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DECENTRALIZED CONTROL OF INTERCONNECTED
LINEAR SYSTEMS WITH DELAYED STATES

Carlos E. de Souza

This paper addresses the problems of stability analysis and decentralized control of in-
terconnected linear systems with constant time-delays in the state of each subsystems as
well as in the interconnections. We develop delay-dependent methods of stability anal-
ysis and decentralized stabilization via linear memoryless state-feedback. The proposed
methods are given in terms of linear matrix inequalities. Extensions of the decentralized
stabilization result to more complex control problems, such as decentralized static output
feedback, decentralized H∞ control, decentralized robust stabilization, and decentralized
robust H∞ control are also discussed.

1. INTRODUCTION

Many control problems of modern industrial society are associated with the control
of complex large-scale interconnected systems which are in general subject to time-
delay in the interconnections. Typical examples can be often encountered in a large
spectrum of applications such as electrical power systems, chemical process control
systems, etc. During the past 30 years, control problems for interconnected systems
have received considerable attention and a very popular way to dealing with these
problems is to make use of local or decentralized feedback controllers to stabilize
the overall system (see, e. g. [9, 14, 16] and [20]). In recent years, the problems of
robust stability analysis and robust stabilization for interconnected uncertain lin-
ear systems have been widely studied by many researchers; see, e. g. [2, 5, 8] and
[21]. On the other hand, the problems of stability analysis and stabilization of
interconnected systems with time-delays have also received a lot of attention and
a number of results have been reported in the literature over the past years; see,
e. g. [7, 10, 15, 19] and [22]. A common feature of the latter results is that they are
independent of the length of the time-delays in the system, i. e. the time-delays are
allowed to be arbitrarily large, and as such they cannot be applied in many impor-
tant applications, more specifically, in situations where the stability or stabilizability
of the system depends on the length of the time-delays, which is a fairly common
situation. Although increasing attention has recently been devoted to the study of
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delay-dependent methods of stability analysis and stabilization for “isolated” sys-
tems (e. g. [4], [11] – [13], [17] and [18]), the problems of delay-dependent stability
and stabilization for interconnected systems have not yet been fully investigated.

This paper addresses the problems of stability analysis and decentralized control
of interconnected linear systems with state delays. The time-delays are constant and
may appear in state of each subsystems as well as in the interconnections. First,
delay-dependent methods of stability analysis and decentralized stabilization via
linear memoryless state feedback are developed. More precisely, using a Lyapunov
functional approach and linear matrix inequalities (LMIs) techniques, we propose a
stability criterion and a design method of decentralized stabilizing controllers which
incorporate information on the length, or an upper-bound, of the time-delays in the
system. The proposed methods have the advantage that they can be implemented
numerically very efficiently using recently developed algorithms for solving linear
matrix inequalities; see, e. g. [1]. Then, extensions of the decentralized stabiliza-
tion result to more complex control problems are analysed, including decentralized
stabilization via static output, decentralized H∞ control, decentralized robust sta-
bilization, and decentralized robust H∞ control. This paper extends results of [4]
to the context of interconnected linear systems with delayed states.

Notation. <n denotes the n-dimensional Euclidean space, <n×m is the set of
n ×m real matrices, diag{· · · } denotes a block-diagonal matrix, and the notation
X > 0, for a real matrix X, means that X is symmetric and positive definite.
L2 denotes the space of square integrable vector functions on [0,∞) with norm

‖ · ‖2 :=
( ∫∞

0
‖ · ‖2dt )

1
2 , where ‖ · ‖ stands for the Euclidean vector norm.

2. PROBLEM FORMULATION

Consider the large-scale linear time-delay system composed of the interconnection
of N subsystems described by

(Si) : ẋi(t) = Aixi(t) +
N∑

j=1

Aijxj(t− τij) +Biui(t), i = 1, . . . , N,
(1)

xi(t) = φi(t), ∀ t ∈ [−τmax, 0]; τmax = max {τij , i, j = 1, . . . , N}

where for the ith subsystem (Si), xi(t) ∈ <ni is the state, ui(t) ∈ <mi is the control
input, τii ≥ 0 is the time-delay in the subsystem, τij ≥ 0, j = 1, . . . , N, j 6= i are
the time-delays in the interconnections, φi(·) is the initial condition, Ai, Aij , j =
1, . . . , N, and Bi are known real constant matrices of appropriate dimensions.

In this paper we shall develop delay-dependent conditions for stability and de-
centralized stabilization for the interconnected system of (1). The stability problem
to be addressed is as follows. Given scalars τ̄ij > 0, i, j = 1, . . . , N, find condi-
tions which ensure that the system of (1) with ui(t) ≡ 0, i = 1, . . . , N, is globally
asymptotically stable for any constant time-delays τij satisfying 0 ≤ τij ≤ τ̄ij , i, j =
1, . . . , N .
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On the other hand, the stabilization problem under investigation consists in:
Determine a decentralized memoryless control law ui(t) = Kixi(t), i = 1, . . . , N ,
for the interconnected system of (1) such that the resulting closed-loop system is
globally asymptotically stable for any constant time-delays τij satisfying 0 ≤ τij ≤
τ̄ij , i, j = 1, . . . , N . In this case, the system of (1) is said to be decentralized
stabilizable. A linear matrix inequality approach will be developed for solving the
above problems.

3. MAIN RESULTS

We first deal with the problem of stability analysis for the unforced system of (1)
with ui(t) ≡ 0, i = 1, . . . , N . A criterion for global asymptotic stability is provided
by the following theorem.

Theorem 1. Consider the unforced system of (1) with ui(t) ≡ 0, i = 1, . . . , N ,
and let τ̄ij > 0, i, j = 1, . . . , N, be given scalars. Then this system is globally
asymptotically stable for any constant time-delays τij satisfying 0 ≤ τij ≤ τ̄ij , i, j =
1, . . . , N, if there exist ni×ni symmetric positive definite matrices Xi, Rij and Sijk,
i, j, k = 1, . . . , N , satisfying the following LMI:




Φ ΛT ΩT

Λ −R 0
Ω 0 −J


 < 0 (2)

where

Φ =




Φ1 A12X2 +X1A
T
21 · · · A1NXN +X1A

T
N1

A21X1 +X2A
T
12 Φ2 · · · A2NXN +X2A

T
N2

...
...

...
AN1X1 +XNA

T
1N AN2X2 +XNA

T
2N · · · ΦN




(3)

Φi = (Ai +Aii)Xi +Xi(Ai +Aii)T +
N∑

j=1

τ̄ijAijR̂ijA
T
ij (4)

R̂ij = Rij +
N∑

j=1

Sjki (5)

Λ = diag {Λ1, . . . , ΛN} , Ω = diag {Ω1 , . . . , ΩN} (6)

R = diag {R1, . . . , RN} , J = diag {J1 , . . . , JN} (7)

ΛT
i =

[
τ̄1iXiA

T
i τ̄2iXiA

T
i . . . τ̄NiXiA

T
i

]
(8)

ΩT
i =

[
XiM

T
1i XiM

T
2i . . . XiM

T
Ni

]
, MT

ki =
[
τ̄k1A

T
1i τ̄k2A

T
2i . . . τ̄kNA

T
Ni

]
(9)
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Ri = diag {τ̄1iR1i , τ̄2iR2i , . . . , τ̄NiRNi} (10)

Ji = diag {J1i , J2i , . . . , JNi} , Jki = diag {τ̄k1S1ik , τ̄k2S2ik , . . . , τ̄kNSNik} (11)

P r o o f . The proof technique is inspired by that used to prove Theorem 1 in [11].
Let xi(t), i = 1, . . . , N , be the trajectory of the unforced system of (1) with ui(t) ≡ 0,
i = 1, . . . , N . Then we have that for t ≥ τmax:

xj(t− τij) = xj(t)−
∫ 0

−τij

ẋj(t+ θ) dθ

= xj(t)−
∫ 0

−τij

[
Ajxj(t+ θ) +

N∑

k=1

Ajkxk(t− τjk + θ)
]
dθ.

Substituting xj(t− τij) in (1), we obtain that xi(t) satisfies:

ẋi(t)=Aixi(t)+
N∑

j=1

Aijxj(t)−
N∑

j=1

Aij

∫ 0

−τij

[
Ajxj(t+ θ) +

N∑

k=1

Ajkxk(t− τjk + θ)

]
dθ.

In view of the above, it follows that (1) with ui(t) ≡ 0 is a special case of the
following system:

ξ̇i(t) = Aiξi(t) +
N∑

j=1

Aijξj(t)

−
N∑

j=1

Aij

∫ 0

−τij

[
Ajξj(t+ θ) +

N∑

k=1

Ajkξk(t− τjk + θ)

]
dθ, i = 1, . . . , N (12)

ξi(t) = ψi(t), ∀ t ∈ [−2τmax, 0], i = 1, . . . , N (13)

where ψi(·) is the initial condition for xi. Observe that (12) requires initial data on
[−2τmax, 0].

Notice that any solution of (1) with ui(t) ≡ 0, i = 1, . . . , N , is also a solution of
(12) – (13); see, e. g. [6]. Therefore, the global asymptotic stability of (12) – (13) will
ensure the global asymptotic stability of (1). In the sequel, we will study the stability
of the system of (12) – (13) in order to ascertain the global asymptotic stability of
the system of (1).

Let the following Lyapunov functional candidate for the system of (12) – (13)

V (ξ) =
N∑

i=1

{
ξT
i (t)Piξi(t) +Wi(ξ)

}
(14)
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where Pi , i = 1, . . . , N, are symmetric positive definite matrices, ξ denotes the
vector [ξT

1 , . . . , ξ
T
N ]T and

Wi(ξ) =
N∑

j=1

∫ 0

−τij

∫ t

t+θ

ξT
j (s)AT

j R
−1
ij Ajξj(s) dsdθ

+
N∑

j=1

N∑

k=1

∫ 0

−τij

∫ t

t−τij+θ

ξT
k (s)AT

jkS
−1
jkiAjkξk(s) dsdθ (15)

where Rij and Sijk, i, j, k = 1, . . . , N , are symmetric positive definite matrices to
be chosen.

The time-derivative of V (ξ) along the solution of (12) – (13) is given by

V̇ (ξ) =
N∑

i=1

[
ξT
i (t)

(
PiAi +AT

i Pi

)
ξi(t) + 2ξT

i (t)Pi

N∑

j=1

Aijξj(t)
]

+
N∑

i=1

[
η
(i)
1 (ξ, t) + η

(i)
2 (ξ, t) + Ẇi(ξ)

]
(16)

where

η
(i)
1 (ξ, t) = −2ξT

i (t)Pi

N∑

j=1

Aij

∫ 0

−τij

Ajξj(t+ θ) dθ

η
(i)
2 (ξ, t) = −2ξT

i (t)Pi

N∑

j=1

Aij

∫ 0

−τij

N∑

k=1

Ajkξk(t− τjk + θ) dθ.

Recalling that for any vectors u, v and any matrix Q > 0 of appropriate dimen-
sions:

−2uT v ≤ uTQu+ vTQ−1v

we have that for any matrices Rij > 0 and Sijk > 0, i, j, k = 1, . . . , N ,

η
(i)
1 ≤

N∑

j=1

τijξ
T
i (t)PiAijRijA

T
ijPiξi(t) +

N∑

j=1

∫ 0

−τij

ξT
j (t+ θ)AT

j R
−1
ij Ajξj(t+ θ) dθ (17)

η
(i)
2 ≤

N∑

j=1

N∑

k=1

τijξ
T
i (t)PiAijSjkiA

T
ijPiξi(t)

+
N∑

j=1

N∑

k=1

∫ 0

−τij

ξT
k (t− τjk + θ)AT

jkS
−1
kjiAjkξk(t− τjk + θ) dθ. (18)
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Next, in view of (15), we have that the time-derivative of Wi(ξ) satisfies

Ẇi(ξ) =
N∑

j=1

[
τijξ

T
j (t)AT

j R
−1
ij Ajξj(t)−

∫ 0

−τij

ξT
j (t+ θ)AT

j R
−1
ij Ajξj(t+ θ) dθ

]

+
N∑

j=1

N∑

k=1

τijξ
T
k (t)AT

jkS
−1
jkiAjkξk(t)

−
N∑

j=1

N∑

k=1

∫ 0

−τij

ξT
k (t− τjk + θ)AT

jkS
−1
jkiAjkξk(t− τjk + θ) dθ. (19)

Hence, using (17) – (19) in (16) we obtain:

V̇ (ξ) ≤
N∑

i=1



ξ

T
i (t)


PiAi +AT

i Pi + Pi

N∑

j=1

τijAijR̂ijAijPi


 ξi(t)

+ 2ξT
i (t)Pi

N∑

j=1

Aijξj(t) +
N∑

j=1

τijξ
T
j (t)AT

j R
−1
ij Ajξj(t)

+
N∑

j=1

N∑

k=1

τijξ
T
k (t)AT

jkS
−1
jkiAkjξk(t)



 . (20)

where R̂i is as in (5).
Now, considering that

N∑

i=1

N∑

j=1

τijξ
T
j (t)AT

j R
−1
ij Ajξj(t) =

N∑

i=1

N∑

j=1

τjiξ
T
i (t)AT

i R
−1
ji Aiξi(t)

N∑

i=1

N∑

j=1

N∑

k=1

τijξ
T
k (t)AT

jkS
−1
jkiAjkξk(t) =

N∑

i=1

N∑

j=1

N∑

k=1

τkjξ
T
i (t)AT

jiS
−1
jikAjiξi(t)

we have that

V̇ (ξ) ≤
N∑

i=1

{
ξT
i (t)Ψi(τ)ξi(t) + 2ξT

i (t)Pi

N∑

j=1
j 6=i

Aijξj(t)

}
(21)

where τ denotes {τi1, . . . , τiN , i = 1, . . . , N} and

Ψi(τ) = Pi(Ai +Aii) + (Ai +Aii)TPi + Pi

N∑

j=1

τijAijR̂ijA
T
ijPi

+
N∑

j=1

τjiA
T
i R

−1
ji Ai +

N∑

j=1

N∑

k=1

τkjA
T
jiS

−1
jikAji. (22)
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Next, introducing

Θ(τ) =




Ψ1(τ) P1A12 +AT
21P2 · · · P1A1N +AT

N1PN

P2A21 +AT
12P1 Ψ2(τ) · · · P2A2N +AT

N2PN

...
...

...
PNAN1 +AT

1NP1 PNAN2 +AT
2NP2 · · · ΨN (τ)




(23)

the inequality of (21) can be rewritten as

V̇ (ξ) ≤ ξT (t)Θ(τ)ξ(t). (24)

Since Θ(τ) is monotonic increasing (in the sense of positive definiteness) with
respect to τij , i, j = 1, . . . , N , i. e. Θ(τ̄) − Θ(τ) ≥ 0, for τ = {τi1, . . . , τiN , i =
1, . . . , N} and τ̄ = {τ̄i1, . . . , τ̄iN , i = 1, . . . , N} with τ̄ij ≥ τij , we have that if
for some scalars τ̄ij > 0, i, j = 1, . . . , N, there exist symmetric positive definite
matrices Pi, Rij and Sijk, i, j, k = 1, . . . N , such that

Θ(τ̄) < 0 (25)

where τ̄ denotes {τ̄i1, . . . , τ̄iN , i = 1, . . . , N}, then the system of (12) – (13) is
globally asymptotically stable for any constant time-delays τij satisfying 0 ≤ τij ≤
τ̄ij , i, j = 1, . . . , N . This in turns implies the global asymptotic stability of the
system of (1) for any constant time-delays τij satisfying 0 ≤ τij ≤ τ̄ij , i, j =
1, . . . , N .

Now, introduce the new variables, Xi := P−1
i , i = 1, . . . , N , and denote X̂ =

diag{X1, · · · , XN}. Pre-multiplying and post-multiplying Θ(τ̄) by X̂ and using
Schur complements, it can be readily verified that the condition of (25) is equivalent
to the LMI of (2), which concludes the proof. 2

Remark 1. Theorem 1 provides a delay-dependent criterion of global asymptotic
stability for the class of interconnected time-delay systems of (1) in terms of the
solvability of linear matrix inequalities. This stability criterion can be tested nu-
merically very efficiently using interior point algorithms, which have been recently
developed for solving linear matrix inequalities; see, e. g. [1].

Remark 2. Note that the matrices Rij and Sijk, i, j, k = 1, . . . , N , in Theorem 1
are scaling matrices to be found, which are used to minimize the upper-bounds for
η
(i)
1 and η

(i)
2 , i = 1, . . . , N , in (17) and (18), respectively. In the case where N is

large, the computational effort required to solve the feasibility problem for the LMI
of (2) can become very high and maybe prohibitive. In such situations, a strategy
to reduce the computational effort is to reduce the number of scaling matrices; for
instance, we could set Rij = Ri and/or Sijk = Sij , for i, j, k = 1, . . . , N . However,
it is likely that reducing the number of scaling matrices, the result obtained may be
more conservative. This tradeoff between the number of different scaling matrices,
Rij and Sijk, to be found and the conservatism of the result is an important issue
that the author is currently investigating.
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In the light of the result of Theorem 1, we are now able to present our main
result on decentralized stabilization via linear memoryless state feedback for the
interconnected system of (1).

Theorem 2. Consider the interconnected system of (1) and let τ̄ij > 0, i, j =
1, . . . , N, be given scalars. Then this system is decentralized stabilizable for any
constant time-delays τij satisfying 0 ≤ τij ≤ τ̄ij , i, j = 1, . . . , N, if there exist
ni × ni symmetric positive definite matrices Xi, Rij and Sijk, i, j, k = 1, . . . , N ,
and mi × ni matrices Yi, i = 1, . . . , N , satisfying the following LMI:




Φc ΛT
c ΩT

Λc −R 0
Ω 0 −J


 < 0 (26)

where

Φc =




Φc1 A12X2 +X1A
T
21 · · · A1NXN +X1A

T
N1

A21X1 +X2A
T
12 Φc2 · · · A2NXN +X2A

T
N2

...
...

...
AN1X1 +XNA

T
1N AN2X2 +XNA

T
2N · · · ΦcN




(27)

Λc = diag {Λc1, . . . , ΛcN} (28)

Φci = (Ai +Aii)Xi +Xi(Ai +Aii)T +BiYi + Y T
i B

T
i +

N∑

j=1

τ̄ijAijR̂ijA
T
ij (29)

ΛT
ci =

[
τ̄1i(XiA

T
i + Y T

i B
T
i ) τ̄2i(XiA

T
i + Y T

i B
T
i ) . . . τ̄Ni(XiA

T
i + Y T

i B
T
i )

]
(30)

and R̂ij , Ω, R and J are as in (5) – (7).
Moreover, a suitable decentralized control law is given by ui(t) = YiX

−1
i xi(t).

P r o o f . With the decentralized control law ui(t) = Kixi(t), i = 1, . . . , N , where
the state feedback gain matrices Ki ∈ <mi×ni , i = 1, . . . , N , are to be found, the
system of (1) becomes

Si : ẋi(t) = Acixi(t) +
N∑

j=1

Aijxj(t− τij) (31)

where Aci = Ai + BiKi. Hence, the result follows immediately by applying Theo-
rem 1 to the closed-loop system of (31) and setting Yi = KiXi. 2

Remark 3. Theorem 2 provides an LMI method for the design of a delay-dependent
decentralized state feedback control law that stabilize the class of interconnected



Decentralized Control of Interconnected Linear Systems with Delayed States 317

time-delay systems of (1). Since the proposed decentralized control design is de-
pendent on the length, or an upper-bound, of the time-delays in the system, it is
expected that this design finds a larger spectrum of applications than the delay-
independent control designs, especially in situations where the existing time-delays
are not allowed to be arbitrarily large, which is often the case in many applications.

4. EXTENSIONS

As the proposed decentralized stabilization method is given in terms of LMIs, it
can be easily extended, by using standard LMIs techniques [1], to more complex
control problems, such as decentralized stabilization via static output feedback, de-
centralized H∞ control and decentralized robust stabilization. In the sequel we shall
consider several extensions of the decentralized stabilization result developed in the
previous section.

4.1. Decentralized stabilization via static output feedback

For the problem of decentralized stabilization via static output feedback, we shall
consider the interconnected system of (1) together with the local output measure-
ments:

yi(t) = Cixi(t), i = 1, . . . , N (32)

where yi(t) ∈ <ri is the output of the ith subsystem (Si) and Ci, i = 1, . . . , N, are
known real constant matrices of appropriate dimensions. Without loss of generality,
the following assumption is adopted:

Assumption 1. The matrices Ci, i = 1, . . . , N , are of full row-rank.

Note that Assumption 1, which accounts for the linear independence of the com-
ponents of the local measurement vectors yi, can always be achieved by discarding
redundant measurement components.

In the case of decentralized static output feedback stabilization, the desired con-
trol law has the following structure

ui(t) = Giyi(t), i = 1, . . . , N

or equivalently
ui(t) = Kixi(t), i = 1, . . . , N

with the constraints
Ki = GiCi, i = 1, . . . , N.

In the light of Theorem 1, given scalars τ̄ij > 0, i, j = 1, . . . , N, the system
(S) is stabilizable via decentralized output feedback for any constant time-delays τij
satisfying 0 ≤ τij ≤ τ̄ij , i, j = 1, . . . , N, if there exist symmetric positive definite
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matrices Xi, Gi, Rij and Sijk, i, j, k = 1, . . . , N , satisfying the inequality of (2),
where the matrices Φi and Λi of (4) and (8), respectively, are now given by:

Φi = (Ai +Aii)Xi +Xi(Ai +Aii)T +BiGiCiXi +XiC
T
i G

T
i B

T
i +

N∑

j=1

τ̄ijAijR̂ijA
T
ij

ΛT
i =

[
τ̄1iXi(Ai +BiGiCi)T τ̄2iXi(Ai +BiGiCi)T . . . τ̄NiXi(Ai +BiGiCi)T

]
.

Now, the problem of numerically solving the inequality of (2) for Xi and Gi,
becomes a very difficult one because it is non-convex in general. Motivated by this
fact and inspired by the work of [3], in the sequel we present a sufficient condition
for decentralized static output feedback stabilization which has the advantage to be
convex.

Theorem 3. Consider the system (1) with the measurements of (32) and let
τ̄ij > 0, i, j = 1, . . . , N, be given scalars. Then this system is stabilizable via
decentralized static output feedback for any constant time-delays τij satisfying 0 ≤
τij ≤ τ̄ij , i, j = 1, . . . , N, if there exist symmetric positive definite matrices Xi, Rij

and Sijk, i, j, k = 1, . . . , N , and matrices Di and Ei, i = 1, . . . , N , such that:




Φ̂c Λ̂T
c ΩT

Λ̂c −R 0
Ω 0 −J


 < 0 (33)

DiCi = CiXi, i = 1, . . . , N (34)

where

Φ̂c =




Φ̂c1 A12X2 +X1A
T
21 · · · A1NXN +X1A

T
N1

A21X1 +X2A
T
12 Φ̂c2 · · · A2NXN +X2A

T
N2

...
...

...

AN1X1 +XNA
T
1N AN2X2 +XNA

T
2N · · · Φ̂cN




(35)

Λ̂c = diag
{

Λ̂c1, . . . , Λ̂cN

}
(36)

Φ̂ci = (Ai +Aii)Xi +Xi(Ai +Aii)T +BiEiCi + CT
i E

T
i B

T
i +

N∑

j=1

τ̄ijAijR̂ijA
T
ij (37)

Λ̂T
ci =

[
τ̄1i(XiA

T
i + CT

i E
T
i B

T
i ) τ̄2i(XiA

T
i + CT

i E
T
i B

T
i ) . . . τ̄Ni(XiA

T
i + CT

i E
T
i B

T
i )

]

(38)
and R̂ij , Ω, R and J are as in (5) – (7).
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Moreover, a suitable stabilizing output gain is given by

Gi = EiD
−1
i , i = 1, . . . , N. (39)

P r o o f . In view of (34) and considering that Ci, i = 1, . . . , N, are of full row-
rank, it follows that the matrices Di, i = 1, . . . , N, are also of full row-rank and thus
non-singular. Using this fact together with (34) and the feedback gain expression of
(39), we obtain that

EiCi = GiCiXi, I = 1, . . . , N.

Hence, it follows that the inequality (33) is equivalent to the inequality (2) of
Theorem 1 for the closed-loop of system (1) with the output feedback gain Gi of
(39), which concludes the proof. 2

Remark 4. Theorem 3 provides a method of designing a stabilizing control law
for interconnected linear state-delayed systems via decentralized memoryless output
feedback. This method has the advantage to be convex and in terms of LMIs, and
as such can be tested with efficient and reliable algorithms for solving LMIs.

In the case where state feedback is concerned, i. e. Ci = I, i = 1, . . . , N , the
equality constraints of (34) become redundant and Theorem 3 reduces to the result
of Theorem 2 for decentralized stabilization via state feedback.

Observe that the feasibility of (33) and (34) in Theorem 3 is dependent on the
state-space realization of the system.

4.2. Decentralized state feedback H∞ control

Consider the large scale system composed of the interconnection of the subsystems
(Si), i = 1, . . . , N , described by

(Si) : ẋi(t) = Aixi(t) +
N∑

j=1

Aijxj(t− τij) +Bwiwi(t) +Biui(t)

zi(t) = Czixi(t) +Dziui(t)

xi(t) = φi(t), ∀ t ∈ [−τmax, 0]; τmax = max {τij , i, j = 1, . . . , N}

(40)

where for the ith subsystem (Si), xi(t) ∈ <ni is the state, ui(t) ∈ <mi is the control
input, wi(t) ∈ <pi is the disturbance input, zi(t) ∈ <qi is the controlled output,
τii ≥ 0 is the time-delay in the subsystem, τij ≥ 0, j = 1, . . . , N, j 6= i are the time-
delays in the interconnections, φi(·) is the initial condition, Ai, Aij , j = 1, . . . , N,
Bi, Bwi , Czi and Dzi are known real constant matrices of appropriate dimensions.

The decentralized H∞ control problem under consideration consists on: Given
scalars τ̄ij > 0 and γi > 0, i, j = 1, . . . , N, determine a decentralized memoryless
control law ui(t) = Kixi(t), i = 1, . . . , N , for the interconnected system of (40)
such that the following conditions hold for any constant time-delays τij satisfying
0 ≤ τij ≤ τ̄ij , i, j = 1, . . . , N :
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– The closed-loop system is globally asymptotically stable;

– The ith subsystem has a level γi of disturbance attenuation, namely, under zero
initial conditions, ‖zi‖2 < γi‖wi‖2 for any non-zero wi(t) ∈ L2, i = 1, . . . , N .

In view of Theorem 2 and using the LMI approach of delay-dependentH∞ control
for “isolated” state-delayed systems as proposed in [4], we have the following result.

Theorem 4. Given scalars τ̄ij > 0 and γi > 0, i, j = 1, . . . , N, the decentralized
H∞ control problem for the system (40) is solvable if there exist ni × ni symmetric
positive definite matrices Xi, Rij , Qij and Sijk, i, j, k = 1, . . . , N , and mi × ni

matrices Yi, i = 1, . . . , N , satisfying the following LMI:



Φc ΛT
c ΩT Υ

Λc −R 0 0
Ω 0 −J 0

ΥT 0 0 −Z


 < 0 (41)

where
Υ = diag {Υ1, . . . , ΥN} , Z = diag {Z1, . . . , ZN} (42)

Υi =
[
τ̄i1Ai1 . . . τ̄iNAiN (CziXi +DziYi)TXi Bwi

]
(43)

Zi = diag
{
τ̄i1Qi1, . . . , τ̄iNQiN , I, γ2

i I −BT
wi
Q̂iBwi

}
(44)

Q̂i =
N∑

j=1

τ̄jiQji (45)

and Ω, R, J are as in (6) – (11), whereas Φc and Λc are given in (27) – (30).
Moreover, a suitable decentralized control law is given by ui(t) = YiX

−1
i xi(t).

4.3. Decentralized robust stabilization and H∞ Control

In relation to the problems of decentralized robust stabilization and decentralized
robust H∞ control, using the S-procedure (see, e. g. [1]) the results of Theorems 2 –
4 can be easily extended to the case of systems subject to either norm-bounded or
IQC-type parameter uncertainty in the matrices of the system state-space model.
On the other hand, using standard LMI techniques [1], Theorems 2 – 4 can also be
readily extended to interconnected systems of the form of (1) and (40), where Ai,
Aij and Bi, i, j = 1, . . . , N , are uncertain matrices belonging to a given polytope
P, which is described by the vertices:
[
Ak

1 . . . Ak
N Ak

11 . . . Ak
1N . . . Ak

N1 . . . Ak
NN Bk

1 . . . Bk
N

]
, k = 1, . . . , nv. (46)

The corresponding decentralized robust stabilization and decentralized robust H∞
control methods are similar to those of Theorems 2, 3 and 4, except that now we
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have nv LMIs of the form of (26), (33) and (41), respectively, one for each of the
vertices in (46).

5. EXAMPLES

Example 1. Consider the decentralized stabilization problem for an intercon-
nected system of the form of (1) with:

A1 =
[ −2 0

1 −3

]
, A11 =

[ −1 0
−0.8 −1

]
, A12 =

[
0.1 0.1
0 0.1

]
,

A2 =
[ −2 2

2 1

]
, A21 =

[
0.1 0.1
0 0.1

]
, A22 =

[
0.1 0.3
0 0.3

]
, (47)

B1 =
[

0
1

]
, B2 =

[ −2
1

]
.

Note that the above system is not stable as the subsystem 2 is unstable for τ22 = 0.
Further, delay-independent methods of decentralized stabilizable cannot be applied
to this system as (A2, B2) is not stabilizable.

Assuming the time-delays τij , i, j = 1, 2, to be identical, say τij = τ , it was found
by Theorem 2 that the above system is decentralized stabilizable for values of τ up
to 0.295. For instance, when τ = 0.25, the following stabilizing gains are obtained:

K1 =
[ −6.2215 −16.8060

]
, K2 =

[
446.3563 797.3686

]
.

Note that the gain K2 of a “centralized” stabilizing control law for the above
system with zero time-delays is of the order of 100.

In order to illustrate the fact that the scaling matrices Rij and Sijk, i, j, k =
1, . . . , N , are crucial in terms of conservatism of the result of Theorem 1, this
Theorem was applied to the system of (47) with the constraints Sijk = Sij , for
i, j, k = 1, . . . , N . In this case the maximum value of τ for decentralized stabiliza-
tion is 0.265. On the other hand, when Theorem 1 is applied to the above system
with the constraints Rij = Ri and Sijk = Sij , for i, j, k = 1, . . . , N , the maximum
value of τ for decentralized stabilization is 0.214.

Example 2. Consider the decentralized H∞ control problem for the intercon-
nected system of (40) with the same matrices as in (47) and

Bw1 =
[

0.5
0.5

]
, Bw2 =

[
0.5
0

]
,

(48)
Cz1 =

[
1 0
0 0

]
, Cz2 =

[
0 1
0 0

]
, Dz1 = Dz2 =

[
0

0.1

]
.

Applying Theorem 4 to the above system with τ̄ij = 0.2, i, j = 1, 2, and mini-
mizing µ = γ2

1 + γ2
2 , it was found that the minimum achievable µ is µ = 382.58 and

the corresponding optimal values of γ1 and γ2 are γ1 = 9.154 and γ2 = 17.286.
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6. CONCLUSIONS

This paper focused on the problems of decentralized control of interconnected linear
state-delayed systems. Systems with constant time-delays in the state of each subsys-
tems as well as in the interconnections have been considered. First, delay-dependent
LMI conditions for stability and decentralized stabilization via memoryless state
feedback have been developed. Then, several extensions of the decentralized sta-
bilization result to more complex control problems have been analysed, including
decentralized stabilization via static output feedback, decentralized H∞ control, de-
centralized robust stabilization, and decentralized robust H∞ control.
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