom variables present
in the oligodistributions in Tables 2 to 5.

2. Data or data file D is a set of combinations (d, s1, s2, · · · sn, ) of values of all
random variables η ξ1ξ2 · · · ξn that were measured or observed for a group of
respondents ri in the past. Data file D can be used, as mentioned above, for
constructing oligodistributions in the knowledge base K, for testing or for both
purposes. (In general, there should be two separate data files: One for building
the oligodistributions, the other one for testing. In this paper, we consider only
one data file D for both purposes!!)

3. aperture a is a subset a = {ξi1 , ξi2 , · · · ξik
} of the set {ξ1, ξ2, · · · ξn} of all

symptom variables. Only the values of symptom variables from the aperture
are visible during the decision making.

4. Facts are values si of symptom variables from the aperture. In other words,
they are fixed findings observed or measured on an individual respondent r for
which we perform the act of decision making (i. e. we want to infer the value
of the most probable diagnosis).
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5. Enforced sequence (of oligodistributions) is an ordered subset of oligodistribu-
tions from knowledge base K. For the testing purposes, we may wish not to use
all the oligodistributions from K. We may select only some of them and pretend
that for a given testing run the knowledge base “shrunk” to the oligodistribu-
tions that are in the enforced sequence. The ordering on the subset is required
because some algorithms are dependent on the way the oligodistributions are
submitted to them and produce different results.

6. Situation si is an ordered pair ((oi1 , oi2 , · · · oik
), a) (i. e. (enforced sequence,

aperture)). This concept is useful as it describes in a unique way the situation
under which the algorithms perform decision making. Definitions of the situa-
tions s1, s2, · · · s26, s100, s101, · · · s105 are in Tables 6 – 11. Then, the situations
like si are used in Tables 12 – 16 to denote the rows in the tables.

3. TESTING SCHEME

To guarantee the same starting position for all tested algorithms, each of them has
as its input the same knowledge base K. Further, a situation si is defined by fixing
an enforced sequence and an aperture a. This way, it is guaranteed that only certain
oligodistributions from K are available. Then, a testing run for an algorithm Aj is
performed in the following way:

For each object/respondent rk in data file D the values of symptom variables from
aperture a are submitted to the algorithm Aj and Aj performs the decision making
that results in declaring an value d(si, Aj)(rk) from R(η) as the result of the decision
making for the respondent rk. If d(si, Aj)(rk) differs from η(rk) (as we know it from
the data file D), the counter of erroneous decisions (misclassifications) is augmented
by one. After processing all respondents rk from D, the counter contains the total
number of misclassifications x(Aj ,si,D) that were committed by algorithm Aj on data
file D under situation si. The same testing run is performed for another algorithm
under similar conditions and results are presented in the Tables 12 – 16.

The objection that it is strange to use the same data file D both for generating
oligodistributions and for testing can be rejected, as we are comparing different
algorithms one against the other. Besides, one can hardly believe a procedure that
would not do well under such conditions would be better when applied on other
testing data file to which it were not adapted.

It should be stressed that this approach (i. e. using situations), describes the
behaviour of algorithms in more details than if the comparison would take place just
on all oligodistributions and with no filtering (by a).

4. COMPARED ALGORITHMS

There are 10 algorithms subjected to testing in this paper. Though the primal inter-
est is to study algorithms suggested by A. Perez, to provide a contrast comparison
another 3 programs were added. Namely, empirical distribution (whose misclassifi-
cations are denoted by symbol xE in the Tables 12 – 16) and algorithms A1, A4 from
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[8]. A. Perez suggested algorithms Exe (denoted as A5) , Exe (denoted as A6), DSS
algorithm (A7), asteroid algorithm (denoted as A8) and a modification of A6 that
is presented in three versions (denoted as A9, A10, A11). Some of these algorithms
can be parameterized by parameter k and it is the case of the versions A9, A10, A11.

1. xE algorithm for evaluation of aposteriori conditional probability derived from
empirical distribution PE(D) calculated from the data file D. Number of erro-
neous decisions is denoted by xE . No other algorithm can be better (i. e. with
smaller number of errors) when applied to D.

2. A1 (described in [8]) is rather primitive and it is here for comparative purposes
only. It is a normalized geometrical mean of aposteriori probabilities derived
from all active oligodistributions. By definition, A1 is not sensitive to changes
in ordering of active oligodistributions.

3. A4 (described in [8]) is doing quite well in various situations. It should not
be too sensitive to changes in ordering of active oligodistributions (i. e. rela-
tively independent of the fact whether RIP (Running intersection Property)
condition is fulfilled or not.)

4. A5 (described in [4]) is the Perez’s algorithm Exe (Explicit Expression). In
principle, it is evaluating a fraction where numerator consists of product of
all non-empty “intersections” generated by odd number of oligodistributions.
Similarly, the denominator of the fraction is a product of all non-empty “inter-
sections” generated by even number of oligodistributions. The resulting vector
(one number for each diagnosis) is normalized to 1.0, interpreted as aposteri-
ori probability and used for decision making. Parameter k is used to limit the
degree of “intersections”. Thus, k = 3 means that only all basic active oligodis-
tributions are used in the fraction as well as submarginals resulting from non
empty intersections of all pairs and triplets of basic oligodistributions. With
increasing number of oligodistributions, the parameter k should be increased
as well. Not all the intersecting “suboligodistributions” are non empty, but it
is obvious that k should be selected with grain of salt. E. g. for 11 oligodistri-
butions and k = 6, there are 462 potential combinations contributing to the
denominator in the fraction just for “intersections” with 6 oligodistributions.
Though the size of intersecting “suboligodistributions” decreases, time and
space demands go up with increasing k. In the Tables 12 – 16 in column with
A5 , the algorithm Exe has k = 3.

5. A6 (described in [4]) is the Perez’s algorithm Exe (i. e. normalized explicit
expression). It is similar to A5, but more complicated and leading to limitation
on number of variables. It is necessary to calculate a vector of normalizing
constants (one value for each diagnosis). The space for storing some results
for all configurations of values of active symptom variables is required. Thus,
the number of active variables should not exceed 20. The constants are used
for multiplication of numbers from fraction formula before decision making. In
the Tables 12 – 16 in column with A6, the algorithm Exe has k = 8.

6. A7 (described in [3] and partially in [4]) is the Perez’s algorithm DSS (depen-
dence structure simplification). It is reported to be dependent on the RIP
condition fulfillment.
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7. A8 (described in [4]) is the Perez’s asteroid algorithm that requires the input
oligodistributions to have one part of variables in common. (These are called
the core). The rest of variables in each oligodistribution is not present in
other oligodistributions. With such star shaped structure (i. e. asteroid), the
calculation is very fast.

8. A9 is an algorithm by Perez similar to A6, but the normalization constants are
not calculated (being bottle-neck of the whole procedure). Apriori probability
of the diagnostic variable η is used instead. This version of A6 with “apriori
multiplicants” is used with parameter k = 1.

9. A10 is the same algorithm as A9, but with parameter k = 2.

10. A11 is the same algorithm as A9, but with parameter k = 3.

5. EXPERIMENTAL RESULTS

All algorithms were tested on the data from the field of rheumatology (Prof. Rej-
holec, 1980). The data file D consists of 1089 patients and diagnosis variable η takes
4 different diagnoses. The file contains beside η, other 34 symptom variables ξi.
Only 11 of them were used in the oligodistributions in the knowledge base K, see
Table 1. The symptom variables are of type gender, age, weight, working conditions
etc. and their sample spaces have cardinality from 2 to 9.

The knowledge base K consists of 11 four-dimensional oligodistributions basically,
see Table 2 and Table 3.

Two-dimensional oligodistributions o12, o13,· · · o16 (see Table 4), out of possible
45, were generated (derived) from oligodistributions o1, o2,· · · o11. Additional 7
four-dimensional oligodistributions o101 − o107 are defined in Table 5.

Then, Tables 6, 7, 8, 9, 10, 11 describe situations and Tables 12 – 16 describe abso-
lute number of errors xAk

the algorithms achieve for the situation si. (Respective
columns are denoted only by symbols Ak in the tables.)

Notation: If oi is an oligodistribution, oi is the set of symptom variables whose rela-
tion with the diagnosis variable η is described by oi. The symbol |oi| is the number
of such symptom variables. Finally, |oi| stands for number of all combinations of
symptom variables (or, in other words, number of atoms of set algebra created by
symptom variables) in oi. (Let us remind that due to postulated existence of η in
all oligodistributions in K, if the space e. g. for o2 is 81, then the oligodistribution
o2 is given by 81 × 4 nonnegative numbers.) Enforced sequences are in the column
entitled “oligodistributions” in Tables 6 – 11.

Beside the number of misclassifications, each situation si is characterized by four
additional variables. The symbol xE denotes number of misclassifications committed
by empirical distribution PE(D) derived from data file D. The notion active space is
the set of symptom variables that are present at least in one of the oligodistributions
defined in enforced sequence and at the same time present in the aperture a. In
other words, active variables lie in a ∩⋃

i oi.
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Column size stands for the cardinality of value combinations from the active
space. It is product of cardinalities of individual active symptom variables.

Symbol nzAt stands for non zero atoms in sample space of symptom variables
from the active space. It should be always less or equal to the respective size.

Table 1. 11 symptom variables ξi active in K.

sympt. variable ξ2 ξ5 ξ6 ξ9 ξ14 ξ15 ξ20 ξ21 ξ22 ξ23 ξ31

size 9 5 6 7 3 7 3 3 3 5 4

Table 2. Four-dimensional oligodistributions o1 – o5 in K.

Oligodistribution \ variables |oi| ξi1 ξi2 ξi3 ξi4 space

o1 4 ξ2 ξ5 ξ9 ξ31 1260

o2 4 ξ14 ξ20 ξ21 ξ22 81

o3 4 ξ2 ξ6 ξ15 ξ23 1890

o4 4 ξ2 ξ21 ξ23 ξ31 540

o5 4 ξ6 ξ9 ξ15 ξ23 1470

Table 3. Four-dimensional oligodistributions o6 – o11 in K.

Oligodistribution \ variables |oi| ξi1 ξi2 ξi3 ξi4 space

o6 4 ξ9 ξ14 ξ20 ξ23 315

o7 4 ξ5 ξ6 ξ9 ξ15 1470

o8 4 ξ2 ξ14 ξ20 ξ31 324

o9 4 ξ5 ξ9 ξ14 ξ15 735

o10 4 ξ9 ξ15 ξ22 ξ31 588

o11 4 ξ2 ξ6 ξ14 ξ21 486

Table 4. Derived two-dimensional oligodistributions o12 – o16 in K
Oligodistribution \ variables |oi| ξi1 ξi2 space

o12 2 ξ2 ξ5 45

o13 2 ξ2 ξ9 63

o14 2 ξ5 ξ9 35

o15 2 ξ2 ξ31 28

o16 2 ξ5 ξ31 20
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Table 5. Four-dimensional oligodistributions o101 – o107.

Oligodistribution \ variables |oi| ξi1 ξi2 ξi3 ξi4 space
o101 4 ξ2 ξ9 ξ15 ξ20 1323

o102 4 ξ2 ξ9 ξ15 ξ23 2205

o103 4 ξ2 ξ9 ξ15 ξ31 1763

o104 4 ξ15 ξ20 ξ23 ξ31 420

o105 4 ξ9 ξ20 ξ23 ξ31 420

o106 4 ξ2 ξ20 ξ23 ξ31 540

o107 4 ξ2 ξ9 ξ23 ξ31 1260

Table 6. Situations s1 – s5.

situation si oligodistributions aperture active space size
s1 o12 ξ1 · · · ξ33 ξ2, ξ5 45

s2 o12, o13 ξ1 · · · ξ33 ξ2, ξ5, ξ9 315

s3 o12, o13, o14 ξ1 · · · ξ33 ξ2, ξ5, ξ9 315

s4 o12, o13, o14, o15 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ31 1260

s5 o12, o13, o14, o15, o16 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ31 1260

Table 7. Situations s6 – s11.

situation si oligodistributions aperture active space size
s6 o13 ξ1 · · · ξ33 ξ2, ξ9 63

s7 o14 ξ1 · · · ξ33 ξ5, ξ9, 35

s8 o15 ξ1 · · · ξ33 ξ2, ξ31 36

s9 o16 ξ1 · · · ξ33 ξ5, ξ31 20

s10 o13, o16 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ31 1260

s11 o13, o15 ξ1 · · · ξ33 ξ2, ξ9, ξ31 252

Table 8. Situations s12 – s15.

situation si oligodistributions aperture active space size

s12 o12, o14 ξ1 · · · ξ33 ξ2, ξ5, ξ9 315

s13 o1 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ31 1260

s14 o2 ξ1 · · · ξ33 ξ14, ξ20, ξ21, ξ22 81

s15 o13, o14 ξ1 · · · ξ33 ξ2, ξ5, ξ9 315
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Table 9. Situations s16 – s20.

sit. si oligodistributions aperture active space size
s16 o18 ξ1 · · · ξ33 ξ14, ξ20 9

s17 o23 ξ1 · · · ξ33 ξ21, ξ22 9

s18 o18, o23 ξ1 · · · ξ33 ξ14, ξ20, ξ21, ξ22 81

s19 o3, o4, o6, o7, o5, o1, o11 ξ1 · · · ξ33 ξ2, ξ5, ξ6, ξ9, ξ14,
ξ15, ξ20, ξ21, ξ23, ξ31 7144200

s20 o3, o4, o6, o7, o5, o1, o2 ξ1 · · · ξ33 ξ2, ξ5, ξ6, ξ9, ξ14, ξ15,
ξ20, ξ21, ξ22, ξ23, ξ31 21432600

Table 10. Situations s21 – s26.

situation si oligodistributions aperture active space size
s21 o1, o2, o3, o4, o5, o6, o7 ξ3 − ξ8, · · · ξ10 − ξ33 ξ5, ξ6, ξ14, ξ15, ξ20,

ξ21, ξ22, ξ23, ξ31 340200

s22 o1, o2, o3, o4, o5, o6, o7 ξ1 · · · ξ33 ξ2, ξ5, ξ6, ξ9, ξ14, ξ15,

ξ20, ξ21, ξ22, ξ23, ξ31 21432600

s23 o1, o2 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ14

ξ20, ξ21, ξ22, ξ31 102600

s24 o1 ξ1 · · · ξ33 ξ2, ξ5, ξ9, ξ31 1260

s25 o1, o2, o3 ξ1 · · · ξ33 ξ2, ξ5, ξ6, ξ9, ξ14, ξ15,

ξ20, ξ21, ξ22, ξ23, ξ31 21432600

s26 o1, o2, o3, o5, o6 ξ1 · · · ξ33 ξ2, ξ5, ξ6, ξ9, ξ14, ξ15,

ξ20, ξ21, ξ22, ξ23, ξ31 21432600

Table 11. Situations s100 – s105.

situation si oligodistributions aperture active space size

s100 o1 − o11 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 26460

s101 o101 − o107 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 26460

s102 o101, o102, o103 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 26460

s103 o101, o107 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 26460

s104 o101 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ15, ξ20 1323

s105 o107 ξ2, ξ9, ξ15, ξ20, ξ23, ξ31 ξ2, ξ9, ξ23, ξ31 1260



Comparing Algorithms Based on Marginal Problem 643

Table 12. Behaviour of A1, A4, A5 −A11 for situations s1 – s7.

situation xE size nzAt A1 A4 A5 A6 A7 A8 A9 A10 A11

s1 515 45 41 515 515 515 515 515 515* 535 535 535

s2 441 315 205 505 491 491 491 505 491* 508 505 505

s3 441 315 205 504 485 561 485 504 559 497 485 485

s4 385 1260 324 489 450 542 452 489 539 492 672 452

s5 385 1260 324 487 454 739 451 487 670 490 818 542

s6 516 63 62 516 516 516 516 516 516* 529 529 529

s7 612 35 30 612 612 612 612 612 612* 630 630 630

Table 13. Behaviour of A1, A4, A5 −A11 for situations s8 – s14.

situation xE size nzAt A1 A4 A5 A6 A7 A8 A9 A10 A11

s8 515 36 26 515 515 515 515 515 515 534 534 534

s9 618 20 15 618 618 618 618 618 618* 625 625 625

s10 385 1260 324 518 518 518 498 518 498 522 522 522

s11 471 252 132 502 486 486 486 502 486* 504 504 504

s12 441 315 205 524 514 514 514 524 514 530 514 514

s13 385 1260 324 385 385 385 385 385 385* 387 387 387

s14 596 81 36 596 596 596 596 596 596* 607 607 607

Table 14. Behaviour of A1, A4, A5 −A11 for situations s15 – s20.

situation xE size nzAt A1 A4 A5 A6 A7 A8 A9 A10 A11

s15 441 315 205 506 496 496 497 506 496* 526 510 510

s16 632 9 7 632 632 632 632 632 632* 637 637 637

s17 652 9 7 652 652 652 652 652 652* 655 655 655

s18 596 81 36 622 622 622 607 622 607* 648 648 648

s19 24 7E6 1046 208 162 159 208 186 211 214 165

s20 17 21E6 1057 216 170 146 216 194 218 230 147



644 O. KŘÍŽ

Table 15. Behaviour of A1, A4, A5 −A11 for situations s21 – s26.

situation xE size nzAt A1 A4 A5 A6 A7 A8 A9 A10 A11

s21 172 340200 773 481 457 512 445 481 481* 493 793 441

s22 17 21432600 1057 216 172 146 216 189 218 230 147

s23 114 102060 864 363 363 363 363 363 363 381 381 381

s24 385 1260 324 385 385 385 385 385 385* 387 387 387

s25 17 21432600 1057 275 242 242 275 265 275 256 256

s26 17 21432600 1057 247 201 209 247 214 253 248 187

Table 16. Behaviour of A1, A4, A5 −A11 for situations s100 – s105.

situation xE space nzAt A1 A4 A5 A6 A7 A8 A9 A10 A11

s100 230 26460 640 429 387 469 369 428 441 446 464

s101 230 26460 640 290 262 281 246 290 285 289 378 326

s102 230 26460 640 296 265 265 265 296 265* 300 329 281

s103 230 26460 640 315 292 292 290 315 292 315 302 302

s104 350 1323 362 350 350 350 350 350 350 354 354 354

s105 422 1260 234 422 422 422 422 422 422 434 434 434

6. EVALUATION OF EXPERIMENTAL RESULTS

We tried to characterize the experimental results by verifying validity of some as-
sertions representing some trends in the tables. Unfortunately, almost none of the
assertions holds in a “logical form” i. e. without exceptions. But, one may expect
that some assertions may hold reasonably often to justify using some deductions
or strategies. First, some trends common for all algorithm are presented and then,
comparation of “discernment power” of individual algorithms.

6.1. Trends resulting from situations

1. Each algorithm A decides better for situations with smaller empirical error xE .∨
A∈A

∨
su, sv

[(xE(su) ≤ xE(sv)) =⇒ (xA(su) ≤ xA(sv))]

This assertion is not true. See e. g. s19 and s20. It looks like the composition of
oligodistributions can be more important then the smaller number of empirical
errors xE . However, the implication holds for quite a lot of situations.
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2. Increasing an oligodistribution results in better decision for knowledge bases
consisting of one oligodistribution only.

∨
A∈A

∨
K:|K|=1

∨
o1∈K

∨
o2:o2⊂o1

∨
s

[xo1
A (s) ≤ xo2

A (s)]

It seems to be valid. E. g. o1(s13) ⊃ o12(s1), o14(s7), o15(s8), o16(s9) and
xo1

A (s13) = 385 < xo12
A (s1) = 515, xo14

A (s7) = 612, xo15
A (s8) = 515, xo16

A (s9) =
618 for both A = A1 and A = A4.

3. Larger size of space of active variables results in smaller errors.

Let Ac(K) be a set of active variables and |Sp(K)| be the size of the space
Sp(K) of atoms of the set algebra created by active symptom variables.

Ac(K) =
⋃

oi∈K
oi ∩ a, |Sp(K)| =

∏
ξi∈Ac(K)

|ξi|
then ∨

A∈A

∨
K1,K2

Sp(K1) ≤ Sp(K2) =⇒ xA(K2) ≤ xA(K1)

This assertion is not true. See e. g. s19 vs. s20 and s14 vs. s8. Namely,
Sp(s19) = 7144200 < Sp(s20) = 21432600 and xA1(s19) = 208 < xA1(s20) =
216 and xA4(s19) = 162 < xA4(s20) = 170. Similarly, Sp(s14) = 81 > Sp(s8) =
36 and xA(s8) = 515 < xA(s14) = 596 for both A = A1 and A = A4. On the
other hand, it holds very often. Sp(s15) = 315 > Sp(s18) = 81 > Sp(s16) =
9 ≥ Sp(s17) = 9 and xA1(s15) = 506 < xA1(s18) = 622 < xA1(s16) = 632 <
xA1(s17) = 652 and xA4(s15) = 496 < xA4(s18) = 622 < xA4(s16) = 632 <
xA4(s17) = 652. However, having in mind the mentioned exceptions, it is ob-
vious that a concrete composition of oligodistributions can be more important
than the mere number of active symptom variables Ac(K) and the size of the
space Sp(K).

6.2. Comparison of individual algorithms

Again, the assertions hold with certain probability. Some deductions result from the
testing runs not presented in this paper.

1. In general, A5, A6, A11 obtain very good results (small number of misclassifi-
cations)

2. A10 is worse than others due to the non fitted parametrization i. e. k = 2.
Usually, versions with odd k behave better.

3. A4 provides certain robustness (independence on the situations) and, in gen-
eral, good results.

4. A1 is the worst one what could be expected due to his simplicity. On the other
hand, its behaviour can be taken as a natural upper bound on misclassifica-
tions.
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5. A7 (DSS) and A8 (asteroid) perform well if the underlying structure of oligodis-
tributions fulfills the required conditions e. g. RIP-conditions or asteroid struc-
ture. There are in certain disadvantage when compared on the general struc-
tures with algorithms like ExE, Ex2 and A4, that are not so sensitive in this
respect.

6. A6 seems to improve with more complex structure till the moment some in-
ternal limits are trespassed and the program abends. In such situations, an
appropriate version of the Ex3 seems to be good replacement. But, all algo-
rithms cloned from ExE should have parametrization of k fitted to the number
of oligodistributions in the used enforced sequence.

7. Differences between the worst and best algorithm can achieve up to 25 %.

8. No algorithm outperforms the others (in Pareto sense) in all situations.

9. Narrowing the applied aperture a can have a devastating effect on the oligodis-
tributions in enforced sequence which can contain the same reduced oligodis-
tributions. Then, active oligodistributions not only shrink but their number
decreases, too. The result is that misclassifications for all algorithms are alike.

7. CONCLUSIONS

1. Three new algorithms A8 (Asteroid), A5 (ExE), A6 (ExE) and A9, A10, A11

(clones of Ex3) were suggested by Albert Perez. Beside having good theoretical
foundations, they outperform the up to now best heuristical algorithm A4 for
various situations. A8 is optimal for special structure of oligodistributions in
the K.

2. A5 is a universal very efficient algorithm and A6 is recommendable for sizes up
to 1000000 atoms where it yields the smallest error among all tested algorithms.

3. The idea to test the algorithms using the concept of situations seems to be
justified as it gives a more complex view of their behaviour in practice.

4. The algorithms described in [4] use relative entropy H(P, P̂ ) (and terms like
multiinformation and multiinformation content) to find the “closest” approxi-
mation P̂ηξ1ξ2···ξn . The testing scheme uses as a natural measure of efficiency
the number of erroneous decisions (misclassifications). The fact that the algo-
rithms are so successful means that there is a high correlation between both
approaches.

5. The future activity should be aimed on procedures for selecting the fitting k
parameter.

6. Other aim could be a procedure for selecting the most discerning individual
oligodistributions and selecting the groups of oligodistributions with the great-
est “synergy”.
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7. The procedures are to be looked for that would suggest changing the struc-
ture of the given oligodistributions to a new one fulfilling special require-
ments (RIP-conditions, asteroid structure) with minimal number of changes
like adding/removing a variable to/from an oligodistribution, throwing out
oligodistributions from the active enforced sequence, changing the ordering
etc.
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