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Pavel Žampa
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INVARIANT FACTORS ASSIGNMENT
FOR A CLASS OF TIME–DELAY SYSTEMS

Jean Jacques Loiseau

It is well–known that every system with commensurable delays can be assigned a finite
spectrum by feedback, provided that it is spectrally controllable. In general, the feedback
involves distributed delays, and it is defined in terms of a Volterra equation. In the case
of multivariable time–delay systems, one would be interested in assigning not only the lo-
cation of the poles of the closed–loop system, but also their multiplicities, or, equivalently,
the invariant factors of the closed–loop system. We answer this question. Our basic tool
is the ring of operators that includes derivatives, localized and distributed delays. This
ring is a Bezout ring. It is also an elementary divisor ring, and finally one can show that
every matrix over this ring can be brought in column reduced form using right unimodular
transformations. The formulation of the result we finally obtain in the case of time-delay
systems differs from the well–known fundamental theorem of state feedback for finite di-
mensional systems, mainly because the reduced column degrees of a matrix of operators
are not uniquely defined in general.

1. INTRODUCTION

Let us consider a multivariable linear system with commensurate delays, of the form

ẋ(t) =
p∑

k=0

Akx(t− kθ) +
p∑

k=0

Bku(t− kθ) , t ≥ 0 , (1)

where x(t) ∈ IRn is the instantaneous state, u(t) ∈ IRm is the control, 0 < θ ∈ IR,
and the n×n matrices Ak and n×m matrices Bk have real coefficients. The initial
condition x(t) = φ(t), −pθ ≤ t ≤ 0 is assumed to be known.

System 1 is called spectrally controllable [15] whenever

Rank
(
sIn −A(e−θs),−B(e−θs)

)
= n , ∀ s ∈ Cl , (2)

where the matrices A(e−θs) ∈ IR[e−sθ]n×n and B(e−θs) ∈ IR[e−sθ]n×m are defined
by

A(e−θs) =
p∑

k=0

Ake−ksθ ,
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and

B(e−θs) =
p∑

k=0

Bke−ksθ .

As it is well–known, the system (1) is stabilizable by state feedback if condition (2)
holds [13]. There is some freedom in choosing the class of systems among which one
researches a stabilizing feedback. In particular, it was shown that the stabilizing
feedback can always be chosen in the class of finite dimensional linear systems [8], or
in the class of linear systems with localized delays commensurable to θ [3, 5]. The
design of a stabilizing feedback by these methods is rather involved, and one cannot
fully assign the properties of the closed–loop system. In particular, the closed–loop
system in general has an infinite number of poles. The larger class of feedbacks of
the form

u(t) =
∫ t

t−pθ

h(t− τ)u(τ) dτ +
∫ t

t−pθ

f(t− τ)x(τ) dτ +
p∑

k=0

fkx(t− kθ) , (3)

that include distributed delays, and which was introduced by Olbrot [13, 15], per-
mits to overcome this difficulty. It indeed leads to a simple design of a stabilizing
compensator, and, if the system is spectrally controllable, the designer can assign
the closed–loop system to have only a finite number of poles, and arbitrarily choose
their location.

This paradigm, known as finite spectrum assignment, was first introduced for
monovariable systems. The existence of such a simple design method is ultimately
a consequence of the fact that the operator ring E that includes distributed delays
is a Bézout ring [1, 4]. It is still valid in the case of a multivariable system (see for
instance [12, 18]). In the present paper, we go further in this direction, and precise
the freedom in assigning also the multiplicities of the poles of the closed–loop sys-
tem. The result is expressed in terms of the degrees of the invariant factors of the
closed–loop system. At the contrary of finite-dimensional systems, the possible in-
variant factor degrees are not constrained by some controllability indices of the pair
(A(e−θs), B(e−θs)) or by some minimal column degrees of a denominator D(s, e−θs)
of the transfer, defined by (sI−A(e−θs))−1B(e−θs) = N(s, e−θs)D−1(s, e−θs). How-
ever the concept of column reducedness and column degrees of the denominator is
instrumental to obtain the result, and for the design methodology.

The paper is organized as follows. We first show that these two elementary
concepts, invariant factors and column reduced pseudopolynomial matrices, are well-
defined in the present context. Hence we show the independence between invariant
factors and column degrees. There indeed exist column reduced pseudopolynomial
matrices with arbitrary invariant factors and arbitrary column degrees, provided
that the sum of the column degrees equals the degree of the determinant of the
matrix, that is the sum of the invariant factors degrees. This leads to an algorithm
for the design of a feedback assigning arbitrary invariant factors to the closed–loop
system, provided that the degree condition holds. In particular, if the system is
spectrally controllable, one can assign n finite poles to the closed–loop system, as in
[18]. We finally point out some consequences regarding minimal realizations of the
considered class of time–delay systems.
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2. PSEUDOPOLYNOMIAL MATRICES

A distributed delay is an input–output relationship of the form

y(t) =
∫ t

t−θ

h(t− τ)u(τ) dτ ,

where θ > 0 is a real number, y(t) is the output, u(t) is the input, and h(t) is a
measurable fonction defined on [0, θ], called the kernel of the distributed delay. The
Laplace transform of this distributed delay is

ŷ(s) = L(h)(s)û(s) ,

where s is the Laplace variable, ŷ(s) and û(s) respectively denote the Laplace trans-
forms of y(t) and of u(t). The Laplace transform of the kernel is defined by

L(h)(s) = ĥ(s) =
∫ θ

0

h(τ)e−sτdτ ,

which is a finite integral since the domain of definition of h(t) is finite. As a conse-
quence, ĥ(s) is analytic in the whole complex plane [11].

Let G be the ring of those Laplace transforms of distributed delays that are
rational in the variables s and e−θs, and E be defined as the ring of polynomials in
the variable s with coefficients in G + IR[e−θs].

Example 1. For instance, the distributed delay

y(t) =
∫ t

t−1

u(τ) dτ ,

can be rewritten in terms of the Laplace variable s

ŷ(s) =
1− e−s

s
û(s) .

Hence (1 − e−s)/s is a typical element of G. It is analytic in the whole complex
plane, and equals 1 at s = 0. Further, one can see that s+ (1− e−s)/s is in E , and
that the transfer of the input–state system defined by the following Volterra integral
equation

ẋ(t) = −
∫ t

t−1

x(τ) dτ + u(t) ,

is a fraction of two elements of E , namely

x̂(s)
û(s)

=
1

s+ 1−e−s

s

.

The elements of E are called pseudopolynomials. They are fractions of the form
α(s, e−θs) = n(s,e−θs)

d(s) , where all the zeros of d(s) ∈ IR[s] are zeros of n(s, e−θs) ∈
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IR[s, e−θs]. If σ ∈ Cl is a zero of n(s, e−θs) that is not a zero of d(s), it is clear
that β(s, e−θs) = n(s,e−θs)

(s−σ)d(s) lies in E , hence α(s, e−θs) can be factored as α(s, e−θs) =
(s − σ)β(s, e−θs). Since the quasipolynomial n(s, e−θs) has in general an infinite
number of zeros, it follows that E is not a unique factorization domain. One can
further show that two elements of E are coprime if and only if they have neither
common zero nor common factor of the form e−ksθ, k ∈ IN, and that two elements
of E have a greatest common divisor, that is unique up to a nonzero constant.

Theorem 1. [1, 4] The ring E is a Bézout domain, i. e. every two elements
α(s, e−θs), β(s, e−θs) of E are coprime if and only if they satisfy a Bézout identity,
∃γ(s, e−θs), δ(s, e−θs) ∈ E such that

α(s, e−θs)γ(s, e−θs) + β(s, e−θs) δ(s, e−θs) = 1 .

If α(s, e−θs) and β(s, e−θs) are not coprime, then there exists γ(s, e−θs), δ(s, e−θs) ∈
E such that

α(s, e−θs)γ(s, e−θs) + β(s, e−θs) δ(s, e−θs) = g(s, e−θs) ,

where g(s, e−θs) is the greatest common divisor of α(s, e−θs) and β(s, e−θs).

As a consequence, the usual definitions and characterizations of right and left
coprimeness of polynomial matrices can be extended to matrices over E .

Theorem 2. [1, 4] Let be given A(s, e−θs) ∈ Em×r, B(s, e−θs) ∈ En×r. Then the
following statements are equivalent.

(i) Every square full rank matrix C(s, e−θs) ∈ Er×r such thatA(s, e−θs) = A1(s, e−θs)
C(s, e−θs) and B(s, e−θs) = B1(s, e−θs)C(s, e−θs), for some matrices A1(s, e−θs) ∈
Em×r and B1(s, e−θs) ∈ En×r, is invertible over E , i. e. detC(s, e−θs) ∈ IR− {0}.
(ii) There exists matrices X(s, e−θs) ∈ Er×m and Y (s, e−θs) ∈ Er×n such that
X(s, e−θs)A(s, e−θs) + Y (s, e−θs)B(s, e−θs) = 1.

(iii) r < n+m and there exist matrices N(s, e−θs) ∈ Em×(n+m−r) and D(s, e−θs) ∈
En×(n+m−r) such that the overall matrix

(
A(s, e−θs) N(s, e−θs)
B(s, e−θs) D(s, e−θs)

)

is unimodular.

One says that A(s, e−θs) and B(s, e−θs) are right coprime, and that their trans-
poses AT (s, e−θs) and BT (s, e−θs) are left coprime, if one of these conditions holds.

The procedures to construct the matrices X(s, e−θs), Y (s, e−θs), N(s, e−θs), and
D(s, e−θs) as in Theorem 2 are constructive [1]. Further we have the following.
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Theorem 3. E is an elementary divisor ring, i. e., every matrix A(s, e−θs) ∈ En×m

can be factored as

A(s, e−θs) = U(s, e−θs)
(

Λ(s, e−θs) 0
0 0

)
V (s, e−θs) ,

where U(s, e−θs) ∈ En×n, V (s, e−θs) ∈ Em×m are unimodular, r = rankA(s, e−θs),
Λ(s, e−θs) = diag {α1(s, e−θs), . . . , αr(s, e−θs)}, and αi(s, e−θs)|αi+1(s, e−θs), for i =
1, . . . , r−1. The pseudopolynomials αi(s, e−θs), i = 1, . . . , r, are called the invariant
factors of A(s, e−θs).

P r o o f . Following [9] (see also [4] where a similar result is established), it is
sufficient to show that if α(s, e−θs), β(s, e−θs), and γ(s, e−θs) are three coprime ele-
ments of E , then there exist p(s, e−θs), q(s, e−θs) ∈ E such that p(s, e−θs)α(s, e−θs)
and p(s, e−θs)β(s, e−θs) + q(s, e−θs)γ(s, e−θs) are coprime. One can indeed show
that, since α(s, e−θs), β(s, e−θs), and γ(s, e−θs) are coprime, there exists a con-
stant k ∈ IR such that g(s) = gcd (β(s, e−θs) + kα(s, e−θs), γ(s, e−θs)) has only
a finite number of common zeros. There exists p(s, e−θs), q(s, e−θs) ∈ E so that
[β(s, e−θs) + kα(s, e−θs)]p(s, e−θs) + γ(s, e−θs) q(s, e−θs) = g(s), and another con-
stant k′ ∈ IR so that p(s, e−θs)+k′γ(s,e−θs)

g(s) and g(s) are coprime. The result follows.
2

The degree of an element α(s, e−θs) = n(s,e−θs)
d(s) ∈ E , where n(s, e−θs) ∈ IR[s, e−θs]

and d(s) ∈ IR[s], is the difference δ = degs n(s, e−θs) − deg d(s) ∈ ZZ, and we write
degα(s, e−θs) = δ. This degree function is endowed with the usual properties of a
degree function, namely ∀α(s, e−θs), β(s, e−θs) ∈ E , deg(α(s, e−θs) + β(s, e−θs) ≤
max(degα(s, e−θs), deg β(s, e−θs)), and deg(α(s, e−θs)β(s, e−θs)) = degα(s, e−θs) +
deg β(s, e−θs). E is not a Euclidian ring, because this degree lies in ZZ and not in IN.
The degree of any element of E can be negative. For instance

deg
1− e−s

s
= −1 .

This in particular implies that the degree of a divisor can be strictly less than the
degree of some of its multiples. Consider for instance

1− e−s = s · 1− e−s

s
.

One can see that if degα(s, e−θs) = δ, then

α(s, e−θs) =
δ∑

k=−∞
αk(e−θs) sk ,

where the coefficients αk(e−θs) ∈ IR[e−θs] are uniquely defined. α(s, e−θs) is said to
be monic if αδ(e−θs) is a nonzero real constant. Notice the following.
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Lemma 1. [Division Algorithm] Let α(s, e−θs), β(s, e−θs) ∈ E , k ∈ ZZ, and assume
that α(s, e−θs) is monic. Then there exist pseudopolynomials q(s, e−θs), r(s, e−θs) ∈
E such that β(s, e−θs) = q(s, e−θs)α(s, e−θs) + r(s, e−θs) and deg r(s, e−θs) < k.

This is clearly deduced from the existence of monic pseudopolynomials having
negative degrees, e. g. θs−1+e−θs

s2 . We call division the operation described in Lemma
1. The following will be useful on the sequel.

Theorem 4. [1] Let α(s, e−θs) ∈ E . Then
(i) α(s, e−θs) ∈ G ⇐⇒ degα(s, e−θs) ≤ −1,
(ii) α(s, e−θs) ∈ G + IR[e−θs] ⇐⇒ degα(s, e−θs) ≤ 0.

A matrix M(s, e−θs) ∈ En×m being given, and defining cj as the degree of the
jth column of M(s, e−θs), it appears that

M(s, e−θs) diag {sc1 , sc2 , . . . , scm} =
0∑

k=−∞
Mk(e−θs) sk .

M(s, e−θs) ∈ En×m is said to be column reduced, with column degrees c1, c2, . . . , cm
if the matrix M0(e−θs) is of full column rank.

Theorem 5. [1] Every matrix over E can be brought in column reduced form
through a right unimodular transformation.

The column degrees of a column reduced pseudopolynomial matrix can be neg-
ative. Hence the column degrees of a column reduced form of a pseudopolynomial
matrix are not uniquely defined. Consider for instance the following unimodular
matrix

U(s, e−θs) =

(
s+ ln 2 1−e−s

s

s 2−e−s

s+ln 2

)
.

This matrix is column reduced with column degrees c1 = 1, c2 = −1, unimodular
since its determinant equals 1, with inverse

U−1(s) =
(

2−e−s

s+ln 2 − 1−e−s

s

−s s+ ln 2

)

hence U(s)U−1(s) is also column reduced, with column degrees c1 = 0 and c2 = 0.

Lemma 2. Let k ∈ ZZ. Then there exist a unimodular matrix over E , of the form

U(s, e−θs) =
(
α(s, e−θs) β(s, e−θs)
γ(s, e−θs) δ(s, e−θs)

)
,

where degα(s, e−θs) = k, deg δ(s, e−θs) = −k, and the degree of β(s, e−θs) and
γ(s, e−θs) is arbitrarily low.

Lemma 2 clearly follows from the example above and Lemma 1. Taking Theo-
rem 5 into account, it leads to the following characterization of the possible column
degrees of a matrix in column reduced form.
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Theorem 6. Let D(s, e−θs) ∈ Em×m, c1, c2, . . . , cm ∈ ZZ, and assume further that
detD(s, e−θs) 6= 0. Then there exists a matrix U(s, e−θs), unimodular over E , such
that D(s, e−θs)U(s, e−θs) is column reduced with column degrees c1, c2, . . . , cm if
and only if

m∑

i=1

ci = deg detD(s, e−θs) .

3. APPLICATION TO FINITE POLE PLACEMENT

The matrices sIn − A(e−θs) and B(e−θs) that appear in equation (2) are clearly
polynomial in s, e−θs. They have a fortiori their entries in E . Applying Laplace
transform, equation (3) becomes

û(s) = H(s, e−θs)û(s) + F (s, e−θs)x̂(s) ,

where

H(s, e−θs) =
∫ pθ

0

h(τ)e−θs dτ ,

F (s, e−θs) =
∫ pθ

0

f(τ)e−sτ dτ +
p∑

k=0

fke−ksθ .

If the entries of H(s, e−θs) and F (s, e−θs) are rational in the variable s, e−θs, then
they also lie, respectively, in G and in G + IR[e−θs]. Thus the closed–loop system
reads

M(s, e−θs)
(
x̂(s)
û(s)

)
=

(
φ̂(s)

0

)
,

where φ̂(s) depends from the initial condition of the system, and

M(s, e−θs) =
(
sIn −A(e−θs) −B(e−θs)
−F (s, e−θs) Im −H(s, e−θs)

)

is a matrix with entries in E . Notice that the entries of H(s, e−θs) lie in G, and that
of F (s, e−θs) lie in G+IR[e−θs] if, and only if, the entries of the kernels f(τ) and g(τ)
are linear combinations of exponentials, of the form eατ , α ∈ IR, eRe(β)τ cos(Im(β)τ),
or eRe(β)τ sin(Im(β)τ), defined on the compact support [k1θ, k2θ], k1 < k2 ∈ IN, and
of their derivatives [2, 7].

The design of a stabilizing feedback hence comes down to choosing F (s, e−θs)
and H(s, e−θs) over E so that the zeros of M(s, e−θs) lie in the left half complex
plane. The finite spectrum assignment is obtained when M(s, e−θs) has only a finite
number of zeros, say q ∈ IN. In that case, the determinant of M is a polynomial in
s of degree q. Such an assignment is possible for every given self-conjugated set of q
zeros if and only if the pair (A,B) is spectrally controllable [13, 15, 18]. The design
procedure [12] is almost similar to the classical design method for a linear time–
invariant system [6, 10], thanks to the properties of the operator ring E . The first
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step of this procedure consists of finding matrices X(s, e−θs), Y (s, e−θs), N(s, e−θs),
and D(s, e−θs) over E , such that

U(s, e−θs) =
(
X(s, e−θs) N(s, e−θs)
Y (s, e−θs) D(s, e−θs)

)

is unimodular, i. e. it possesses an inverse over E , and
(
sIn −A(e−θs) −B(e−θs)

)
U(s, e−θs) =

(
In 0

)
.

Hence it is easy to see that the zeros of M(s, e−θs) are those of

DHF (s, e−θs) = (In −H(s, e−θs))D(s, e−θs)− F (s, e−θs)N(s, e−θs) , (4)

for every choice of H(s, e−θs) and F (s, e−θs). Further we can notice that N(s, e−θs)
and D(s, e−θs) are right coprime over E , and assume that D(s, e−θs) is column
reduced. The second step consists of choosing a matrix DHF (s, e−θs) that is col-
umn reduced, with the same column degrees as D(s, e−θs). Hence there exists a
solution H(s, e−θs), F (s, e−θs) to equation (4). By division, we can assume that
degF (s, e−θs) ≤ 0, hence it appears that indeed H(s, e−θs) lies in Gm×m, and that
F (s, e−θs) is a matrix over G + IR[e−θs]. Using Theorem 5, it appears that the free-
dom in choosing the invariant factors of the closed–loop system, that are those of
DHF (s, e−θs) is only limited by n.

Theorem 7. Let the system (1) be given and assume that it is spectrally control-
lable, and ψ1(s, e−θs), ψ2(s, e−θs), . . . , ψm(s, e−θs) ∈ E . Then there exists a feedback
(3) such that ψ1(s, e−θs), ψ2(s, e−θs), . . . , ψm(s, e−θs) ∈ E are the invariant factors
of the closed-loop system if and only if the pseudopolynomials ψi(s, e−θs) are monic,
ψi(s, e−θs) divides without remainder ψi+1(s, e−θs), i = 1, 2, . . . ,m− 1, and

m∑

i=1

degψi(s, e−θs) = n .

Corollary 1. [Finite pole placement] Under the same condition (2), one can
choose a feedback (3) such that ψ1(s), ψ2(s), . . . , ψm(s) ∈ IR[s] are the invariant
factors of the closed–loop system if and only if the polynomials ψi(s) are monic,
ψi(s) divides without remainder ψi+1(s), i = 1, 2, . . . ,m− 1, and

m∑

i=1

degψi(s) = n ,

where here the degree is understood as that of a polynomial in s.

Example 2. For instance, consider the system

ẋ(t) =
(

0 1
1 0

)
x(t) +

(
1 0
0 1

)
u(t− 1) .



Invariant Factors Assignment for a Class of Time–Delay Systems 273

Hence the matrices N(s, e−θs) and D(s, e−θs) as above can be taken as

N(s, e−s) =
(

e−s 0
0 e−s

)
,

and

D(s, e−s) =
(

s −1
−1 s

)
.

One can then verify that (4) is satisfied taking

H(s, e−s) =
( −α(s, e−s) −β(s, e−s)
−β(s, e−s) −α(s, e−s)

)
,

and

F (s, e−s) =
( −γ(s, e−s) 0

0 γ(s, e−s)

)
,

where

α(s, e−s) =
1 + s

(
1− 2 e−e−s

e−e−1 e−s+1
)

s2 − 1
,

β(s, e−s) =
s+ 1− 2 e−e−s

e−e−1 e−s+1

s2 − 1
,

and

γ(s, e−s) = 2e
e− e−s

e− e−1
.

4. CONCLUSION

The freedom in assigning the closed–loop invariant factors of a system with com-
mensurable time–delay system has been described, provided that it is spectrally
controllable. An algorithm has been proposed, for the synthesis of the assigning
control law, which in general is expressed in terms of a Volterra integral equation
that involves both localized and distributed delays. This provides a slight improve-
ment in the method proposed in [18] where the closed–loop system is nilpotent,
i. e. has a unique nonunit invariant factor, which may in application ameliorate the
transient behavior of the system.

There are many more applications to the control of systems with commensurable
delays, of the theory of pseudopolynomial matrices. For instance, using standard
techniques (see for instance [6]), one can see that if a transfer matrix is factored as

T (s, e−θs) = N(s, e−θs)D−1(s, e−θs)

where N(s, e−θs) and D(s, e−θs) are right coprime, D(s, e−θs) is column reduced,
with column degrees c1 ≥ c2 ≥ . . . ≥ cm ≥ 0, then it has a minimal realization. The
following is hence a clear consequence of Theorem 5.
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Theorem 8. Let T (s, e−θs) be the transfer matrix of a time–delay system. Then
T (s, e−θs) admits a minimal realization, i. e. spectrally controllable (in the sense
of (2)) and spectrally observable, if and only if every right coprime factorization
of T (s, e−θs) over E , in the form T (s, e−θs) = N(s, e−θs)D−1(s, e−θs), is so that
deg detD(s, e−θs) ≥ 0.

For instance, the transfer function

T (s, e−θs) =
1 + e−2s

s+ π
2 e−s

,

does not admit any minimal realization since a coprime factorization is provided by
T (s, e−θs) = N(s, e−θs)D−1(s, e−θs), where

N(s, e−θs) =
1 + e−2s

s2 + π2

4

,

and

D(s, e−θs) =
s+ π

2 e−s

s2 + π2

4

.

One hence checks that deg detD(s, e−θs) = −1. There are still some difficulties
when applying this theory. First, the calculations are quite involved, and the absence
of any specialized toolbox is a serious drawback. Second, the robustness of the
control law is not ensured. In particular, some experimentations have shown that a
numerical implementation of Volterra integral equations may result in an unstable
closed–loop system [17]. Further studies are needed for practical implementations.

(Received November 22, 2000.)
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[11] D. Leborgne: Calcul différentiel complexe. Presses Universitaires de France, Paris,
1991.

[12] J. J. Loiseau: Algebraic tools for the control and stabilization of time–delay systems.
In: Proc. 1st IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp.
235–249.

[13] A. Z. Manitius and A.W. Olbrot: Finite spectrum assignment problem for systems
with delays. IEEE Trans. Automat. Control 35 (1979), 541–553.
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