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George Klir, Ivan Kramosil, Friedrich Liese,
Jean-Jacques Loiseau, Frantǐsek Matúš,
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EXTREMES OF SPHEROID SHAPE FACTOR
BASED ON TWO DIMENSIONAL PROFILES

Daniel Hlubinka

The extremal shape factor of spheroidal particles is studied. Three dimensional particles
are considered to be observed via their two dimensional profiles and the problem is to
predict the extremal shape factor in a given size class. We proof the stability of the
domain of attraction of the spheroid’s and its profile shape factor under a tail equivalence
condition. We show namely that the Farlie–Gumbel–Morgenstern bivariate distributions
gives the tail uniformity. We provide a way how to find normalising constants for the
shape factor extremes. The theory is illustrated on examples of distributions belonging
to Gumbel and Fréchet domain of attraction. We discuss the ML estimator based on the
largest observations and hence the possible statistical applications at the end.

Keywords: sample extremes, domain of attraction, normalising constants, FGM system of
distributions

AMS Subject Classification: 60G70, 62G32, 62P30

1. INTRODUCTION

It is a common problem of material science to predict behaviour of three dimensional
objects based on lower dimensional observations – profiles, projections etc. There is
a specific problem to estimate tail behaviour of some particle characteristic as the
damage of the material is claimed to be related rather to the extremes than to the
mean values of the microstructure characteristics. A specific problem is to predict
the extremes of size (radius) of sphere in Wicksell’s corpuscle problem. There are
several solutions of the problem, see [13, 14, 15] or [4] all based on the extreme
value theory, see e. g. [5, 6, 11]. We generalise the problem of predicting extremal
characteristics based on observed sections to spheroids, and we focus on the shape
factor in the present paper. The shape factor is beside the size another characteristic
of spheroid which is closely related to a further crack propagation, namely extremely
flat particles are in focus, see e. g. [9] or [2]. For a stereological treatment of spheroids
see [3], the extremes of spheroid size are studied in [8]. In [7] the extremal shape of
spheroid was studied at the first time. The spheroid size was, however, assumed to
be known in order to obtain a reasonable estimation of the extremal shape factor. In
the present paper, we use the distribution family satisfying the uniformity condition
of Theorem 2 in [7]. Then we can find the prediction of extremal shape factor based
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on known profile characteristics only. A simulation study illustrating the present
approach can be found in [1].

Let us suppose that the joint probability density of the spheroid size X and
shape factor T , defined in Section 2, is given by g(x, t). The standard probabilistic
notation is used throughout the paper, namely the upper case letters denote the
random variable and the lower case letters its actual value. The joint density f(y, z)
of the observed profile size Y and shape factor Z is given in Section 2 as an integral
transformation of g(x, t). The unfolding of the density g based on estimator of f
is an ill-posed problem. Therefore by studying extremes we propose an alternative
way to this stereological unfolding problem based on the extreme value theory. The
domains of attractions are also discussed in Section 2. We shall restrict to univariate
extremes as we are looking for a prediction of extremal shape factor in a given size
class.

In Section 3 we briefly discuss the uniformity condition of [7]. The theory is
further illustrated on a family of distributions satisfying the uniformity, namely
the Farlie–Gumbel–Morgenstern bivariate family. Then we can derive normalising
constants for our model in Section 4. Further, in Section 5 we give examples using
approximate exponential and polynomial tails of the shape factor distribution. These
results go beyond the part 3.2 and Example 1 of [7] which are not very promising
for applications as we need to consider the original size of the particle to be known.
The results presented here can be considered as a useful basis for the statistical
estimation. The statistical inference is briefly outlined in Section 6 using maximum
likelihood estimator of normalising constants based on the k largest observations.

2. SPHEROIDS AND EXTREMES

2.1. Probability distribution of spheroid characteristics

Oblate spheroidal non-overlapping particles only are considered in our study. Oblate
spheroids have two equal major semi-axes and one minor semi-axis. The restriction
to this family rather than considering general spheroids is explained in [3]. We
consider random spheroids, in particular the spheroid semi-axes lengths are random.
Let us recall that the spheroids can be fully characterised by their size X and their
shape factor T . The size is the length of the major semi-axes, and the shape factor
is defined by T = X2/W 2 − 1, W being the minor semi-axis length. Moreover, we
assume that the particle arrangement in space is isotropic uniform random (without
overlapping).

The profiles of spheroids generated by a random planar section of the material
are ellipses. These ellipses are again fully characterised by their size Y and shape
factor Z defined in a similar way as X and T again. Whereas the profiles can be
observed and their characteristics Y and Z measured, the spheroid characteristics
X and T are unknown in what follows.

Let us denote by g(x, t) the joint probability density function of the size and
the shape factor (X,T ) of an oblate spheroid. We shall denote by ω and η the
upper endpoints of the distributions of the size and the shape factor, respectively.
In particular it holds 0 ≤ W ≤ X ≤ ω and 0 ≤ T ≤ η. The both ω and η may be
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infinite. Clearly T = 0 for balls. It follows from [3] that 0 ≤ Y ≤ X and 0 ≤ Z ≤ T .
These inequalities formalise the intuition that the size and shape factor of a profile
cannot exceed the size and shape factor of a sectioned particle, respectively.

We shall use the notation g(x, t), G(x, t) for the joint probability density and
distribution function of the size and shape factor of the spheroid, respectively. The
joint density and the joint distribution function of the profile characteristics are
f(y, z) and F (y, z), respectively. Further we shall denote by gx(t), Gx(t), fy(t)
and Fy(t) the conditional densities and the conditional distribution functions of the
shape factors given the size. The marginal distribution of the size will be denoted
by gX(x), GX(x), fY (y) and FY (y). Hence the densities and distribution functions
can be easily identified in what follows.

Following [3], the distribution of the profile size and the profile shape factor (Y, Z)
has the joint density

f(y, z) =
y
√

1 + z

2M

∫ η

y

∫ ω

z

g(x, t) dtdx√
t
√

1 + t
√

t− z
√

x2 − y2
, (1)

where M is the population mean size of particles (half of the mean calliper diameter).
The conditional density of Z given Y = y is given by

fy(z) =
y
√

1 + z

2Mf(y)

∫ η

y

∫ ω

z

gx(t)gX(x) dtdx√
t
√

1 + t
√

t− z
√

x2 − y2
, (2)

where gx(t) = g(t|x) = g(x, t)/gX(x) if gX(x) > 0 and gx(t) = 0 otherwise is the
conditional density of the shape factor given the size. The density gX(x) is the
marginal density of the spheroid size. The marginal density of the profile shape
factor Z is given by

f(z) =
√

1 + z

∫ η

0

∫ ω

z

gx(t)gX(x) dtdx

Mx

√
t
√

1 + t
√

t− z
, (3)

where

Mx =
∫ ω

0

[
(t + 1)−1/2 +

√
t + 1

t
arctan

√
t

]
gx(t) dt. (4)

Note that independence of size and shape factor results in a much simpler subsystem
of cases which is not studied further.

2.2. Domain of attraction

Let us recall the very basic facts from the extreme value theory. There are three
possible limit distribution of the univariate sample extreme under an affine trans-
formation. These distributions are

Li,α(y) =





exp(−y−α), y ≥ 0, i = 1, “Fréchet”
exp(−(−y)α), y ≤ 0, i = 2, “Weibull”
exp(−e−y), y ∈ R, i = 3, “Gumbel”

(5)
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where α > 0. Let K be a distribution function. We shall write K ∈ D(L) if K is in
the domain of attraction of L.

Let ω = sup{y : K(y) < 1} denotes the upper endpoint of K. Then there are the
following sufficient conditions for the distribution function K to be in D(L) under
the condition that there exists a density k of K:

(C1,α) : ∀u > 0, ω = +∞, lim
s→∞

k(us)
k(s)

= u−(α+1),

(C2,α) : ∀u > 0, ω < +∞, lim
s↘0

k(ω − us)
k(ω − s)

= uα−1,

(C3) : ∀u ∈ R, lim
s↗ω

k(s + ub(s))
k(s)

= e−u,

where b(·) is some auxiliary function. b(·) can be chosen in such a way that it
is differentiable for s < ω, lims→ω b′(s) = 0, and lims→∞ b(s)/s = 0 if ω = ∞,
or lims→ω b(s)/(ω − s) = 0 if ω < ∞. For further details concerning domains of
attraction and for the choice of b(·) consult [6] or [5].

We will now recall a stability result for the domain of attraction of the object
and profile characteristics. Theorems 2 and 3 of [7] read as follows

Theorem 1. Suppose that the conditional density gx(t) satisfies condition (Ci,α)
uniformly in x for some i and α. Assume, moreover, that the upper endpoint ω is
constant for all x. Then

1. the conditional distribution function Fy(z) ∈ D(Li,β) for all y,

2. the marginal distribution function FZ(z) ∈ D(Li,β) for all y,

where β = α if i = 1, and β = α + 1/2 if i = 2.

Note that the uniformity condition follows naturally from the fact that the profile
shape factor does not exceed the spheroid shape factor. It means that any particles
with T ≥ z may contribute to the observations with the shape factor Z = z. Also
when conditioning by the size Y = y one should note that any spheroid of size X ≥ y
may contribute to these observations. The uniformity can be also understood as a
tail equivalence of the shape factors conditioned by the size.

The uniformity also means that there is an auxiliary function b (introduced in
(C3)) which can be used for all possible values of x.

On the other hand we don’t know how much this uniformity condition can be
relaxed or replaced by a weaker and simple one.
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3. UNIFORMITY CONDITION AND FARLIE–GUMBEL–MORGENSTERN
DISTRIBUTIONS

The tail uniformity assumption suggests to look for a bivariate model in the form

g(x, t) = gX(x)gx(t),

such that for gx(t) the tail uniformity holds. Roughly speaking the tail behaviour of
gx(t) for large t should be “controlled” for all values of x “uniformly”. The bivariate
normal distribution, for example, is not a good candidate for such a model.

Remark. Suppose that (V, W ) obey bivariate normal distribution

(V, W ) ∼ N
(
µ,Σ

)
, where µ =

(
µ1

µ2

)
, Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Then the conditional density of W given V = v is

fv(w) =
1√

2π
√

σ2
1(1− ρ2)

exp
{
− 1

2σ2
1(1− ρ2)

(
v − µ1 − ρ

σ1

σ2
(w − µ2)

)2
}

.

Without loosing generality we can set µ1 = µ2 = 0, choose fixed v 6= s, u 6= 0 and
find that

lim
w→+∞

fs(w + ub(w))
fs(w)

fv(w)
fv(w + ub(w))

= 1 ⇔ lim
w→+∞

2ρ
σ1

σ2
ub(w)(v − s) = 0.

Since the latter limit can be zero iff b(t) → 0 (which does not hold), or ρ = 0, we
can see that for a bivariate normal distribution the uniformity condition is satisfied
if and only if it is a distribution of two independent normally distributed random
variables.

Consequently, the tail uniformity strictly requires the independence of variables
in the bivariate normal distribution. On the other hand there is another example.

Remark. Consider the joint density h(x,w) of the spheroid major and minor semi-
axes in the form

h(x,w) = gX(x)hx(w), where hx(w) =
1
x

.

Let us note that replacing the uniform distribution by the beta distribution on [0, x]
with parameters a > 0, b > 0 for example leads to the same conclusion.

Now we will make the transformation (X, W ) 7→ (X,T ), and since

(X, W ) = (X,X/
√

1 + T ) ⇒ g(x, t) = gX(x)
1

2(t + 1)3/2
, t ∈ [0,∞).

Hence the size and the shape factor are independent and the tail uniformity is trivial.
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We will use a general family of bivariate distributions based on two marginals
for the illustration of the proposed procedure. The considered Farlie–Gumbel–
Morgenstern (FGM) family is useful for random vectors with a modest correlation
up to 1/3. This assumption is not very restrictive as we have seen in the last remark.

Let
g(x, t) = gX(x)gT (t) [1 + λ{2GX(x)− 1}{2GT (t)− 1}] (6)

holds for a large t and any x in what follows, where |λ| < 1 is the FGM dependence
parameter. Densities gX and gT are the marginal densities of g, and GX , GT are
the corresponding marginal distribution functions. Note that the bivariate normal
distribution does not belong to FGM class unless the correlation ρ = 0 and hence
the two coordinates are independent.

First of all we prove the tail uniformity for the asymptotic FGM family.

Theorem 2. Consider that for all x and for large values of t the joint density
g(x, t) of the spheroid size and shape factor is of the form of FGM class. Assume
that the conditional distribution gx0(t) satisfies the condition Ci,α for some i and
x0. Then the condition Ci,α is fulfilled by the densities gx(t) uniformly in x.

P r o o f . We shall prove the theorem for the Gumbel and Fréchet distributions,
assuming ω = ∞ for the Gumbel. The other cases are quite similar. Let the
distribution gx0(t) does satisfy condition C3 for some x0 and ω = +∞. Than we
shall prove that for any x

lim
t→+∞

gx(t + ub(t))
gx(t)

· gx0(t)
gx0(t + ub(t))

= 1, (7)

from which the uniformity follows.
Note that (7) can be rewritten as

lim
t→+∞

1 + λ{2GT (t + ub(t))− 1}{2GX(x)− 1}
1 + λ{2GT (t)− 1}{2GX(x)− 1} × (8)

× 1 + λ{2GT (t)− 1}{2GX(x0)− 1}
1 + λ{2GT (t + ub(t))− 1}{2GX(x0)− 1} = 1.

Let us denote

a0 = λ{2GX(x0)− 1}, a = λ{2GX(x)− 1},
ct(0) = 2GT (t)− 1, ct(u) = 2GT (t + ub(t))− 1.

Note that |a| ≤ λ and |a0| ≤ λ. We can write
∣∣∣∣
(1 + act(u))(1 + a0ct(0))
(1 + act(0))(1 + a0ct(u))

− 1
∣∣∣∣

=
∣∣∣∣

(ct(u)− ct(0))(a− a0)
(1 + act(0))(1 + a0ct(u))

∣∣∣∣ ≤
|(ct(u)− ct(0))|(|a|+ |a0|)
|(1 + act(0))(1 + a0ct(u))|

≤ 2|(ct(u)− ct(0))|
|(1 + act(0))(1 + a0ct(u))| ≤

2|(ct(u)− ct(0))|
(1− |λ|)2 . (9)



Shape Factor Extremes 83

Note that the last term does not depend on x. Since for any ε > 0 there exists tε
such that for s > tε the inequality GT (s) > 1− ε/2 holds then ct(u)− ct(0) < ε for
t large enough.

For an arbitrary x and t large enough we can conclude that

∣∣∣∣
gx(t + ub(t))

gx(t)
− e−u

∣∣∣∣ =
∣∣∣∣
gx(t + ub(t))

gx(t)
− gx0(t + ub(t))

gx0(t)
+

gx0(t + ub(t))
gx0(t)

− e−u

∣∣∣∣

≤
∣∣∣∣
gx(t + ub(t))

gx(t)
− gx0(t + ub(t))

gx0(t)

∣∣∣∣ +
∣∣∣∣
gx0(t + ub(t))

gx0(t)
− e−u

∣∣∣∣
≤ ε(1 + ε)e−u + εe−u < 3εe−u. (10)

Now we shall consider the condition C1,α to be fulfilled by gx0(t) for some x0.
The proof is quite similar. We want to show that

lim
t→∞

gx(ut)
gx(t)

· gx0(t)
gx0(ut)

= 1. (11)

It is possible to proceed as before denoting

a0 = λ{2GX(x0)− 1}, a = λ{2GX(x)− 1},
dt(1) = 2GT (t)− 1, dt(u) = 2GT (ut)− 1. ¤

4. NORMALISING CONSTANTS

We have already mentioned that the sample extreme Mn:n (may) converge in distri-
bution to one of the three limit distributions under an affine transformation. This
limit behaviour means

P

[
Mn:n − bn

an
≤ v

]
w→ Li,α(v),

here the couple (an, bn) are the normalising constants. The normalising constants
can be calculated from the tail behaviour of the distribution function. They are not
uniquely defined since any sequence (a′n, b′n) such that

lim
n→∞

an

a′n
= 1, lim

n→∞
bn − b′n

an
= 0

may be also considered as a sequence of normalising constants. Let us recall a
way how to evaluate normalising constants for two tail behaviours, namely for the
Gumbel and the Fréchet domains of attraction.

4.1. Normalising constants based on the tail behaviour
of the distribution function

Proposition 1 of [12] is used to calculate the normalising constants for the Gumbel
domain of attraction. The lemma reads
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Lemma 3. Consider a distribution K ∈ D(L3) with ω = ∞. If there are constants
a, b, c, d such that

lim
v→∞

1−K(v)
avb exp{−cvd} = 1

holds then the normalising constants an, bn can be chosen as

an =
(

log n

c

)1/d−1 1
cd

, bn =
(

log n

c

)1/d

+
b
d (log log n− log c) + log a

(
log n

c

)1−1/d

cd

. (12)

Similar result is provided by

Lemma 4. Assume that the distribution function K ∈ D(L1,α). If there exists
constants C, a and b such that

lim
v→∞

1−K(v)
C(log v)bv−a

= 1

then the normalising constants can be chosen

an =

[
n

(
log n

a

)b

C

]1/a

, bn ≡ 0. (13)

For an exposition of normalising constants and their relation to quantiles one
may consult also [6] or [5].

We shall complete the reasoning now as follows. For a bivariate density g(x, t)
which acquires for large t and all x the FGM form and such that the distribution
function Gx(t) is in a given domain of attraction (Gumbel with ω = ∞ or Fréchet)
we use the uniformity result and one of the lemmas above. It is clear that we should
consider some approximate parametric form for the tail of the density gT (t). As we
want to calculate the normalising constants for different spheroid sizes we will need
to consider some form of the marginal density gX(x) as well. But this density is
arbitrary in general.

4.2. Normalising constants for the “Gumbel” tail

We will consider the joint density g(x, t) in the FGM family. The tail of the marginal
distribution function of the shape factor is approximately equal to the tail of the
gamma distribution in a sense

1−GT (t) ≈
∫ ∞

t

aube−cud

du ≈ a

cd
tb+1−de−ctd

for large t, (14)

where for distribution functions we further write 1−H1(u) ≈ 1−H2(u) when

lim
u→∞

1−H1(u)
1−H2(u)

= 1.
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These assumptions lead to Gumbel limit distribution and hence we shall use Lemma 3
when evaluating the normalising constants. Let us find the general form of the nor-
malising constants for the shape factors. We are using three tails, for spheroid shape
factor given its size, for profile shape factor given its size and for profile shape factor
marginally. First of all let us note that under the assumption (14)

gT (t) [1−GT (t)] ¿ gT (t) for large t

holds and hence we can consider a simplified version of the tails only. Under this
simplification the tails in focus become

1−Gx(t) = [1− λ(1− 2GX(x))]
∫ ∞

t

aub exp{−cud}du,

1− Fy(z) =
y

2MfY (y)

∫ η

y

gX(x) [1− λ(1− 2GX(x))] dx√
x2 − y2

×

×
∫ ∞

z

(√
(1 + z)(t− z)

(1 + t)t
+

√
1 + t

t
arctan

√
t− z

1 + z

)
atb exp{−ctd}dt,

1− FY (z) =
∫ η

0

gX(x) [1− λ(1− 2GX(x))] dx

Mx
×

×
∫ ∞

z

(√
(1 + z)(t− z)

(1 + t)t
+

√
1 + t

t
arctan

√
t− z

1 + z

)
atb exp{−ctd}dt.

(15)

It follows namely that the condition (the size) has only partial influence on the tail
behaviour of the shape factor.

Let us turn our attention to
∫ ∞

z

(√
(1 + z)(t− z)

(1 + t)t
+

√
1 + t

t
arctan

√
t− z

1 + z

)
atb exp{−ctd}dt.

It holds

∫ ∞

z

√
(1 + z)(t− z)

(1 + t)t
atb exp{−ctd}dt

=
∫ ∞

0

√
(1 + z)(w)

(1 + w + z)(w + z)
+ a(w + z)b exp{−c(w + z)d}dw

= azb−1/2

∫ ∞

0

√
(1 + z)(w)
(1 + w + z)

+
(
1 +

w

z

)b−1/2

exp{−c(w + z)d}dw

≈ azb−1/2

∫ ∞

0

√
w exp

{
−czd

(
1 +

w

z

)d
}

dw ≈ azb−1/2e−czd

∫ ∞

0

√
we−cdzd−1w dw

=
√

π

2
a(cd)−3/2zb+1−3d/2e−czd

, (16)
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and

∫ ∞

z

√
1 + t

t
arctan

(√
t− z

1 + z

)
atb exp{−ctd}dt

=
∫ ∞

0

√
1 + w + z

w + z
arctan

(√
w

1 + z

)
a(w + z)b exp{−c(w + z)d}dw

= azb−1/2

∫ ∞

0

√
1 + w + z arctan

(√
w

1 + z

) (
1 +

w

z

)b−1/2

exp{−c(w + z)d}dw

≈ azb−1/2e−czd

∫ ∞

0

√
we−cdzd−1w dw

=
√

π

2
a(cd)−3/2zb+1−3d/2e−czd

. (17)

Now it is possible to employ Lemma 3. The calculation of the normalising constants
can be based on the following theorem.

Theorem 5. Let us assume a density g(x, t) such that it is of FGM form for large
values of t and 1−Gx(t) ≈ ∫∞

t
aube−cud

du for large t. Consider the density f(y, z)
given by the transformation (1). Then it holds

lim
t→∞

1−Gx(t)
a(cd)−1tb+1−de−ctd = k1(x),

lim
z→∞

1− Fy(z)√
πa(cd)−3/2zb+1−3d/2e−ctd = k2(y), (18)

lim
z→∞

1− F (z)√
πa(cd)−3/2zb+1−3d/2e−ctd = k3,

where k1, k2 and k3 are constants with respect to t which can be calculated from (15)

k1(x) = 1− λ[1− 2GX(x)],

k2(y) =
y

2MfY (y)

∫ η

y

gX(x) [1− λ(1− 2GX(x))] dx√
x2 − y2

=

∫ η

y
gX(x)[1−λ(1−2GX(x))]√

x2−y2
dx

∫ η

y
gX(x)Mx√

x2−y2
dx

,

k3 =
∫ η

0

gX(x) [1− λ(1− 2GX(x))] dx

Mx
.

(19)

We postpone the discussion of constants ki and turn our attention to the Fréchet
limit distribution.
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4.3. Normalising constants for the “Fréchet” tail

Let us still assume the FGM form of the joint density g(x, t) for large t while we
change the form of the tail of the marginal distribution of the shape factor to

1−GT (t) ≈
∫ ∞

t

c(log u)bu−a−1 ≈ c

a
(log t)bt−a for large t.

Again it holds
gT (t) [1−GT (t)] ¿ gT (t)

and hence we can use the same simplification as before in (15) with the appropriate
density gT (t). We need to study

∫ ∞

z

(√
(1 + z)(t− z)

(1 + t)t
+

√
1 + t

t
arctan

√
t− z

1 + z

)
c(log t)bt−a−1dt.

It holds
∫ ∞

z

√
(1 + z)(t− z)

(1 + t)t
c(log t)bt−a−1dt

∫ ∞

1

√
(1 + z)z(w − 1)

(1 + wz)wz
c(log z + log w)b(zw)−a−1zdw

≈ c(log z)bz−a

∫ ∞

1

√
w − 1
w

w−a−1dw = c(log z)bz−aB
(

a +
1
2
,
3
2

)
, (20)

where B(·, ·) is the beta function and
∫ ∞

z

√
1 + t

t
arctan

√
t− z

1 + z
c(log t)bt−a−1dt

=
∫ ∞

1

√
1 + wz

wz
arctan

√
z(w − 1)

1 + z
c(log z + log w)b(zw)−a−1zdw

≈ c(log z)bz−a

∫ ∞

1

w−a−1 arctan
√

w − 1dw = c(log z)bz−a 1
2a

B
(

a +
1
2
,
1
2

)
. (21)

It is possible to use Lemma 4 now and derive the normalising constants from the
next theorem.

Theorem 6. Let us assume a density g(x, t) such that it is of FGM form for large
values of t and 1−Gx(t) ≈ ∫∞

u
c(log u)bu−a−1du for large t. Consider density f(y, z)

given by the transformation (1). Then it holds

lim
t→∞

1−Gx(t)
ca−1(log t)bt−a

= k1(x),

lim
t→∞

1− Fy(z)
c(2 + a−1)B(a + 1/2, 3/2)(log z)bz−a

= k2(y), (22)

lim
t→∞

1− F (z)
c(2 + a−1)B(a + 1/2, 3/2)(log z)bz−a

= k3,
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where k1, k2, and k3 are the same constants as in (19).

5. EXAMPLES

We shall provide examples of the sets of normalising constants in this section. We
shall use the notation

1. an, bn for the normalising constants of the spheroid shape factor T given the
spheroid size X = x,

2. as
n, bs

n for the normalising constants of the profile shape factor Z given the
profile size Y = y,

3. am
n , bm

n for the profile shape factor Z marginally.

Let us postpone the question of k1(x), k2(y) and k3 for a moment.

Example – Gamma tail. Let us consider that the tail of the shape factor density
can be approximated by the gamma density, namely

1−GT (t) ≈
∫ ∞

t

µγuγ−1

Γ(γ)
e−µudu for large t,

where µ > 0 and γ > 0. The limit distribution of the sample extremes is the Gumbel
distribution and it is not difficult to use Lemma 3 and to see that

an = as
n = am

n =
1
µ

,

bn = an

[
log n + (γ − 1) log log n + log

k1(x)
Γ(γ)

]
,

bs
n = an

[
log n +

(
γ − 3

2

)
log log n + log

√
πk2(y)
Γ(γ)

]
,

bm
n = an

[
log n +

(
γ − 3

2

)
log log n + log

√
πk3

Γ(γ)

]
.

Example – Pareto tail. We shall now suppose that the density g(t) is approxi-
mately of the Pareto form, namely

1−GT (t) ≈
∫ ∞

t

γ

σ

(σ

u

)γ+1

du for large t,
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where σ > 0 and γ > 0. The limit distribution is Fréchet and it is not difficult to
evaluate

bn = bs
n = bm

n = 0,

an = σ[nk1(x)]1/γ ,

as
n = σ

[
nk2(y)(2γ + 1)B

(
γ +

1
2
,
3
2

)]1/γ

,

am
n = σ

[
nk3(2γ + 1)B

(
γ +

1
2
,
3
2

)]1/γ

.

Example – Weibull tail. Let us consider the density g(t) such that

1−GT (t) ≈
∫ ∞

t

µγuγ−1 exp{−µuγ}du for large t,

where µ > 0 and γ > 0. This distribution is in the domain of attraction of the
Gumbel distribution again and one can easily check that

an = as
n = am

n =
(

log n

µ

)1/γ−1 1
µγ

,

bn = an[γ log n + log k1(x)],

bs
n = an

[
γ log n− 1

2
log log n + log

(√
π

γ
k2(y)

)]
,

bm
n = an

[
γ log n− 1

2
log log n + log

(√
π

γ
k3

)]
.

Note that the Weibull and gamma cases agree for γ = 1 as the both cases result in
the exponential distribution with parameter µ. The sets of normalising constants of
the profile and the original shape factor are closely related and it should be noted
that in all three examples one is either known (bn for Pareto) or is the same for
particles and their profiles (an for gamma and Weibull).

Let us turn our attention to the constants k1, k2 and k3 now. We will assume
that the marginal distribution of the size has some parametric form and hence we
will be able to evaluate these constants.

Let us note first that from (4) it follows

2Mf(y) = y

∫ η

y

gX(x)Mx√
x2 − y2

dx

= y

∫ η

y

gX(x)√
x2 − y2

∫ ω

0

(
(1 + t)−1/2 +

√
1 + t

t
arctan

√
t

)
gx(t) dtdx.

As we assume the parametric form of gx(t) for the large values of t only, the evalua-
tion of the above integral is not possible. We may only estimate the marginal density
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of the profile size f(y) from the section and to treat the value M as an unknown
nuisance parameter.

Some examples of calculating the constants ki are presented for different distri-
butions in what follows.

Exponential distribution of the size. Let us suppose that

gX(x) = νe−νx, GX(x) = 1− e−νx, ν, x > 0.

Then it holds

k1(x) = 1− λ(2e−νx − 1),

k2(y) =
y

2Mf(y)
[(1 + λ)KB(0, νy)− λKB(0, 2νy)],

k3 = (1 + λ)
∫ ∞

0

νe−νx

Mx
dx− λ

∫ ∞

0

2νe−2νx

Mx
dx,

where KB(·, ·) denotes the Bessel K function.

Uniformly distributed size. Consider the density and the distribution function
of the spheroid size in the form

gX(x) =
1
b
, GX(x) =

x

b
, b > 0, 0 < x < b.

Then the constants are

k1(x) = 1− λ

(
1− 2x

b

)
,

k2(y) =
y

2Mf(y)

(
1− λ

b
log

{
b +

√
b2 − y2

y

}
+

2λ

b2

√
b2 − y2

)
,

k3 =
1− λ

b

∫ b

0

dx

Mx
+

2λ

b2

∫ b

0

xdx

Mx
.

Pareto distribution of the size. The last example is the Pareto distribution
with

g(x) =
ν

β

(
β

x

)ν+1

, G(x) = 1−
(

β

x

)ν

, ν, β > 0, x > β.

It is not difficult to check that

k1(x) = 1− λ

[
2

(
β

x

)ν

− 1
]

,

k2(y) =
y

2Mf(y)

[
(1 + λ)νβν

yν+1
B

(
ν + 1

2
,
1
2

)
+

2λνβ2ν

y2ν+1
B

(
2ν + 1

2
,
1
2

)]
,

k3 = (1− λ)
∫ ∞

0

ν

βMx

(
β

x

)ν+1

dx + 2λ

∫ ∞

0

ν

βMx

(
β

x

)2ν+1

dx,

where B(·, ·) is the beta function again.
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6. STATISTICAL APPLICATION

We are naturally interested in the prediction of extremes of the shape factor for
spheroids of given size. Therefore we need to estimate the normalising constants an

and bn for fixed X = x since for the normalised shape factor extreme Tn:n

P

[
Tn:n − bn

an
< t|X = x

]
w→ Li,α(t)

holds for the appropriate i and α. Note that the parameter α for the Fréchet limit
distribution will be also estimated by the MLE method described below.

The distribution of the shape factor extreme is therefore approximated by the
distribution function Li,α

(
(t− bn)/an

)
and its quantiles are approximated by qp =

bn − an log log(1/p), while for the mean we have ETn:n = bn − ane, e = 0.577 . . .
being the Euler constant. Hence confidence intervals, upper confidence limits and
other characteristics of the extremal shape factor may be predicted.

The first task is to obtain the estimations of as
n and bs

n or am
n and bm

n from the
observed profiles. Let be Z1, Z2, . . . , Zn the observed shape factors of profiles (either
in some size class or marginally) and M1 ≥ M2 ≥ · · · ≥ Mk the k largest observations
with the average of these observations Mk. These k + 1 values form the basis of the
maximum likelihood estimator proposed for this purpose. The reader may consult
[17] or [10] for the derivation of the ML estimators based on k largest observations.
Let us recall the estimators both for Gumbel and Fréchet limit distribution.

Gumbel limit distribution. As the joint density of (M1,M2, . . . ,Mk) normalised
by the affine transformation is

d(m1,m2, . . . , mk) = (as
n)−k exp

{
−e−(mk−bs

n)/as
n −

k∑

i=1

xi − bs
n

as
n

}

one may easily derive the ML estimators

âs
n = Mk −Mk, b̂s

n = âs
n log k + Mk. (23)

Fréchet limit distribution. The joint density of (M1, M2, . . . , Mk) normalised
by the affine transformation is

d(m1,m2, . . . ,mk) = exp

{
k∑

i=1

(log β + β log as
n + (1− β) log mi) + m−1

k −
(

mk

as
n

)−β
}

and we can derive the ML estimators

âs
n = k1/bβMk, β̂ = k

(
k∑

i=1

(log Mi − log Mk)

)−1

. (24)
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Recalculation of the normalising constants. The normalising constants and
the respective parameter of the limit distribution must be obtained from the ob-
servations of a fixed size. As the size distribution is considered to be continuous
one must in fact make a compromise and use a size interval (as narrow as possible)
instead of some exact size. It is also possible to use the am

n and bm
n normalising

constants avoiding the problem nevertheless usually we need to estimate more than
just one set of the normalising constants. The reason follows from the examples of
Section 5.

We will illustrate our approach on a specific example but the ideas may be used
generally. Let us consider a bivariate FGM distribution where the size is expo-
nentially distributed with parameter ν and the shape factor follows gamma distri-
bution with parameters µ and γ. According to the above results we know that
an = as

n = µ−1 and

bn = an

[
log n + (γ − 1) log log n + log

k1(x)
Γ(γ)

]
,

bs
n = an

[
log n +

(
γ − 3

2

)
log log n + log

√
πk2(y)
Γ(γ)

]
,

k1(x) = 1− λ(2e−νx − 1),

k2(y) =
y

2Mf(y)
[(1 + λ)KB(0, νy)− λKB(0, 2νy)].

(25)

It is naturally quite easy to estimate ân = âs
n (note that it is independent of the

sample size n) and to estimate µ̂ =
(
âs

n

)−1. Now, with the estimate b̂s
n known for n

and y we would like to get b̂m for the chosen x and the expected number of particles
m (estimating m is a classical stereological problem, see e. g. [9]).

Recall that we are able to estimate µ̂ and the marginal density of profile size f̂(y).
Hence it may be a good idea to estimate more normalising constants for different
sizes of appropriate sample sizes, namely b̂s

n(yi), i = 1, . . . , l. We obtain

b̂s
n(yi)− b̂s

n(yj)
âs

n

= log
yif̂(yj)

f̂(yi)yj

+ log
(1 + λ)KB(0, νyi)− λKB(0, 2νyi)
(1 + λ)KB(0, νyj)− λKB(0, 2νyj)

. (26)

The parameters λ and ν now may be estimated numerically from these equations.
The last parameter to be estimated is γ as we note that we need not M for b̂m.

We may proceed as before with the difference that size classes with different sample
sizes are required to obtain

b̂s
n(yi)− b̂s

n(yj)
âs

n

(27)

=
(

γ − 3
2

)
log

(
log ni

log nj

)
+ log

niyif̂(yj)

nj f̂(yi)yj

· (1 + λ̂)KB(0, ν̂yi)− λ̂KB(0, 2ν̂yi)

(1 + λ̂)KB(0, ν̂yj)− λ̂KB(0, 2ν̂yj)
.

Note that we may use the last equation for the simultaneous estimation of λ, ν and
γ instead of the two-stage procedure.

The estimates âm and b̂m of the normalising constants are now obvious.
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Conclusion. There is quite a straightforward method, although numerically not a
simple one how to obtain the normalising constants in such specific cases. Unfortu-
nately, being restricted to parametric form of the tail behaviour one cannot expect
general solution of our problem.

There is another way how to obtain the ML estimators. We may base our MLE
on the maximal observations in k disjoint regions. The limit joint density of the
independent normalised maximas is easy to calculate. Nevertheless the estimators
are not explicitely given and we do prefer the MLE based on k largest observations
here.

In the classical extreme value theory it is natural to avoid parametric models and
approximate the distribution of the sample extremes by one of the limiting cases.
Hence one needs to decide into which domain of attraction the distribution belongs
and to estimate the normalising constants (n.c.). It is exactly what we can do also
for the profile characteristics without any parametric model. There is, however,
the problem that we need the normalising constants for the spheroid characteristics
rather than for the profile characteristics. Unfortunately there is not known any
general (distribution free) way of estimating n.c. of the spheroids based on the n.c.
of the profiles. One of possible approaches (see e. g. [16]) is to consider parametric
tails of the distribution, derive the explicit formula for the normalising constants
both for spheroids and profiles, and proceed to the end. In our case we need also
to consider a relation between the two characteristics (size and shape factor) of the
spheroids as the tail uniformity of Theorem 1 is required. Hence the form of the
bivariate distribution of (X,T ) must be specified.
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