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CONTROLLABILITY OF SEMILINEAR STOCHASTIC
INTEGRODIFFERENTIAL SYSTEMS

K. BALACHANDRAN, S. KARTHIKEYAN AND J.-H. KiMm

In this paper we study the approximate and complete controllability of stochastic inte-
grodifferential system in finite dimensional spaces. Sufficient conditions are established for
each of these types of controllability. The results are obtained by using the Picard iteration
technique.

Keywords: Controllability, approximate controllability, stochastic integrodifferential sys-
tem, Picard iteration
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1. INTRODUCTION

The problem of controllability of linear deterministic system is well documented. It is
well known that controllability of deterministic equations are widely used in analysis
and the design of control system. Any control system is said to be controllable if
every state corresponding to this process can be affected or controlled in respective
time by some control signals. In many dynamical systems, it is possible to steer the
dynamical system from an arbitrary initial state to an arbitrary final state using the
set of admissible controls; that is there are systems which are completely controllable.
If the system cannot be controlled completely then different types of controllability
can be defined such as approximate, null, local null and local approximate null
controllability.

The controllability of nonlinear deterministic systems in finite dimensional space
has been extensively studied by several authors, see [1,5] and references therein.
Controllability of linear stochastic systems in finite dimensional spaces has been
studied by Dobov and Mordukhovich [3], Enrhardt and Kliemann [4], Mahmudov
[9], Mahmudov and Denker [8] and Zabczyk [15]. There are very few works about
controllability of nonlinear stochastic systems. In [14], the authors introduced the
definitions of stochastic e-controllability and controllability with probability and
established sufficient conditions for stochastic controllability of a class of nonlinear
systems. In [6], using a stochastic Lyapunov-like approach, sufficient conditions
for stochastic e-controllability are formulated. Balachandran and Dauer [2] and
Mahmudov and Zorlu [12] studied the controllability of nonlinear stochastic systems.
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The problem of controllability of a linear stochastic system of the form
da(t) = [Az(t) + Bu(t)] dt + a(t) dw(t), t€[0,T] } (1)
z(0) = xo,
has been studied by various authors [11,14], where & : [0,T] — R™*™.
Mahmudov [10,11] studied approximate controllability of non-linear stochastic
system when nonlinear f and ¢ are uniformly bounded and satisfy the Lipschiz

condition. Recently, Mahmudov and Zorlu [13] investigated the approximate and
complete controllability of the following semilinear stochastic system

dz(t) = [Az(t) + Bu(t) + f(t,z(t),u(t))] dt + o(t,z(t), u(t)) dw(t)
with non-Lipschitz coeflicients when f and o depends on control u. They established
the results by using the Picard type approximation.
In this paper we shall study the approximate and complete controllability of the
following semilinear stochastic integrodifferential system
t
dz(t) = [Ax(t) + Bu(t) + f(t,z(t), u(t)) —|—/ g(t,s,x(s),u(s)) ds| dt
0
ol a(t),uh) du(t), e [0.7] ®
z(0) = o,
where A and B are matrices of dimensions n x n,n x m respectively, g : [0,7] x
[0,T] x R* x R™ — R™, f :[0,T] x R* x R™ — R"™ 0 :1[0,T] x R® x R™ — R"*"
and w is an n-dimensional Wiener process. The results generalize the results of [13].

2. PRELIMINARIES

In this paper we use the following notations:
e (Q,F, P) := The probability space with probability measure P on €
{F:|t € [0,T]} := The filtration generated by {w(s) : 0 < s <t} and F = Fr.

e Ly(Q, Fr,R") := The Hilbert space of all Fpr-measurable square integrable
variables with values in R™.

e L7 ([0,T], R") := The Hilbert space of all square integrable and J;-measurable
processes with values in R™.

e C([0,T],L2(Q2, F, P, X)) := The Banach space of continuous maps from [0, T
into L2(Q, F, P, X) satisfying the condition sup,c( 1 Ellz(#)||* < oo.

e X, := The Banach space with norm topology given by |[z||2 = sup,¢o 5 Ellz(t)?
which is a closed subspace of C([0, T}, L2(€2, F, P, X)) consisting of measurable
and F-adapted processes x(t).

e U := The Banach space with norm topology given by ||u|? = Supyeio,s) Ellu(?t) [|?

which is a closed subspace of C([0,T], L2(2, F, P,U)) consisting of measurable

and Fi-adapted processes u(t).

e L(X,Y) := The space of all linear bounded operators from a Banach space X
to a Banach space Y.

e Denote S(t) = exp(At).
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Now let us introduce the following operators and sets.

1. The operator LL € L(LL ([0,T], R™), Lo(Q, Fr, R™)) is defined by
T
Liu= / S(T — s)Bu(s)ds.
0

Clearly the adjoint (LI)* : Lo(Q, Fr, R®) — L% ([0, T], R™) is defined by
(L) 2z = B*S*(T — t)E{z| 7}
2. The controllability matrix I'T € L(R", R")
T
T = / S(T—t)BB*S*(T —t)dt, 0<s<t

and the resolvent opersator
R(a,TTy = (al +TH)™, 0<s<T.

3. Set of all states attainable from zq in time t > 0
Ri(zo) = {x(t; o, u) : u(-) € La(Q, Fr, R™)}

where z(t,zg,u) is the solution of (2) corresponding to o € R", u(-) €

Lo(Q, Fr, R™).
Now for our convenience, let us introduce the following notations:
Mp = |Bll, Ms=max{[|S()|:te0,T]},
Mr = max{|TT|:s,tec0,T]}.

Definition 2.1. The stochastic system (2) is approximately controllable on [0, T if
Rr(xo) = La(Q, Fr, R™)

that is, if it is possible to steer the system from the initial point x¢ to within a

distance € > 0 from all the final points in the state space L2(Q, Fr, R™) at time T

Definition 2.2. The stochastic system (2) is completely controllable on [0, 7] if
Rr(xo) = La(Q, Fr, R™),

that is, if all the points in Lo (2, Fr, R™) can be reached from the point xg at time 7.
We assume the following conditions on the problem:

(H1) The functions f, g and o satisfies the Lipschitz condition and there exist
constants L1, Lo > 0 for 1,29 € X, uj,ups €U and 0 < s <t <T

2
Hf (t,z1,u1) — f(t, xg,uz)H + lo(t, z1,u1) — o(t, 22, us)||?
< Li(fley — o + lur — usa|?)
2
H/ (t,s,21(8),u1(s)) —g(ts,xg(s),ug(s))dsH

< Lo(lwy — @2l + [Jur — uz|?)
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(H2) The functions f, g and o are continuous and there exists a constant L > 0 such
that,

t 2
Il + ] [ gtz was] + ot < (lel? + ulP + 1)
0

for all t € [0,7] and all (z,u) € X x U.

(H2)" The functions f,g and o are continuous and there exists a constant M; > 0
such that

2
+llo(t,z,u)|* < My

t
It )l + | [ otts..0)ds
0

for all t,s € [0,7] and all (z,u) € X x U.
(H3) The linear system (1) is approximately controllable.
(H4) The linear system (1) is completely controllable.
(H5) A is non-negative and self-adjoint.
(H6) BB* is positive, that is there exists v > 0 such that (BB*z,z) > v|z°.
(AQ) ||aR(a,TT)|| — 0 as a — 0F.
Note that the assumptions (AC), (H3) and (H4) are equivalent, see [9]. The following

lemmas whose proof can be found in [13] give a formula for a control steering the
state xg to some neighborhood of an arbitrary point h.

Lemma 2.1. For arbitrary f(-) € L ([0,T], R"), o(-) € L} ([0,T], R™*"™), g(-,t) €
LT ([0,T], R"), h € Ly(R2, F, R"™) the control

u*(t) = B*S*(T —t)(al +TE) " (Eh — S(T)xo)

-B*S*(T —1t) /t(OJ +TH)71S(T =) f(r)dr

0
_B*S*(T — 1) /O (@l +TT)"Y(S(T - r)o(r) — () dw(r)
—B*S*(T — t)/o (ol +TTY=18(T —r) </0T g(r,s) ds> dr  (3)

transfers the system

z(t) = St axH—/St—s)Bu ds+/St—s)f( )ds

_|_/0 S(t —s)o(s) //St—s (s,7)drds (4)
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from 2y € R™ to some neighbourhood of h at time T and

2o(T) = h—alal +TE)"YER - S(T)xo)

T
+/ alal +TTY71S(T — ) f(r)dr
OT
+/0 alal +TT)=YS(T - r)o(r) — @(r)) dw(r)

+/OT alal +TTY718(T —7) (/Org(r,s)ds) dr

where h has the following representation h = Eh + fOT o(r) dw(r), see [7].

Lemma 2.2. Let Assumptions (H4), (H5) and (H6) hold. Then there exists C' > 0
such that for all g(-) € LZ (0, T; R™) the following inequality holds

t
lim E /
t—T— 0

3. CONTROLLABILITY RESULTS

2 T
7S T =) S - nee)| < e [ Bl )

In this section we derive some controllability conditions for the semilinear stochastic
integrodifferential system (2) by using the Picard approximation. In [8, 9] it is shown
that complete controllability and approximate controllability of the linear system (1)
coincide. But this may not always be true for semilinear stochastic integrodifferential
systems.

In order to apply the Picard approximation we have to introduce the nonlinear
operator ®,, a > 0 from X7 x Ur to X7 x Ur which is defined by

Do, u) = (20) (6)

where

) = S(t)at:o+ / S(trr)Bw(T)dr+ | stt=nitat). ) ar
+/°t s=n[ [ gtrrmam).utr)ar] ar
+ [ 8t =r)orat.utm) dul).

w(t) = B*S*T —t) [(aI—I—FOT)_l(Eh—S(T)xO)—&-/Ot(al—i—FTT)_lcp(r)dw(r)]
_BSH(T 1) /Ot(aurf)-lsq—r)f(r,x(r),u(r))dr
58 (0 1) [ (ol +TD)S@ =) [ gtrmatr).utr) dr] ar

—B*S*(T—t)/O (ol +TYLS(T — 7)o (r, x(r), u(r)) dw(r),
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and ¢ € L ([0,T], R"*™) comes from the representation h = Eh + fOT o(r) dw(r) of
h € Ly(Q2, F, R™). Tt will be shown that the system (2) is approximately controllable
if for all @ > 0 there exists a fixed point of the operator ®,. To show this we employ
the Picard type approximations to (6).

xo(t) = S(t)xo

Tt (t) = S(t x0+/ S(t — 7)Buni1(r dr+/ St —r)f(r,zn(r),un(r))dr

/St—r / (T,T,xn(r),un(r))dr] dr

+/0 St —r)o(r,z,(r), u,(r)) dw(r) (7)
ug(t) = B*S*(T —t) [(al + T3 HEh — S(T)xo) + /0 (al +T5) " o(r) dw(r)}
Uni1(t) = B*S*(T —t) [(al + T Y ER — S(T)x0) + /0 (ol +TT) " p(r) dw(r)}

—B*S*(T—t)/o (@l +THYES(T — ) f(r, 20 (r), up (1)) dr
_B*S*(T—t)/o (OJ—|—FTT)1S(T—r)[/org(r,r,a:n(T),un(T)) dT] dr
—B*S*(T—t)/o (@l +THYIS(T = r)o(r, 2n(7), wn(r)) dw(r). (8)

Lemma 3.1. Under the conditions (H1), (H2) the operator ®,, is well defined and
there exist Mr(«), ki(a), ko(a) > 0 such that if (z1,u1), (22, us) € X7 x Up then

[alir, ) = Balaz,un)l? < Mr(a)La+ o) { [ t (s Elor(r) = aa(r) ) s

0<r<s

t
o 2
- [ (s Bl () - ) ) as
[®a (@1, un) |l < Kala) + k2(a)LT{ sup Eflay(r )? + sup El|ua ()] + 1} :

0<r<s 0<r<s

for each t € [0, T, where
12

Mrp(a) = max {4MST+ MSMBT+ MSMBT2 4M2 + = MSMB 2MgM;;T,

AMET? + %MﬁMgTz + azMgMjéTg’} ,

40 T
k1(a) = BMEE|zo|* + a21\4§~f\4§§T{2||Ehll2 + 2MZE||zo || +/0 EII@(T)IIQdT},

4 20
kQ(O{) = (5MS + MSMB —+ MSMBT) maX{TQ,T, 1}
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Proof. Let us consider

[®o (21, u1) — o (w2, ug)[|f = sup E[[z1(s) — 22(s)|I> + sup E[jwi(s) — wa(s)|”
0<s<t 0<s<t

t
< 4M3M} / Eflws (s) — wa(s)||* ds
0

AMETE / Vs 2 () s (7)) — £ w2 (), ua(r))|? dr

+4MZE ; llo(r,z1(r), u1(r)) — o(r, z2(r), ua(r))||* dr

T 2
+4M§T2EH/O (g(r,T,ml(T),ul(T))—g(T,T,xg(T),ug(T)))dTH
g MEMETPE [ s (1) () = fr (o). )| dr
—S—%MéM%E/O lo(ry1(r), un (1)) — 0, 22(r), wa(r))||? dr

s 2mre]| [ ot rn(0). () - g0 ma(o),wal)) |

3 12
< <4M§T + $M§M§T + a2M§M§fﬂ>

x / EN (1 (), wa () — £ (r, (), ua(r)) |2 dr
0

12
+ <4M§ - %MﬁMﬁ - OngMgT)

X/o Ello(r, z1(r),u1(r)) — o(r, z2(r), us(r))||* dr

12
+ <4M§T2 + %M§M§T2 + aQMgMj;T?’)

><EH /07"(9(7“, 7, 21(7),u1 (7)) — g(r, 7, 22(7), u2(7))) dTH

IN

Mr(a) {/Ot Ellf(r,21(r), ua(r))) = f(r,z2(r), ua(r))|| dr
+/Ot Ello(r, x1(r),u1(r)) — o (r, z2(r), uz(r))||* dr
v [ wtrrnm.nm) - st ar| |

IN

Mr(a)(Li+ 1) { [ t (sup Eller(r) = a0 )

0<r<s

[ o).
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Observe that standard computations yield,

IA

IN

<

[P (x1,u1)llf = sup Elz1(s)|* + sup E[jwi(s)|?
0<s<t 0<s<t

sMElaol + 5305 [ Bl + SUETE [ 10rm1(r) a2 e
+5M§E/Ot llo(r,z1(r), u (7)) ||* dr + 5M52~T2EH /Org(r, 7',901(7'),u1(7'))d7"H2
ranrarg { 2 1enl? + 20i3elel®) + 2 [ Elonlar

+ a3t [ Bl )P+ 38 [ Bl )l ar
—|—;2M§M]23T2EH/Org(r,T,xl(T),ul(T))dTH2

40 T
SMEE | zol|* + gMéMéT {2Ehll2 + 2MZE||zo || + / EII@(T)IIQdT}
0

20
a?

M§M§T> E/O o (r, 2 (), s () |2

4 t
+ (5M§T+ ?M§M§T+ M§M§T2> E/ If(r, 21 (), ur ()| dr
0

20

4
2 4712
T (51‘45 +@MsMp + 5

4 20 " 2
+ (5]\4§T2 + EME%M%TZ + OéQMgMéTB) EH / g(ry 7,21 (1), ur (7)) dTH
0
ki(a) + kg(a)LT{ sup Eljz1(r)]|? + sup Ellui(r)||* + 1} . O
0<r<s 0<r<s

Lemma 3.2. Under the conditions (H1), (H2) the sequence (x,,u,) is bounded
in.)CT X Lﬁp.

Proof. By Lemma 3.1 for any n > 0 we have

[(@nt1,uns1)* = sup Ellznri(s)]* + sup Eflunsa(s)]?
0<s<t 0<s<t

IN

k1 —|—k‘2LT{ sup Eljz,(r)||? + sup E||un(7“)2—|—1} (9)
0<r<s

0<r<s

where ki, ko are positive constants independent of n. Then by (9) and successive
approximation, we obtain that

(@ns1s tns)|? < (k1 + ks LT) [1 kLT 4+ kgLnTn}

+ (k2 LT)" {E||lzo(8)[|* + Elluo(t)[|* + 1}
< (k1 + ko LT) [1 4 kLT + K2L2T? 4 - + kQLL”T"] + (ko LT)"1Cy
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9 T
where Cp = 14 MZE||zo||* + ¥M§M§{2\|Eh||2 + 2MZE||zo | +/ E||<p(r)||2dr}.
0
Thus, we have
1— (k3LT)"

LT)" 1 C,.
1— (K2LT) + (kLT Co =

[(@nt1, Un+1)||2 < (k1 + ko LT)

Lemma 3.3. Under the conditions (H1), (H2) the sequence (z,,u,) is a Cauchy
sequence in Xp x Up.

Proof. Let us take

'rn(t) = sup ||(xmau7n) - (xnaun)”?)
m>n

pu(t) = sup [z, —:l?n”f,
m>n

Qn(t) = sup ||um - Un”%-
m>n

The functions ry,, pp, gn,n > 0, are well defined, uniformly bounded and evidently
monotone non-decreasing. Since {r,(¢) : n > 0},{pn(t) : n > 0},{g.(¢) : n > 0}
are monotone non-increasing sequences for each ¢ € [0, T, there exists a monotone
non-decreasing function (r(t), p(t), ¢(t)) such that

lim (7 (1), pa(t), g (t)) = (r(t), p(t), 4(#))-

n—oo

By Lemma 3.1 we obtain that

[0 tn) = Balen ) [} < Mr()(La+ L) [ { Sup Ellams(r) — 2 ()]

0<r<s

+ sup E|lum—1(r) —unl(r)z} ds

0<r<s
from which it follows that

Mr(0)(Ly + L) / { Sup a1 (r) — zams ()]

0<r<s

IN

+ sup E|lupm—1(r) —Un—l(T)HQ} ds
0<r<s

t
Mr()(L1 + Ly) / [n-1(5) + g1(5)] ds.
0
By the Lebesgue dominated convergence theorem, we obtain

r(t) < p(t) + a(t) < Mr(a)(Ls + L) / [p(s) + a(s)] ds.
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Now if w = p + ¢, then
w'(t) < Mr(a)(Ly + L2)[p(t) + q(t)] < 2Mp () (L1 + L2)w(t)

and also we see that w(0) = 0. Then, by Grownwall’s inequality it follows that
w(t) =0 for all ¢ € [0,T]. But

(@ tm) = (@n, un)lF < Pa(T) + 4a(T) — w(T) = 0.

Therefore |[(zm, um) — (Tn, u,)||% — 0 as n,m — oo. O

Theorem 3.1. Under the conditions (H1), (H2) the operator (6) has a unique fixed
point.

Proof. By Lemma 3.3 the sequence (x,,u,) is Cauchy in X7 x Ur. The com-
pleteness of X7 x Up implies the existence of a process (z,u) € X x Ur such
that

lim ||(2p,un) — (z,u)]|% = 0.

n—oo
Hence taking the limit in (7) we see that (x,u) is a fixed point of ®,. Further, if
(z1,u1), (x2,u2) € X x Uy are two fixed points of &, then Lemma 3.1 would imply
that

[P (21, u1) — o2, u2)|lf < MT(Q)(L1+L2){/O (OiliI;SE||$1(T)—9C2(T)||2

+ sup E|ui(r) — uQ(r)||2> ds}
0<r<s
So as in the proof Lemma 3.3 we obtain that
[®a (21, ur) — o2, u2)||7 =0

Consequently (z1,u1) = (22,u2) in X7 X Ur. Hence ®, has a unique fixed point.(]

If @ = 0 the nonlinear operator ®( is defined by
Po(z,u) = (2, w) (10)

where
z(t) = S(t xo—i—/ S(t —r)Bw(r) dr—i—/ St —r)f(r,z(r),u(r))dr
+/0 St —r)o(r,z(r),u( / S(t—r) / g(r, 7, z(7),u(r)) dT} dr,
w(t) = B*S*(T — 1) [<POT>1<Eh ST + / (T (r) dw(r)]
=BT =) [ (TS = (), ) dr
0
LB ST — t)/ (CTY1S(T — 1Yo (r, o(r), u(r)) dw(r)
0

—B*S*(T —t) /()t(FZ)IS(TT)[/OTQ(T,T,I(T),U(T))dT dr.
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Theorem 3.2. Assume hypotheses (H1), (H2) and (H4) hold. Then the operator
®g has a fixed point.

Proof. The proof is similar to that of Theorem 3.1. Note that here we need to
use estimation (5) from Lemma 2.2. O

Theorem 3.3. Assume hypotheses (H1), (H2)" and (H3) are satisfied. Then the

system (2) is approximately controllable.

Proof. Let (z*,u®) be a fixed point of &, in X7 x Upr. By Lemma 2.1, z¢
satisfies the following equality

2(T) = h—alal +TE)"YER — S(T)x0)

T
+/0 oz(af—i—I‘Zj)*lS(T—r)f(r,xo‘(r),ua(r))dr
T
+ [ (el + ) ST = 1o(ra®().u%() - o) du(r)
T r
+/0 a(aIJrFZ)’lS(T—r)[/O g(r,T,xa(T),ua(T)dT] dr. (1)

By (11) and the assumption (H2),
El2*(T) = hl* < 5|laR(a,TG)(ER — S(T)zo)|?

—|—5T/0 EllaR(c, TIYS(T — ) f(r, 2%(r), u®(r))||* dr
T

—|—5/0 EllaR(a, TTYS(T — r)o(r, 2% (r),u®(r))||* dr
T

—|—5/0 EllaR(c, TT)p(r)||? dr

+5T /OT EllaR(a,TT)S(T — ) [/OT g(ryT,x%(7), uO‘(T))dT} % dr

< 5llaR(a, IT)|*||ER — S(T)zol|?

T
+5T / laR(er, TT)PE|S(T — ) f(r,2® (), u® () ||? dr
+5 / laR (e, TT)PE|S(T — r)o(r,2® (), u ()| dr
T
+5 / laR(a, TT)|E () |2 dr

+5T /OT ||aR(a,F?)||2EH5(T —7) [/OT g(r,7,2%(7),u(7)) dT] ”2 @
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T
< 5HaR(a7FTT)II2||Eh—S(T)wo|\2+5M§Mf(2T+1)/ lecR (o, D)2 dr
0

T
%/HMMIMﬁwmwm
0

Since [|aR(a,TT)|? < 1,[JaR(e,TT)||2 — 0 as a — 0% for all 0 < r < T, by the
Lebesque dominated convergence theorem E||z®(T) — h|*> — 0 as o — 0. This
gives the approximate controllability. O

Theorem 3.4. Assume hypotheses (H1) - (H6) are satisfied. Then the system (2)
is completely controllable.

Proof. By Theorem 3.2, the operator ®y has a fixed point. So, the control
uo(t) = B*S*(T —t)(I'T) 1 (Eh — S(T)xo)

_BSH(T - t)/o (CTY-LS(T — ) f(r, 2(r), u(r)) dr
-B*S*(T - 1) /0 T ST = r)o(r,z(r),u(r)) — ¢(r)) dw(r)
—B*S*(T — 1) /O (Fz)_ls(T —r) {/OT g(r, 7, 2(7),u(r)) dT] dr

transfers the system (2) from z( to h. Hence, the theorem is proved. O

4. EXAMPLE

Consider the following semilinear stochastic integrodifferential system

dz(t) = |Az(t) + Bu(t) + f(t,z(t), u(t)) +/0 g(t, s, x(s),u(s)) ds} dt

(12)
Yot z(t), u(t)) dw(t), te0,T]

z(0) = o,

where w(t) is one-dimensional Brownian motion and

=[5 e] el

(2 4 cos o (t))z1 () 4 3o (t) + uy () ]

F(t,z(t), u(t)) (3 + sin a1 (£))2(t) + 221 (t) + us(t)

t t e—xl(s) us (s s
A“ww@mw@[ Jy () +ur(s)) d ]

fot e 5 (5x1(s) + 3xa(s) + ua(s)) ds
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a(t,xz(t),u(t)) = (I+z1 () +u1 (1))

sint cost e’

(L2 (t)+u2(t))

The corresponding iterative scheme for (12) is
Tuy1(t) = S(t £E0+/ S(t —r)Bupy1(r d?“—i—/ St —r)f(r,xn(r),un,(r)) dr

/ St—r) / g(r, 7, xn(r),un(r))dr} dr
+/0 St —r)o(r,zn(r), u,(r)) dw(r) (13)

where the fundamental matrix S(¢) is given by

S(t) = [ cost  sint }

—sint cost
The controllability matrix is given by

T 0

FT_/ S(T —t)BB*S*(T —t)dt = [o T

| -1

and it is nonsingular for 7' > 0. Moreover, it is easy to show that for all (z,u) €
R? x R2, |f(t,z(t),u(t))|? < 75(|z|? + |u|® + ‘fo (t,s,x(s),u(s)) ds‘ < 40(T +
D1+ |22 + |ul?), |o(t,2(t),u(t))] < 2(2t2 + 1)e~t. By deﬁmng a suitable control
(8) and by applying the Picard iteration technique to (13), one can establish the
approximate and complete controllability of the stochastic system (12).

ACKNOWLEDGEMENT

The work of first and third author was supported by Korea Research Foundation Grant
(KRF-2004-015-C00054).

(Received October 10, 2005.)

REFERENCES

[1] K. Balachandran and J. Dauer: Controllability of nonlinear systems via fixed point
theorems. J. Optim. Theory Appl. 53 (1987), 345-352.

[2] J. Dauer and K. Balachandran: Sample controllability of general nonlinear stochastic
systems. Libertas Math. 17 (1997), 143-153.

[3] M.A. Dobov and B.S. Mordukhovich: Theory of controllability of linear stochastic
systems. Differential Equations 14 (1978), 1609-1612.

[4] M. Enrhardt and W. Kliemann: Controllability of stochastic linear systems. Systems
Control Lett. 2 (1982), 45-153.



44

K. BALACHANDRAN, S. KARTHIKEYAN AND J.-H. KIM

[5] J. Klamka: Schauder’s fixed point theorem in nonlinear controllability problems. Con-

trol Cybernet. 29 (2000), 153-165.

[6] J. Klamka and L. Socha: Some remarks about stochastic controllability. IEEE Trans.

Automat. Control 22 (1977), 880-881.

[7] R.S. Lipster and A.N. Shiryaev: Statistics of Random Processes. Springer, New York

1977.

[8] N.I. Mahmudov and A. Denker: On controllability of linear stochastic systems. Inter-

nat. J. Control 73 (2000), 144-151.

[9] N.I. Mahmudov: Controllability of linear stochastic systems. IEEE Trans. Automat.

Control 46 (2001), 724-731.

[10] N.I. Mahmudov: On controllability of semilinear stochastic systems in Hilbert spaces.

IMA J. Math. Control Inform. 19 (2002), 363-376.

[11] N.I. Mahmudov: Approximate controllability of semilinear deterministic and stochas-

tic evolution equations in abstract spaces. SIAM J. Control Optim. 42 (2004), 1604—
1622.

[12] N.I. Mahmudov and S. Zorlu: Controllability of nonlinear stochastic systems. Internat.

J. Control 76 (2003), 95-104.

[13] N.I. Mahmudov and S. Zorlu: Controllability of semilinear stochastic systems. Inter-

nat. J. Control 78 (2005), 997-1004.

[14] Y. Sunahara, T. Kabeuchi, S. Asada, and K. Kishino: On stochastic controllability

for nonlinear systems. IEEE Trans. Automat. Control 19 (1974), 49-54.

[15] J. Zabczyk: Controllability of stochastic linear systems. Systems Control Lett. 1

(1987), 25-31.

Krishnan Balachandran and Shanmugasundaram Karthikeyan, Department of Mathe-

matics, Bharathiar University, Coimbatore — 641 046. India.
e-mails: balachandran_k@lycos.com; karthi82india@gmail.com

Jeong-Hoon Kim, Department of Mathematics, Yonsei University, Seoul 120-749. Ko-

rea.

e-mail: jhkim96Q@yonsei.ac.kr



	INTRODUCTION
	PRELIMINARIES
	CONTROLLABILITY RESULTS
	EXAMPLE

