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AN IMPLICIT–FUNCTION THEOREM FOR A CLASS
OF MONOTONE GENERALIZED EQUATIONS

Walter Alt and Iosif Kolumbán1

In this paper we prove an implicit-function theorem for a class of generalized equations
defined by a monotone set-valued mapping in Hilbert spaces. We give applications to
variational inequalities, single-valued functions and a class of nonsmooth functions.

1. INTRODUCTION

Implicit-function theorems for generalized equations play an important role in many
applications, especially in the stability and sensitivity analysis of variational in-
equalities and optimization problems and in the convergence analysis of numerical
algorithms solving such problems. We refer for instance to Fiacco [7] and Ioffe and
Tihomirov [9] for applications of the classical implicit-function theorem in this con-
text. Further results and some extensions of the classical implicit-function theorem
can be found in Fiacco [8].

In [15] Robinson proved an implicit-function theorem for a class of generalized
equations which he called strongly regular. This result has been widely used in
the stability and sensitivity analysis of optimization and optimal control problems
(see e. g. Robinson [15, 16], Alt [1, 2], Ito-Kunisch [10], Malanowski [13]) and in the
convergence analysis of algorithms solving optimization problems and variational
inequalities (see e. g. Robinson [16], Alt [1, 2]). In a recent paper [17], Robinson
could extend his implicit-function theorem to a class of nonsmooth functions.

In [11, 12] Kassay and Kolumbán derived implicit-function theorems for a class
of generalized equations defined by a monotone set-valued mapping. They have
shown that from these theorems the classical implicit function theorem and Brow-
der’s surjectivity theorem can be easily derived. They also presented applications to
variational inequalities.

The aim of the present paper is to further develop the rather general implicit-
function theorem of Kassay and Kolumbán [12] in view of applications to variational
inequalities and a class of generalized equations defined by nonsmooth functions.

1This research was performed while the second author was a visitor at the Institute of Applied
Mathematics, University of Hamburg, Germany, supported by a grant from the Humboldt-Stiftung,
Bonn, Germany.
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Throughout the paper let W be a topological space, and H a real Hilbert space
with scalar product 〈·, ·〉. We study generalized equations of the form

0 ∈ T (w, x) , (1)

where T is a set-valued map from W × H to H. Suppose w0 ∈ W , and x0 ∈ H
is a solution of the generalized equation (1) for w = w0, i. e., 0 ∈ T (w0, x0). We
give sufficient conditions on T such that there exists a neighborhood W0 of w0 and
a function x : W0 → H with

0 ∈ T (w, x(w)) for all w ∈W0 ,

and
x(w) → x(w0) for w → w0 .

The main assumption will be uniform coercivity or uniform strong monotonicity of
the mapping T (w, ·). If the mapping T satisfies additional continuity or differen-
tiabily assumptions, then it is shown that the mapping x(·) inherits some of these
properties.

The paper is organized as follows. In Section 2 we introduce some basic defini-
tions. Further we recall an implicit-function theorem due to Kassay and Kolumbán [12].
In Section 3 we prove an implicit-function theorem for a class of coercive multival-
ued mappings. In Section 4 we give some applications to variational inequalities. In
Sections 5 and 6 the implicit-function theorem is applied to single-valued functions
and to a class of nonsmooth functions.

2. DEFINITIONS AND AUXILIARY RESULTS

We use some usual notations and properties of set-valued maps which can be found
e. g. in [3].

Let T : H ; H be a set-valued mapping. The domain of T is the set

Dom(T ) = {x ∈ H | T (x) 6= ∅} .

The graph of T is defined by

Graph(T ) = {(x, y) ∈ H ×H | y ∈ T (x)} .

The mapping T is called monotone if for all x, y ∈ Dom(T ) and all u ∈ T (x),
v ∈ T (y) the inequality

〈u− v, x− y〉 ≥ 0 (2)

holds. T is said to be maximal monotone if there is no other monotone set-valued
map whose graph contains strictly the graph of T . T is said to be coercive if there
exists an increasing function α : R+ → R+ such that for all x, y ∈ Dom(T ) and all
u ∈ T (x), v ∈ T (y) the inequality

〈u− v, x− y〉 ≥ α(‖x− y‖) ‖x− y‖ (3)
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holds. T is said to be strongly monotone if for all x, y ∈ Dom(T ) and all u ∈ T (x),
v ∈ T (y) the inequality

〈x− y, u− v〉 ≥ β ‖x− y‖2 (4)

holds with a positive β. T is called injective if for each x, y ∈ H, T (x) ∩ T (y) 6= ∅
implies x = y. Clearly, if T is coercive, it is injective, and if T is strongly monotone,
it is coercive with α(t) = β t.

A mapping S : H → H is called nonexpansive, if

‖S(x)− S(y)‖ ≤ ‖x− y‖

for all x, y ∈ H, i. e., S is Lipschitz continuous with modulus 1.
The following fundamental characterization of maximal monotone maps is due to

Minty [14] (see e. g. [3], Chap. 6, Sec. 7, Theorem 5 and Theorem 8).

Theorem 2.1. Let T : H ; H be a set-valued map. Then T is maximal monotone
if and only if 1 + T maps Dom(T ) onto H. In this case, S = (1 + T )−1 is a single-
valued map from H to H which is nonexpansive.

By Fix(S) we denote the set of fixed points of S.

Remark. Suppose T : H ; H is maximal monotone, and define S = (1 + T )−1.
Then x ∈ H is a fixed point of S if and only if x ∈ Dom(T ) and

x ∈ (1 + T ) (x) = x+ T (x) ,

which is equivalent to the fact that 0 ∈ T (x).

If x ∈ H and r > 0, then we denote by B(x, r) the closed ball with radius r
around x. For a closed convex subset C ⊂ H, PC : H → C denotes the metric
projection.

Definition 2.2. Let r > 0, x0 ∈ H, S : H → H. One says that S is retractible on
B(x0, r) if Fix(PB(x0,r)S) ⊂ Fix(S).

The following lemma gives a sufficient condition for retractability.

Lemma 2.3. Let T : H → H be a maximal monotone set-valued map, r > 0,
x0 ∈ H, and S = (1 + T )−1. Suppose that

(R) for each x ∈ H with ‖x − x0‖ = r, and ‖S(x) − x0‖ > r there exists y ∈
B(x0, r), such that the inequality

〈x− z, x− y〉 > 0 (5)

holds for z = S(x).
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Then S is retractible on B(x0, r).

P r o o f . Let the assumptions of the lemma be satisfied, and suppose that S is
not retractible on B(x0, r). Then there is a x ∈ Fix(PB(x0,r)S) with x /∈ Fix(S).
The characterization of the projection implies

〈x− S(x), x− y〉 ≤ 0 for all y ∈ B(x0, r) . (6)

In case ‖S(x)−x0‖ ≤ r, we obtain x = PB(x0,r)S(x) = S(x). Hence ‖S(x)−x0‖ > r,
and therefore PB(x0,r)S(x) is a boundary point of B(x0, r). This implies ‖x−x0‖ =
‖PB(x0,r)S(x)−x0‖ = r. By Assumption (R) there exists y ∈ B(x0, r) such that (5)
holds, which contradicts (6). 2

Remark. Let w ∈W . Suppose T (w, ·) : H ; H is maximal monotone, and define
Sw = (1 + T (w, ·))−1. Then by the remark preceding Definition 2.2 x(w) ∈ H is
a fixed point of Sw if and only if 0 ∈ T (w, x(w)), i. e., x(w) is a solution of the
generalized equation (1).

Based on a fixed point theorem for nonexpansive maps due to Browder ([5],
Theorems 8.2 and 8.5), Kassay and Kolumbán [12] proved the following implicit-
function theorem ([12], Theorem 3.1).

Theorem 2.4. Let T : W ×H ; H be a set-valued map, x0 ∈ H, w0 ∈ W , and
d > 0. Suppose that there exists a neighborhood W0 of w0 such that

(A1) 0 ∈ T (w0, x0), and T (w, ·) : H ; H is maximal monotone and injective for
all w ∈W0;

(A2) for each r ∈ (0, d ] there exists a neighborhood Wr ⊂ W0 of w0 such that
Sw = (1 + T (w, ·))−1 is retractible on B(x0, r) for all w ∈Wr.

Then there exists a unique mapping x : Wd → B(x0, d) continuous at w0 such that
x(w0) = x0 and 0 ∈ T (w, x(w)) for all w ∈Wd.

3. AN IMPLICIT–FUNCTION THEOREM FOR COERCIVE MAPS

In this section we state the main result of the paper, an implicit-function theorem
for generalized equations described by a coercive mapping.

One of the main assumptions of Theorem 2.4 is the retractability of the operators
Sw. We show that this assumption is satisfied, if the mappings T (w, ·) are uniformly
coercive and satisfy a consistency condition (compare Aubin and Frankowska [4],
Definition 5.4.1).

Definition 3.1. Let T : W ×H ; H be a set-valued map, x0 ∈ H, and w0 ∈ W
such that 0 ∈ T (w0, x0). Then T is called consistent in w at (w0, x0), if there is a
neighborhood W0 of w0 and a function β : W0 → R continuous at w0 with β(w0) = 0
such that for each w ∈W0 there exists yw ∈ T (w, x0) with ‖yw‖ ≤ β(w).
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Definition 3.2. Let T : W × H ; H be a set-valued map, and W0 ⊂ W . The
mappings T (w, ·) are called uniformly coercive on W0, if there exists an increasing
function α : ]0,∞[→]0,∞[ such that for all w ∈ W0 and all x1, x2 ∈ Dom(T (w, ·)),
x1 6= x2, y1 ∈ T (w, x1), y2 ∈ T (w, x2) the inequality

〈y1 − y2, x1 − x2〉 ≥ α(‖x1 − x2‖) ‖x1 − x2‖

holds.

Based on Theorem 2.4 we can state the following implicit-function theorem for
coercive mappings.

Theorem 3.3. Let T : W ×H ; H be a set-valued map, x0 ∈ H, and w0 ∈ W .
Suppose there exists a neighborhood W0 ⊂W of w0 and d > 0 such that

(C1) 0 ∈ T (w0, x0),

(C2) T is consistent in w at (w0, x0),

(C3) The mappings T (w, ·) are maximal monotone and uniformly coercive on W0.

Then for any d > 0 there exist a neighborhoodWd ⊂W0 of w0 and a unique mapping
x : Wd → B(x0, d) continuous at w0 such that x(w0) = x0 and 0 ∈ T (w, x(w)) for
all w ∈Wd.

P r o o f. Let w ∈ W0 and an arbitrary r > 0 be given. Suppose x ∈ H with
‖x − x0‖ = r and ‖Sw(x) − x0‖ > r. Define z = Sw(x). Then x − z ∈ T (w, z).
By Assumption (C2) there exist a function β : W0 → R continuous at w0 with
β(w0) = 0 and yw ∈ T (w, x0) with ‖yw‖ ≤ β(w). Since ‖z − x0‖ > r we obtain by
Assumption (C3)

〈x− z, x− x0〉 − ‖x− z‖2 = 〈x− z, z − x0〉
= 〈x− z − yw, z − x0〉+ 〈yw, z − x0〉
≥ α(‖z − x0‖)‖z − x0‖ − β(w)‖z − x0‖
≥ (α(r)− β(w))‖z − x0‖ . (7)

By Assumption (C2) we can choose a neighborhood Wr ⊂W0 of w0 such that

α(r)− β(w) > 0

for all w ∈ Wr. But then by (7) Assumption (R) is satisfied for T = T (w, ·) with
y = x0. Hence, by Lemma 2.3, Sw is retractible on B(x0, r) for all w ∈ Wr, i. e.,
Assumption (A2) of Theorem 2.4 is satisfied. Since (C1) and (C3) imply (A1), it
follows from Theorem 2.4 that there exists a unique mapping x : Wd → B(x0, d)
with the desired properties. 2
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4. APPLICATION TO VARIATIONAL INEQUALITIES

For a closed convex subset C ⊂ H we denote by ∂ψC the normal cone operator

∂ψC(x) =

{{ y ∈ H | 〈y, c− x〉 ≤ 0 ∀c ∈ C } , if x ∈ C,
∅ , if x /∈ C.

Let Ω be an open subset of H, and f a mapping from W ×Ω into H. Furthermore,
let T be defined by

T (w, x) = f(w, x) + ∂ψC(x) , (8)

where Dom(T (w, ·)) = Dom(f(w, ·)) ∩Dom(∂ψC) = Ω ∩ C.
By the definition of the normal cone operator, the generalized equation (1) is

then equivalent to the variational inequality

x ∈ C and 〈f(w, x), c− x〉 ≥ 0 for all c ∈ C. (9)

We now show how Theorem 3.3 can be applied to variational inequalities of this
type.

Definition 4.1. Let W0 ⊂ W , U0 ⊂ Ω and f : W × Ω → H. Then f is called
uniformly coercive on W0 × U0, if there exists an increasing function α : [0,∞] →
[0,∞] such that for all w ∈W0 and all x1, x2 ∈ U0, x1 6= x2 the inequality

〈f(w, x1)− f(w, x2), x1 − x2〉 ≥ α(‖x1 − x2‖) ‖x1 − x2‖

holds.

Theorem 4.2. Let x0 ∈ H, w0 ∈ W . Suppose there exist a neighborhood W0 of
w0 and d̄ > 0 such that withX := B(x0, d̄), the following assumptions are satisfied:
(V1) 0 ∈ T (w0, x0), i. e., x0 is a solution of the variational inequality (9) for w =

w0.

(V2) f is continuous on W0 ×X.

(V3) f is uniformly coercive on W0 × (C ∩X).
Then there exist a neighborhood W1 ⊂W0 of w0 and a unique mapping x : W1 → X
continuous at w0 such that x(w0) = x0 and 0 ∈ T (w, x(w)) for all w ∈ W1, i. e.,
x(w) is a solution of the variational inequality (9).

P r o o f. We apply Theorem 3.3 to the mapping

F (w, x) = f(w, x) + ∂ψC∩X(x) ,

For this mapping, (V1) implies (C1). Furthermore, by Assumption (V1) we have
−f(w0, x0) ∈ ∂ψC∩X(x0). This implies

yw = f(w, x0)− f(w0, x0) ∈ F (w, x0) .
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By (V2), the mapping β(w) := ‖yw‖ is continuous at w0. This shows that (C2)
is satisfied. Furthermore, by Theorem 3 of Rockafellar [18], the mappings F (w, ·)
are maximal monotone. Since the subdifferential ∂ψC is monotone, (V3) implies
(C3). Therefore, applying Theorem 3.3 to the mapping F with d = d̄, we obtain a
neighborhood W1 ⊂ W0 of w0 and a unique mapping x : W1 → B(x0, d) continuous
at w0 such that x(w0) = x0 and 0 ∈ F (w, x(w)) for all w ∈W1. Since x(w) ∈ intX,
we have

∂ψC∩X(x(w)) = ∂ψC(w) (x(w)) .

Hence F (w, x(w)) = T (w, x(w)), i. e., x(w) is a solution of the variational inequality
(9). 2

Dafermos ([6], Theorem 2.1) proved a similar result where in addition the set C
may depend on the parameter. However, Dafermos requires Lipschitz continuity of
f in x while we only need continuity in x. Moreover, strong monotonicity can be
replaced by coercivity.

As we shall see in the following section, mappings of the type (8) naturally arise
in connection with single-valued equations, especially in connection with equations
considered by Robinson [15, 17].

If we impose some more restrictive conditions we can show that x(·) is locally
Lipschitz continuous.

Definition 4.3. Let W0 ⊂ W , U0 ⊂ Ω and f : W × Ω → H. Then f is called
uniformly strongly monotone on W0 × U0, if for all w ∈W0 and all x1, x2 ∈ U0,

〈x1 − x2, f(w, x1)− f(w, x2)〉 ≥ α‖x1 − x2‖2 (10)

holds with a positive α.

Corollary 4.4. Let the assumptions of Theorem 4.2 be satisfied. Suppose that
in addition W is a subset of a normed linear space and that f(·, x0) is Lipschitz
continuous on W0 with modulus λ, i. e.,

‖f(w, x0)− f(w0, x0)‖ ≤ λ ‖w − w0‖
for all w ∈ W0. Suppose further that f is uniformly strongly monotone on W0 ×
(C ∩X). Then the mapping x(·) is Lipschitz continuous on W1 with modulus α−1λ.

P r o o f. By Theorem 4.2 there exists a neighborhood W1 ⊂ W0 of w0 and a
unique mapping x : W1 → U0 continuous at w0 such that x(w0) = x0 and 0 ∈
T (w, x(w)) = 0 for all w ∈ W1. Now let w ∈ W1. Since the subdifferential ∂ψC is
monotone, we obtain for arbitrary zw ∈ ∂ψC(x(w)) and z0 ∈ ∂ψC(x0)

α ‖x(w)− x0‖2 ≤ 〈f(w, x(w))− f(w, x0), x(w)− x0〉
≤ 〈f(w, x(w)) + zw − (f(w, x0) + z0), x(w)− x0〉 .

Choosing zw = −f(w, x(w)) and z0 = −f(w0, x0) we obtain

‖x(w)− x0‖ ≤ α−1‖f(w0, x0)− f(w, x0)‖ .
This proves the assertion. 2
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5. APPLICATION TO SINGLE–VALUED FUNCTIONS

We consider now the special case of equations defined by a single-valued monotone
map. To this end let Ω be an open subset of H, and G : W ×Ω → H a single-valued
map. Let w0 ∈ H and suppose x0 ∈ Ω is a solution of the equation

G(w, x) = 0 (11)

for w = w0. Then we investigate the solvability of (11) for w close to w0. From
Theorem 4.2 we obtain the following result.

Theorem 5.1. Let x0 ∈ Ω, w0 ∈ W . Suppose that there exist neighborhoods W0

of w0 and U0 ⊂ Ω of x0 such that the following holds:
(S1) G(w0, x0) = 0.
(S2) G is continuous on W0 × U0.
(S3) G is uniformly coercive on W0 × U0.
Then there exists a neighborhoodW1 ⊂W0 of w0 and a unique mapping x : W1 → U0

continuous at w0 such that x(w0) = x0 and G(w, x(w)) = 0 for all w ∈W1.

P r o o f . We choose d̄ > 0 such that X := B(x0, d̄) ⊂ U0. Define C = H,
f(w, x) = G(w, x) and T (w, x) = f(w, x) + ∂ψC(x). Since ∂ψC(x) = {0} for all
x ∈ H, equation (11) is equivalent to the generalized equation 0 ∈ T (w, x). Since
Assumptions (V1), (V2), (V3) are satisfied, the assertion follows from Theorem 4.2.

2

As in the previous section, by imposing more restrictive conditions we can show
that x(·) is locally Lipschitz continuous.

Corollary 5.2. Let the assumptions of Theorem 5.1 be satisfied. Suppose that in
addition W is a subset of a normed linear space and that for each x ∈ U0, G(·, x) is
Lipschitz continuous on W0 with modulus λ, i. e.,

‖G(w1, x)−G(w2, x)‖ ≤ λ ‖w1 − w2‖
for all w1, w2 ∈ W0. Suppose further that G is uniformly strongly monotone on
W0×U0. Then the mapping x(·) is Lipschitz continuous on W1 with modulus α−1λ.

P r o o f . By Theorem 5.1 there exists a neighborhoodW1⊂W0 of w0 and a unique
mapping x : W1 → U0 continuous at w0 such that x(w0) = x0 and G(w, x(w)) = 0
for all w ∈ W1. Now let w1, w2 ∈ W1. Since G(w1, x(w1)) = G(w2, x(w2)) = 0 we
obtain from (10)

α ‖x(w1)− x(w2)‖2 ≤ 〈G(w1, x(w1))−G(w1, x(w2)), x1 − x2〉
= 〈G(w2, x(w2))−G(w1, x(w2)), x1 − x2〉 ,

which implies

‖x(w1)− x(w2)‖ ≤ α−1‖G(w1, x(w2))−G(w2, x(w2))‖ .
This proves the assertion. 2
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6. APPLICATION TO NONSMOOTH FUNCTIONS

In a recent paper [17], Robinson proved an implicit-function theorem for a class of
nonsmooth functions. We show how Robinson’s implicit-function theorem can be
derived from Theorem 5.1.

Throughout this section let X be a real Hilbert space, Z,W normed linear spaces,
x0 ∈ X and w0 ∈ W . Further, let W0 be a neighborhood of w0 and U0 a neighbor-
hood of x0, and suppose F is a function from W0 × U0 to Z, and f is a function
from U0 to Z. Suppose x0 is a solution of the equation

F (w, x) = 0 (12)

for w = w0. Then we investigate the solvability of (12) for w close to w0. We use
the concept of a strong approximation introduced by Robinson [17].

Definition 6.1 f strongly approximates F in x at (w0, x0) if for each ε > 0 there
exist neighborhoods V of w0 and U of x0 such that whenever w belongs to V and
x1, x2 belong to U we have

‖[F (w, x1)− f(x1)]− [F (w, x2)− f(x2)]‖ ≤ ε ‖x1 − x2‖ .

For a A ⊂ U0 let

δ(f,A) = inf{ ‖f(x1)− f(x2)‖/‖x1 − x2‖ | x1 6= x2, x1, x2 ∈ A } .

Then we can state the following implicit-function theorem.

Theorem 6.2. Suppose that f(x0) = 0 and F (w0, x0) = 0. Assume further that
(a) f strongly approximates F in x at (w0, x0);
(b) F (·, x0) is continuous at w0;
(c) f(U0) ⊃ B(0, ρ) for some ρ > 0;
(d) δ(f, U0) =: d0 > 0.

Then there are neighborhoods V of w0 and U of x0 and a function x : V → U such
that

(i) x(·) is continuous at w0;
(ii) x(w0)=x0, and for each w∈V , x(w) is the unique solution in U of F (w, x)=0.

P r o o f . Choose positive numbers ε, α, and a neighborhood W1 of w0 such that
W1 ⊂ V0,

0 < ε < d0, 0 < α < ρ (13)

and such that for each x1, x2 ∈ B(x0, d
−1
0 α) and each w ∈W1

‖[F (w, x1)− f(x1)]− [F (w, x2)− f(x2)]‖ ≤ ε ‖x1 − x2‖ , (14)
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and
ε ‖x1 − x0‖+ ‖F (w, x0)− F (w0, x0)‖ < ρ . (15)

Now define U = B(x0, d
−1
0 α). By Assumptions c) and d), f−1 : B(0, ρ) → U0 is

Lipschitz continuous with modulus d−1
0 . For x ∈ U , w ∈ W1 we have by (14) and

(15)

‖f(x)− F (w, x)‖ ≤ ‖[f(x)− F (w, x)]− [f(x0)− F (w, x0)]‖
+ ‖F (w, x0)− F (w0, x0)‖

≤ ε ‖x− x0‖+ ‖F (w, x0)− F (w0, x0)‖ < ρ .

Therefore, the mapping G : W1 × U → X,

G(w, x) = x− f−1[f(x)− F (w, x)] , (16)

is well-defined and single-valued. Moreover, for (w, x) ∈W1 × U we have

F (w, x) = 0 ⇐⇒ G(w, x) = 0 .

We show that G satisfies assumptions (S1) – (S3). Then the assertion follows from
Theorem 5.1. (S1) follows from the definition of G. For x ∈ U , w ∈W1 we have by
(14)

‖G(w, x)−G(w0, x0)‖
≤ ‖x− x0‖+ d−1

0 ‖[f(x)− F (w, x)]− [f(x0)− F (w0, x0)]‖
≤ ‖x− x0‖+ d−1

0 ‖[f(x)− F (w, x)]− [f(x0)− F (w, x0)]‖
+ d−1

0 ‖F (w, x0)− F (w0, x0)‖
≤ (1 + d−1

0 ε)‖x− x0‖+ d−1
0 ‖F (w, x0)− F (w0, x0)‖ .

By Assumption b) this implies (S2). For fixed w ∈W1 and x1, x2 ∈ U we have

〈G(w, x1)−G(w, x2), x1 − x2〉
= ‖x1 − x2‖2 − 〈f−1[f(x1)− F (w, x1)]− f−1[f(x2)− F (w, x2)], x1 − x2〉 .

Since by (14)

‖f−1[f(x1)− F (w, x1)]− f−1[f(x2)− F (w, x2)]‖
≤ d−1

0 ‖[f(x1)− F (w, x1)]− [f(x2)− F (w, x2)]‖
≤ d−1

0 ε ‖x1 − x2‖ ,

this implies
〈G(w, x1)−G(w, x2), x1 − x2〉 ≥ ᾱ ‖x1 − x2‖2 , (17)

where ᾱ = 1− d−1
0 ε > 0 by (13). This shows that (V3) is satisfied. 2

Again by imposing a more restrictive continuity condition on F we can show that
x(·) is locally Lipschitz continuous.
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Corollary 6.3. Let the assumptions of Theorem 6.2 be satisfied. Suppose that
in addition for each x ∈ U0, F (·, x) is Lipschitz continuous on W0 with modulus φ.
Then the mapping x(·) is Lipschitz continuous on V .

P r o o f . Choose positive numbers ε, α, and neighborhoods W0 of w0 and U of
x0 as in the proof of Theorem 6.2, and let the mapping G be defined by (16). Let
x ∈ U0 and w1, w2 ∈ V0. By Lipschitz continuity of F (·, x) we obtain

‖G(w1, x)−G(w2, x)‖
= ‖f−1[f(x)− F (w1, x)]− f−1[f(x)− F (w2, x)]‖
≤ d−1

0 ‖[f(x)− F (w1, x)]− [f(x)− F (w2, x)]‖
= d−1

0 ‖F (w1, x)− F (w2, x)‖
≤ d−1

0 φ ‖w1 − w2‖ .
Together with (17) this implies by Corollary 5.2 that x(·) is Lipschitz continuous
with modulus

λ = ᾱ−1d−1
0 φ = (d0 − ε)−1φ .

This proves the assertion. 2

(Received May 7, 1992.)
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