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FORMAL TRANSLATION DIRECTED BY LR PARSING

Bořivoj Melichar

The notion of the syntax-directed translation was a highly influential idea in theory of the
formal translation. Models for the description of the formal translations are syntax-directed trans-
lation schemes. The special case of syntax-directed translation schemes are simple syntax-directed
translation schemes, which can be written in the form of translation grammars. It is possible for
an arbitrary translation described by a translation grammar with LL(k) input grammar to create
one-pass translation algorithm by a simple extension of the algorithm of a syntax analysis for LL(k)
grammars. Similar approach for an LR(k) grammar led to the result that it is possible to perform
an one-pass formal translation during LR(k) analysis only in that case when the translation gram-
mar has a postfix property. In this paper the construction of the algorithm is studied, which can,
for a particular class of translation grammars (called LR(k) R-translation grammars), perform one
pass formal translation. The basic idea discussed in this paper is the following: It is possible to
make an extension of the algorithm of the syntax analysis for LR(k) grammars in such a way, that
the output of output symbols can be performed not only as a part of the operation reduction but
also as a part of the operation shift.

1. INTRODUCTION

The notion of the syntax-directed translation introduced by Irons ([5], [6]) was a
highly influential idea in theory of the formal translation. Mathematical models
of the syntax-directed translation have been developed and studied in [1], [2], [4],
[8], [10] and [12]. Models for the description of the formal translations are syntax-
directed translation schemes. The special case of syntax-directed translation schemes
are simple syntax-directed translation schemes, which can be written in the form of
translation grammars.

Parallel to the development of methods of the formal description of the transla-
tion, principles for implementation of algorithms of the syntax-directed translation
were researched. Already in 1968, Lewis and Stearns [8] have shown that it is pos-
sible for an arbitrary translation described by a translation grammar with LL(k)
input grammar to create one-pass translation algorithm by a simple extension of the
algorithm of a syntax analysis for LL(k) grammars.

Similar approach for an LR(k) grammar led to the result that it is possible to
perform an one-pass formal translation during LR(k) analysis only in that case
when the translation grammar has a postfix property, which means that output
symbols are placed only at the ends of the right-hand sides of the grammar rules.
It means that the output of output symbols is made only if the end of the rule
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is discovered. This means, from the point of view of the syntax analyzer, that the
output is performed as a part of the operation reduction of the syntax analyzer. The
restriction of the translation grammar rules mentioned has led to a development
of various transformations of translation grammars into grammars having postfix
property (cf. [8], [9] and [12]) and to a creation of the four pass model of the
formal translator (cf. [1]). Others (cf. [7]) remarked that almost all bottom up
syntax analyzers contain elements of the top down methods, which can be used
in the process of extension of the syntax analyzer to the algorithm of the formal
translation.

In this paper the construction of the algorithm is studied, which can, for a partic-
ular class of translation grammars (called LR(k) R-translation grammars), perform
one pass formal translation. The class of LR(k) R-translation grammars is a superset
of LR(k) postfix translation grammars.

The basic idea discussed in this paper is the following: It is possible to make
an extension of the algorithm of the syntax analysis for LR(k) grammars in such
way that the output of output symbols can be performed not only as a part of the
operation reduction but also as a part of the operation shift.

2. NOTATION

Alphabet is a finite nonempty set of symbols. The set of strings of symbols from the
alphabet A including empty string (e) is denoted by A∗. A formal language L over
an alphabet A is a subset of A∗, L ⊂ A∗.

A context-free grammar is a quadruple G = (N, T, P, S), where N is a finite set
of nonterminal symbols, T is a finite set of terminal symbols, T ∩ N = ∅, S is the
start symbol, P is a finite set of rules of the form A → α, A ∈ N , α ∈ (N ∪ T )∗.
The symbol ⇒ is used for the derivation relation. For any α, β ∈ (N ∪ T )∗, α ⇒ β
if α = γ1Aγ2, β =
= γ1γ0γ2 and A → γ0 ∈ P , where A ∈ N and γ0, γ1, γ2 ∈ (N ∪ T )∗. Symbols
⇒k, ⇒+, ⇒∗ are used for k-power, transitive, transitive and reflexive closure of
⇒, respectively. The symbol ⇒rm is reserved for the rightmost derivation, e. g.
γ1Aγ2 ⇒rm γ1αγ2 if γ2 ∈ T ∗. The sentential form α is a string which can be
derived from S, S ⇒∗ α. The sentential form α for S ⇒∗

rm α is called the right
sentential form. The formal language generated by the grammar G = (N, T, P, S) is
the set of strings L(G) = {w : S ⇒∗ w, w ∈ T ∗}.

A derivation tree may be viewed as a graphical representation for a derivation.
Each interior node of it is labeled by some nonterminal symbol A and the children
of the node are labeled, from left to right, by the symbols in the right hand side of
the rule by which this A was replaced in the derivation. The leaves of the derivation
tree are labeled by empty strings or terminal symbols and, if read from left to right,
they constitute a string derived by the grammar. The derivation tree will be treated
as an expression of the syntactic structure of the derived string.
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By T ∗k we shall denote the set T ∗k = {x : x ∈ T ∗, |x| ≤ k, k > 0}, where
the length of string x ∈ T ∗ is denoted by |x|. We define the sets FIRSTk(α) for
α ∈ (N ∪ T )∗ and FOLLOWk(A) for A ∈ N , as follows.
FIRSTk(α) = {x ∈ T ∗ : α ⇒∗ xβ and |x| = k, or α ⇒∗ x and |x| < k},
FOLLOWk(A) = = {x ∈ T ∗ : S ⇒∗

rm αAβ and x ∈ FIRSTk(β)}.

3. TRANSLATION GRAMMARS

A formal translation Z is a relation Z ∈ A×B, where A and B are sets of strings.
A and B are sets of input and output strings, respectively.

A context-free translation grammar is a context-free grammar, in which the set
of the terminal symbols is divided into two disjoint subsets, the set of input symbols
and the set of output symbols.

Definition 1. A context-free translation grammar is a 5-tuple TG = (N, T, D,R, S),
where
N is the set of nonterminal symbols,
T is the set of input symbols,
D is the set of output symbols,
R is the set of rules of the form A → α, where A ∈ N , α ∈ (N ∪ T ∪D)∗,
S is the starting symbol.

The input homomorphism hTG
i and the output homomorphism hTG

o from (N ∪
T ∪D)∗ to (N ∪ T ∪D)∗ are defined in the following way:

hTG
i (a) =

〈 a for a ∈ T ∪N

e for a ∈ D
hTG

0 (a) =

〈 a for a ∈ T

e for a ∈ D ∪N

The derivation in the translation grammar TG is denoted by ⇒ and called the
translation derivation. The formal translation defined by the translation grammar
TG is the set Z(TG) = {(hTG

i (w), hTG
o (w)) : S ⇒∗ w, w ∈ (T ∪D)∗}.

The input grammar of the translation grammar TG is the context-free grammar
G =
= (N, T, Ri, S), where Ri = {A → hTG

i (α) : A → α ∈ R}.
Note. The upper index TG is omitted if no confusion arises.

4. R–TRANSLATION GRAMMARS

As stated above, it is possible to extend the LR parser to perform an output of
a symbol as a part of the operation reduce. The basic idea described below is a
possibility to extend the LR parser in order to perform the output of symbols as
a part of the operation shift as well. Let us consider a simple case when a rule of
the translation grammar has the form A → αxaβ, where x is the string of output
symbols, a is the input symbol, α, β are strings of input, output and nonterminal
symbols.

In such a case, it is possible to add the string x to the output string during the
shift of the symbol a.
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Definition 2. A translation grammar TG is called R-translation grammar if the
strings of output symbols appear at the ends of the right-hand sides of the rules
and/or immediately in front of input symbols.

5. LR(k) R–TRANSLATION GRAMMARS

Now we can demonstrate that an extended LR parser can perform the translation,
if it is possible for every shift operation to determine unambiguously the string of
output symbols, which may be added to the output string.

Definition 3. A translation LR(k) item for the translation grammar
TG = (N, T, D, R, S) is the object of the form [A → α •β, x, w] where A → αβ is
a rule of the input grammar for the translation grammar TG, x ∈ D∗, w ∈ T ∗k,
k ≥ 0.
For k = 0 an LR(0) translation item will be written in the form [A → α •β, x].

The following algorithm constructs the collection of sets of the translation LR(k)
items for given translation grammar TG.

Algorithm 1. Construction of the collection of sets of LR(k) translation items.
Input: R-translation grammar TG = (N,T,D, R, S), k ≥ 0.

Output: Collection P of sets of LR(k) translation items for the translation grammar
TG.

Method:

Step 1. Construct an augmented grammar
TG′ = (N ∪ {S′}, T, D, R ∪ {S′ → S}, S′).

Step 2. Construct the initial set of LR(k) translation items in the following
way:
(a) # := {[S′ → •S, e, e]}.
(b) If [A → •Bβ, e, u] ∈ #, B ∈ N and B → γ ∈ R, then

# := # ∪ {[B → •hi(γ), y, v] : y ∈ D∗ is the longest prefix of γ
containing output symbols only, v ∈ FIRSTk(hi(β)u)}.

(c) Repeat the step (b) while new items can be inserted into the set #.
(d) P := {#}, # is the initial set.

Step 3. If the set Mi of LR(k) translation items has been constructed, con-
struct for each symbol X ∈ (N ∪ T ), which is in some LR(k) item in
Mi just behind the dot, a new set of LR(k) translation items Xj , where
j = max(k) + 1 for Xk ∈ P or j = 1 for Xk 6∈ P , in the following way:
(a) Xj := {[A → αX •β, y, u] : [A → α •Xβ, x, u] ∈ Mi, y ∈ D∗ is the

string of output symbols from the right hand side of the translation
grammar rule corresponding to the rule A → αXβ between symbol
X and string β.},

(b) If [A → α •Bβ, e, u] ∈ Xj , B ∈ N and B → γ ∈ R,
then Xj := Xj ∪ {[B → •hi(γ), y, v], y ∈ D∗ is the longest prefix of
γ containing only output symbols, v ∈ FIRSTk(hi(β)u)}.
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(c) Repeat the step (b) while new items can be inserted into the set Xj .

(d) P := P ∪ {Xj}.
Step 4. Repeat Step 3 for all sets Mi, while new sets can be added into the

collection P.

This algorithm constructs the collection of sets of LR(k) translation items for
a given translation grammar. This collection differs from the collection of sets of
LR(k) items for the input grammar. Each of its items contains a string of output
symbols.

There is a string of output symbols y in the item with the dot at the end of the
right hand side of the rule. The string y is a string of output symbols from the end
of the rule in question. Such a situation means that the operation reduce will be
performed during the translation and the string y will be added to the output string.

There is also a string x of output symbols in the item with the dot just in front of
an input symbol. In this case the string x is the string of output symbols from the rule
in question placed in front of the input symbol behind the dot. This means that for
the rule of the translation grammar of the form A → αxaβ the constructed item for
some u ∈ T ∗k is [A → hi(α) • ahi(β), x, u] where x ∈ D∗, a ∈ T , α, β ∈ (N ∪T ∪D)∗

and α does not end with the output symbol.
The existence of such an item in some set of LR(k) translation items means that

the operation shift will be performed during the translation and the string x will be
added to the output string. In order to select the output string x unambiguously,
there must not be, in the same set of LR(k) translation items, two different items
with different output strings, with the same input symbol behind the dot, and with
the same lookahead strings from FIRSTk(ahi(β)u).

Definition 4. We say that in the collection P of LR(k) translation items there is
a translation conflict, if in some set of P two items are of the form

[A → α • aβ, x, u]
[B → γ • bδ, y, v]

for x 6= y and FIRSTk(aβu)∩FIRSTk(bδv) 6= ∅.
Definition 5. An R-translation grammar TG is called an LR(k) R-translation
grammar, if the input grammar of TG is an LR(k) grammar and there is no trans-
lation conflict in any set of LR(k) translation items of the collection P for TG.

6. ALGORITHM OF THE FORMAL TRANSLATION

For the LR(k) R-translation grammar translation can be performed using the algo-
rithm, which is obtained by the following modification of the LR parser.
Step 1. During the operation reduce, add the string of output symbols to output

string from the LR(k) item corresponding to the reduce operation performed.

Step 2. During the operation shift, add the string of output symbols to output string
from the LR(k) item corresponding to the shift operation performed.
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Strings of output symbols can be inserted into the corresponding items of the
action table of the LR parser. The resulting table will be called the translation
table.

Algorithm 2. Construction of the translation table for a LR(k) R-translation gram-
mar.

Input: LR(k) R-translation grammar TG = (N, T, D,R, S) and a collection P of
sets of LR(k) translation items for LR(k) R-translation grammar TG.

Output: Translation table p for the translation grammar TG.

Method: Translation table has rows denoted by the sets of items from P , columns
are denoted by the elements of the set T ∗k.

Step 1. p(Mi, u) = shift(x), if [A → α •β, x, v] ∈ Mi, β ∈ T (N ∪ T )∗,
u ∈ FIRSTk(βv), x ∈ D∗,

Step 2. p(Mi, u) = reduce j(x), if j ≥ 1 and
[A → hi(α) • , x, u] ∈ Mi, A → α is jth rule in R,
u ∈ T ∗k, x ∈ D∗,

Step 3. p(Mi, e) = accept, if [S′ → S • , e, e] ∈ Mi,
Step 4. p(Mi, u) = error in all other cases.

Note. The goto table may be constructed in the same way as the one for the LR
parser (see [3]).

Algorithm 3. Formal translation for LR(k) R-translation grammar.

Input: The translation table p and the goto table g for the translation grammar
TG =
= (N, T, D,R, S), input string x ∈ T ∗, k ≥ 0.

Output: Output string y in case that for x ∈ L(Gi), (x, y) ∈ Z(TG), otherwise
error signalisation.

Method: The symbol # is an initial symbol in the pushdown store. Repeat Steps 1,
2 and 3 until accept or error appears. Symbol Y is on the top of the pushdown
store.

Step 1. Fix the string of first k symbols from the unused part of the input string
and denote it by u.

Step 2. (a) If p(X, u) = shift(x), read one input symbol, add the string x to the
output string and go to Step 3.

(b) If p(X,u) = reduce i(x), pop from the pushdown store the same
number of symbols as is the number of input and nonterminal symbols
at the right-hand side of the ith rule (i)A → α and add string x to
the output string. Go to Step 3.

(c) If p(X, u) = accept, finish the translation; then the output string is
the translation of the input string, provided that the input string is
read completely, otherwise finish the translation by an error signali-
sation.
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(d) If p(X, u) = error, finish the translation by an error signalisation.
Step 3. If W is a symbol which may be pushed to the pushdown store (the read

symbol in 2(a) or the left hand side of the rule used for the reduction in
2(b)) and Y is the symbol at the top of the pushdown store, then:
(a) If g(Y, W ) = M , then push M at the top of the pushdown store and

repeat the algorithm from the step 1.
(b) If g(Y, W ) = error, finish the translation by an error signalisation.

The configuration of the algorithm is the triple (α, x, y), where
α is the content of the pushdown store,
x is the unused part of the input string,
y is the part of the output string already created.
The initial configuration is a triple (#, x, e), the accepting configuration is a triple
(#Mi, e, y), where Mi is the symbol at the top of the pushdown store, and it holds
for Mi that p(Mi, e) = accept.

Example. Let us have translation grammar
TG = ({A, B}, {a, b}, {x, y}, R, A), where R contains the rules:

(1) A → aAy (2) A → B
(3) B → xbB (4) B → x

This grammar describes the translation Z(TG) = {(aibj , xj+1yi) : i, j ≥ 0}. Let
us construct the collection of sets of LR(1) translation items for the grammar TG.

# = {[A′ → •A, e, e], [A → • aA, e, e], [A → •B, e, e], [B → • bB, x, e], [B → • , x, e]}
A1 = {[A′ → A • , e, e]}
a1 = {[A → a •A, e, e], [A → • aA, e, e], [A → •B, e, e], [B → •B, x, e], [B → • , x, e]}
B1 = {[A → B • , e, e]}
b1 = {[B → b •B, e, e], [B → • bB, x, e], [B → • , x, e]}
A2 = {[A → aA • , y, e]}
B2 = {[B → bB • , e, e]}

The following table is the translation and goto table. Symbols S and A stand for
operations shift and accept, respectively. The reduction by the rule number (i) is
denoted by Ri.

a b e A B a b
# S S(x) R4(x) A1 B1 a1 b1

A1 A
a1 S S(x) R4(x) A2 B1 a1 b1

B1 R2

b1 S(x) R4(x) B2 b1

A2 R1(y)
B2 R3



Formal Translation Directed by LR Parsing 57

Algorithm 3 performs the translation of the input string aab in the following way:

(#, aab, e) ` (#a1, ab, e)
` (#a1 a1, b, e)
` (#a1 a1 b1, e, x)
` (#a1 a1 b1 B2, e, xx)
` (#a1 a1 B1, e, xx)
` (#a1 a1 A2, e, xx)
` (#a1 A2, e, xxy)
` (#A1, e, xxyy)

Main theorem. Algorithm 3 of the formal translation for LR(k) R-translation
grammar TG creates, for each input string x ∈ L(Gi), where Gi is the input grammar
of translation grammar TG, an output string y such that (x, y) ∈ Z(TG).

P r o o f . Algorithm 3 is an extension of an LR parser, which means that it
constructs the reverse of the rightmost derivation of the input string x and, if this
derivation does not exist, it produces an error signalisation. Therefore we have to
prove the fact, that for an input string x ∈ L(Gi) the output string y is produced
such that (x, y) ∈ Z(TG).

The proof will be made by the induction on the length of the rightmost derivation
of the input string.

First the following claim has to be proved:

(?) If for some A ∈ N a derivation A ⇒n w exists in TG such that x = hi(w),
y = ho(w), then Algorithm 3 performs the sequence of moves (α, x, β) `∗ (αA′, e, βy)
for some string α of pushdown symbols, β ∈ D∗, where A′ is the pushdown symbol
corresponding to A.

1. For n = 1 the derivation has the form A ⇒ w and in R there is the rule A →
y1a1y2a2 · · · ykakyk+1, where k ≥ 0, y1, y2, · · · , yk, yk+1 ∈ D∗, a1, a2, · · · , ak ∈ T ,
hi(w) = a1a2 · · · ak, ho(w) = y1y2 · · · ykyk+1. In this case the collection P of the sets
of translation LR(k) items contains sets b, a′1, a

′
2, · · · , a′k and these sets contain the

following items:

[A → • a1a2 · · · ak, y1, u] ∈ b,
[A → a1 • a2 · · · ak, y2, u] ∈ a′1,
· · ·
[A → a1a2 · · · • ak, yk, u] ∈ a′k−1,
[A → a1a2 · · · ak • , yk+1, u] ∈ a′k

for some lookahead string u ∈ T ∗k.
Algorithm 3 performs for some string of pushdown symbols α the following sequence
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of moves

(α, a1a2 . . . ak, β) ` (αa′1, a2 . . . ak, βy1)
` (αa′1a

′
2, a3 . . . ak, βy1y2)

` . . .

` (αa′1a
′
2 . . . a′k, e, βy1y2 . . . yk)

` (αA′, e, βy1y2 . . . ykyk+1)

Therefore the claim (?) is true for n = 1.

2. Suppose that the claim (?) is true for all m < n. The rightmost derivation of
the length n has the form

A ⇒ z1,1a1,1z1,2a1,2 · · · z1,i1a1,i1B1z2,1a2,1z2,2a2,2 · · · z2,i2a2,i2B2 · · ·
· · ·Bkzk+1,1ak+1,1zk+1,2ak+1,2 · · · zk+1,ik+1ak+1,ik+1v

⇒mk z1,1a1,1z1,2a1,2 · · · z1,i1a1,i1B1z2,1a2,1z2,2a2,2 · · · z2,i2a2,i2B2 · · ·
· · ·wkzk+1,1ak+1,1zk+1,2ak+1,2 · · · zk+1,ik+1ak+1,ik+1v

⇒mk−1 . . .

⇒m2 z1,1a1,1z1,2a1,2 · · · z1,i1a1,i1B1z2,1a2,1z2,2a2,2 · · · z2,i2a2,i2w2 · · ·
· · ·wkzk+1,1ak+1,1zk+1,2ak+1,2 · · · zk+1,ik+1ak+1,ik+1v

⇒m1 z1,1a1,1z1,2a1,2 · · · z1,i1a1,i1w1z2,1a2,1z2,2a2,2 · · · z2,i2a2,i2w2 · · ·
· · ·wkzk+1,1ak+1,1zk+1,2ak+1,2 · · · zk+1,ik+1ak+1,ik+1v

where v, zj,l ∈ D∗, aj,l ∈ T , xj = hi(wj), yj = ho(wj), ik ≥ 0 for j = 1, 2, · · · , k + 1,
l = 1, 2, · · · , ij , k ≥ 0.
In this case the collection P of sets of LR(k) translation items contains sets

b, a′1,1, a
′
1,2, · · · , a′1,i1 , B

′
1, a

′
2,1, a

′
2,2, · · · , a′2,i2 , B

′
2, · · · , B′

k, a′k+1,1, a
′
k+1,2, · · · , a′k+1,ik+1
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and these sets contain the following items:

[
A → • a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , z1,1, u

] ∈ b[
A → a1,1 • a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , z1,2, u

] ∈ a′1,1

· · ·[
A → a1,1a1,2 · · · a1,i1 •B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , e, u

] ∈ a′1,i1 ,[
A → a1,1a1,2 · · · a1,i1B1 • a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , z2,1, u

] ∈ B′
1,[

A → a1,1a1,2 · · · a1,i1B1a2,1 • a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , z2,2, u
] ∈ a′2,1,

. . .[
A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2 •B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 , e, u

] ∈ a′2,i2 ,

. . .[
A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · · ak,ik

•Bkak+1,1ak+1,2 . . . ak+1,ik+1 , e, u
] ∈ a′k,ik

,[
A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bk • ak+1,1ak+1,2 . . . ak+1,ik+1 , zk+1,1, u

] ∈ B′
k,[

A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1 • ak+1,2 . . . ak+1,ik+1 , zk+1,2, u
] ∈ a′k+1,1,

. . .

[A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . .

. . . • ak+1,ik+1 , zk+1,ik+1 , u
] ∈ a′k+1,ik+1−1,[

A → a1,1a1,2 · · · a1,i1B1a2,1a2,2 · · · a2,i2B2 · · ·Bkak+1,1ak+1,2 . . . ak+1,ik+1 • , v, u
] ∈ a′k+1,ik+1

for some lookahead string u ∈ T ∗k.

Algorithm 3 performs for some string of pushdown symbols α the following se-
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quence of moves:

(
α, a1,1a1,2 · · · a1,i1x1a2,1a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 · · · ak+1,ik+1 , β

)

` (
αa′1,1, a1,2 · · · a1,i1x1a2,1a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 · · · ak+1,ik+1 , βz1,1

)

` (
αa′1,1a

′
1,2, · · · a1,i1x1a2,1a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 · · · ak+1,ik+1 , βz1,1z1,2

)

` · · ·
` (

αa′1,1a
′
1,2 · · · a′1,i1 , x1a2,1a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 . . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1

)

`m1
(
αa′1,1a

′
1,2 · · · a′1,i1B

′
1, a2,1a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 . . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1

)

` (
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1, a2,2 · · · a2,i2x2 · · ·xkak+1,1ak+1,2 · · ·

. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1

)

` (
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2, · · · a2,i2x2 · · ·xkak+1,1ak+1,2 · · ·

. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1z2,2

)

` · · ·
` (

αa′1,1a
′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2 , x2 · · ·xkak+1,1ak+1,2 · · ·

. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2

)

`m2
(
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2B

′
2, · · ·xkak+1,1ak+1,2 · · ·

. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2y2

)

` · · ·
`mk

(
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2B

′
2 · · ·B′

k, ak+1,1ak+1,2 · · ·
. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2y2 · · · yk

)

` (
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2B

′
2 · · ·B′

ka′k+1,1, ak+1,2 · · ·
. . . ak+1,ik+1 , βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2y2 · · · ykzk+1,1

)

` (
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2B

′
2 · · ·B′

ka′k+1,1a
′
k+1,2, · · ·

. . . a′k+1,ik+1
, βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2y2 · · · ykzk+1,1zk+1,2

)

` · · ·
`

(
αa′1,1a

′
1,2 · · · a′1,i1B

′
1a
′
2,1a

′
2,2 · · · a′2,i2B

′
2 · · ·B′

ka′k+1,1a
′
k+1,2a

′
k+1,ik+1

, e, βz1,1z1,2 · · ·
. . . z1,i1y1z2,1z2,2 . . . z2,i2y2 · · · ykzk+1,1zk+1,2 · · · zk+1,ik+1

)

` (
αA′, e, βz1,1z1,2 · · · z1,i1y1z2,1z2,2 . . . z2,i2y2 · · · ykzk+1,1zk+1,2 · · · zk+1,ik+1v

)

Since mj < n, for j = 1, 2, · · · , k the claim (?) is true for all n > 0.

Thus, we have proved the claim (?) for an arbitrary rightmost derivation and it
holds therefore:
For the rightmost derivation S ⇒∗ w in the translation grammar TG, where x =
hi(w), y = ho(w), Algorithm 3 performs the sequence of moves (#, x, e) `∗ (#S′, e, y)
and therefore (x, y) ∈ Z(TG). 2
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7. CONCLUSION

A similar approach as for LR(k) R-translation grammars may be used for the def-
inition of SLR(k) and LALR(k) R-translation grammars. The class of LR(k) R-
translation grammars does not contain all translation grammars with the LR(k)
input grammar. E. g. no translation grammar with output symbols in front of
nonterminal symbols belongs to this class.

(Received November 3, 1989.)
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