Kybernetika

VOLUME /3 (2007), NUMBER 2

The Journal of the Czech Society for
Cybernetics and Information Sciences

Published by: Editorial Board:
Institute of Information Theory JiFf Andeél, Sergej Celikovsky, Marie
and Automation of the AS CR, v.v.i. Demlova, Petr Héjek, Jan Flusser, Martin

Janzura, Jan Jezek, George Klir, Ivan

Kramosil, Tomas Kroupa, Friedrich Liese,
Editor-in-Chief: Jean-Jacques Loiseau, Frantisek Matl’lé,
Radko Mesiar, Jifi Outrata, Jan Stecha,
Olga Stépankova, Igor Vajda, Jifina
Vejnarova, Miloslav Vosvrda, Pavel Zitek

Milan Mares

Managing Editors: Editorial Office:
Karel Sladky Pod Vodérenskou vézi 4, 18208 Praha 8
Lucie Fajfrova

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Kybernetika. Volume 43 (2007) ISSN 0023-5954, MK CR E 4902.

Published bimonthly by the Institute of Information Theory and Automation of the Academy
of Sciences of the Czech Republic, Pod Vodarenskou vézi 4, 18208 Praha 8. — Address of

the Editor: P.O. Box 18, 18208 Prague 8, e-mail: kybernetika@utia.cas.cz. — Printed by

PV Press, Pod vrstevnici 5, 140 00 Prague 4. — Orders and subscriptions should be placed

with: MYRIS TRADE Ltd., P. 0. Box 2, V Stihlach 1311, 14201 Prague 4, Czech Republic,

e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon & Sagner, P.O.

Box 340108, D-8000 Miinchen 34, F.R.G.

Published in June 2007.

© Institute of Information Theory and Automation of the AS CR, v.v.i., Prague 2007.


http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/432.html

KYBERNETIKA — VOLUME 43 (2007), NUMBER 2, PAGES 183-196

ON THE STRUCTURE OF CONTINUOUS UNINORMS

PAwWEL DRYGAS

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangular
norms and conorms. We ask about properties of increasing, associative, continuous binary
operation U in the unit interval with the neutral element e € [0,1]. If operation U is
continuous, then e = 0 or e = 1. So, we consider operations which are continuous in
the open unit square. As a result every associative, increasing binary operation with the
neutral element e € (0,1), which is continuous in the open unit square may be given in
[0,1)% or (0,1]* as an ordinal sum of a semigroup and a group. This group is isomorphic to
the positive real numbers with multiplication. As a corollary we obtain the results of Hu,
Li [7].

Keywords: uninorms, continuity, t-norms, t-conorms, ordinal sum of semigroups
AMS Subject Classification: 06F05, 03E72, 03B52

1. INTRODUCTION

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangu-
lar norms and conorms. However similar operations were considered in [3] and [4]. In
[6] Fodor, Yager and Rybalov examined a general structure of uninorms. For exam-
ple, the frame structure of uninorms and characterization of representable uninorms
are presented.

In this paper we consider a more general class of operations than uninorms,
i.e. operations from the class U(e) = {U : [0,1]> — [0,1] : U is an increasing,
associative binary operation with the neutral element e} for e € [0, 1], where we omit
the assumption about the commutativity. We ask about properties of continuous
operation U in U(e) where e € [0,1]. If operation U is continuous then e = 0 or
e =1 (cf. [3]). So, we consider operations which are continuous in the open unit
square. The structure of operations continuous on another subset of unit square we
can find in [6, 11, 12].

First, in the Section 2 we present the notion of uninorms and the frame structure
of uninorms. Next we present the construction of ordinal sum of semigroups. In
Section 4 we present properties of the operation which is continuous in (0,1)2.

As a result every operation in U(e) with e € (0,1), which is continuous in the open
unit square may be given in [0,1)? or (0,1]? as an ordinal sum of a semigroup and
a group. This group is isomorphic to the positive real numbers with multiplication.
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Moreover this operation is commutative beyond from two points at the most. As a
corollary we obtain results of Hu, Li [7] and Fodor, Yager, Rybalov [6].

2. NOTION OF UNINORMS

We discuss the structure of binary operations U : [0,1]? — [0, 1].

Definition 1. (Yager and Rybalov [13]) An operation U is called a uninorm if it
is commutative, associative, increasing and has the neutral element e € [0, 1].

Uninorms are generalizations of triangular norms (case e = 1) and triangular
conorms (case e = 0). In the case e € (0,1) a uninorm U is composed by using a
triangular norm and a triangular conorm.

Theorem 1. (Fodor, Yager and Rybalov [6]) If a uninorm U has the neutral element
e € (0,1), then there exist a triangular norm 7" and a triangular conorm S such that

. { T* in [0, ], "
S* in [e, 1)2,
where
{ T*(z,y) = ¢ (T (p(2), 0()) , () = /e, z,y €[0,¢], @
S*(x,y) = ¢~ (S (Y(2), (), Y(z) = (x—e)/(1—e), w.y€l[el].

Lemma 1. (Fodor, Yager and Rybalov [6]) If U is increasing and has the neutral
element e € (0,1) then

min < U < max in A(e) = [0,e) x (e,1] U (e, 1] x [0,€). (3)
Furthermore, if U is associative, then U(0,1),U(1,0) € {0,1}.
Theorem 2. (Li and Shi [10]) Let e € (0,1). If T is an arbitrary triangular norm

and S is an arbitrary triangular conorm then formula (1) with U = min or U = max
in A(e) gives uninorms.

Remark 1. Uninorms from Theorem 2 are not continuous in some points such
that one of the variables is equal to the neutral element.

Example 1. (Fodor, Yager and Rybalov [6]) Formula

0, ifz=0o0ry=0,
Ulz,y) = vy . |
T2)1—ytzy> 17T >0andy>0
gives a uninorm with e = 3, T(x,y) = 5=, S@y) = 155, oy € [0.1]

This uninorm is continuous apart from the points (0,1) and (1,0).
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min<U<max S*

T* min<U <max]

0 e 1

Fig. 1. Frame structure of uninorm U with neutral element e.

Theorem 3. (Czogala and Drewniak [3]) If a uninorm is continuous then e = 0 or
e=1.

3. REMARK ABOUT THE ORDINAL SUM THEOREM

In this section we consider the ordinal sum and dual ordinal sum of semigroups. Next
we present the characterization of continuous ¢-norms and ¢-conorms by using the
ordinal sum theorem. Additional information about the ordinal sum of semigroups
one may find in [1, 2, 5, 8, 9, 12].

Theorem 4. (Clifford [1], Climescu [2]) If (X, F), (Y,G) are disjoint semigroups
then (X UY, H) is a semigroup, where H is given by
F(z,y), if z,y€X,
G(z,y), if z,y€Y,
H(z,y) = , (4)
T, if e X, yey,
v, if zeY, ye X.

By duality we obtain
Theorem 5. (Drewniak and Dryga$ [5]) If (X, F), (Y, G) are disjoint semigroups,
then (X UY, H) is a semigroup, where H is given by
F(.’L’,y>7 if I7y€Xa
G(z,y), if z,y€y,
H(z,y) = . (5)
v, if ze X, yey,
x, if z€eY, ye X.
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Y x G Y Y G
X F Y X F T
X Y X Y

Fig. 2. Ordinal sum (left) and dual ordinal sum (right) of semigroups (X, F') and (Y, G).

For our consideration it will be useful to remember the characterization of con-
tinuous t-norms or t-conorms by using ordinal sum theorems.

Theorem 6. (Klement, Mesiar and Pap [9], p. 128, Sander [12]) Operation T :
[0,1]2 — [0, 1] is continuous, associative, increasing, with the neutral element e = 1
iff there exists a family {(ag,br)}reca (where A C QN 0,1]) of nonempty, pairwise
disjoint, open subintervals of [0, 1] such that the operations T}, = T'|(, »,]> are con-
tinuous, increasing, associative with Archimedean property, neutral element b and
T is given by

Ti(z,y), for (z, ar, by?,
T(m,y){ k(z,y) or (z,y) € (ak, by] ©)

min(z,y), otherwise.

Moreover, the operation T' is commutative.

Theorem 7. (Klement, Mesiar and Pap [9], p. 130) Operation S : [0,1]2 — [0,1] is
continuous, associative, increasing, with the neutral element e = 0 iff there exists
a family {(a,br)}rea (where A C QN [0,1]) of nonempty, pairwise disjoint, open
subintervals of [0, 1] such that the operations Sy = S|4, 5,]> are continuous, increas-
ing, associative with Archimedean property, neutral element a; and S is given by

z or (z a 2
S((E,y):{ Sk( ay)a f ( ;y) E[ k,bk) s (7)

max(z,y), otherwise.

Moreover, the operation S is commutative.

4. MAIN RESULTS

In Theorems 6 and 7 a characterization of continuous operations in the class ¢(1)
and U(0) respectively is given. Moreover, if operation in the class U(e) is continuous,
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then e = 0 or e = 1 (see Theorem 3). Thus, we ask about the structure of operations
in the class U(e) which are continuous in the open unit square for e € (0, 1).

Lemma 2. Let e € (0,1). If operation U € U(e) is continuous in (0,1)? then
operation Uljg 2 is isomorphic to a continuous t-norm and Ul 12 is isomorphic to
a continuous t-conorm.

Proof. First we prove that operation Ul 1j> is continuous. The operator U is
continuous in (0,1)2. From this we obtain the continuity of the operation Uljeqp? in
[e, 1)2. Moreover U(z,y) > max(x,y) for x,y € [e,1] and U(x,1) = U(1,z) = 1 for
x € [e,1]. Let z,y € [e,1], then 1 > U(x,y) > max(z,y), lim,_,; max(z,y) = 1 and
lim,_,1 max(z,y) = 1. It means that lim, ., U(z,y) = 1 and lim,_,, U(z,y) = 1,
i.e. functions U(z,t) and U(t,y), t € [e, 1] are continuous for all z,y € [e, 1]. This
implies continuity of the operation U|[e,1]2. It means, that U|[e71]2 is a continuous,
associative, increasing operation with neutral element e, then it is isomorphic to a
continuous t-conorm.

In similar way we obtain that the operation Ul . is isomorphic to a continuous
t-norm. O

Lemma 3. Let e € (0,1) and U € U(e). If there exists a € [0,e) such that
U(z,y) =z for x € (a,e), y € (e,1) or U(x,y) =y for z € (e, 1), y € (a,e) then U
is not continuous in (0, 1)2.

Proof. Let U(z,y) = x for z € (a,e), y € (e,1). Take s € (e,1) and let
ft) = U(t,s), t € [0,1]. We have f(t) = U(t,s) =t < e for t € (a,e) and
f(e) = s > e. It means, that the function f is not continuous at the point e. This
implies, that U is not continuous in (0,1)2.

In similar way as above we obtain the second part of Lemma. O

In the next part of this paper we need the following lemmas

Lemma 4. (Klement, Mesiar and Pap [9]) Let J = [a,b] and F : J? — J be
associative, increasing operation with the neutral element b. If x € J is an idempo-
tent element of operation F' and functions f(t) = F(x,t), h(t) = F(t,x), t € J are
continuous in J then F(z,y) = F(y,z) = min(z,y) for y € J.

Lemma 5. Let J = [a,b] and F : J? — J be associative, increasing operation
with the neutral element a. If x € J is an idempotent element of operation F' and
functions f(t) = F(x,t), h(t) = F(t,x), t € J are continuous in J then F(z,y) =
F(y,z) = max(z,y) for y € J.

Lemma 6. Let e € (0,1) and U € U(e) be continuous in (0,1)2. If there exists
b € (0,e) such that U(b,y) = b for y € (b,e) or U(x,b) = b for x € (b,e) then
U(z,y) =U(y,r) = min(z,y) for z € [0,b] and y € [b,1).
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min

min

min min

0 b e 1

Fig. 3. The operation U from the Lemma 6.

Proof. Let z € [0,b] and y € (e,1). For all t € (b,e) we have U(b,t) = b. By
the continuity of the operation U we have U(b,b) = b. This means that b is an
idempotent element of the continuous operation Uljg 2 and by Lemma 4 we have
U(b,t) = U(t,b) = min(t,b) for t € [0,e]. Hence, by monotonicity of U we have
U(s,t) = min(s,t) for s € [0,0], t € [b, €]

Suppose that there exists z € (e, 1) such that U(b,z) > e. By continuity of the
operation U and condition U(b,e) = b there exists w € (e, z] such that U(b,w) = e.
Then

b=U(b,e) =U(b,U(b,w)) =U(U(b,b),w) =U(b,w) = e,

which is a contradiction. Therefore U(b,y) < e for ally € (e, 1). By continuity of the
operation U and condition U(e,y) = y there exists v € (b, e) such that U(v,y) = e.
Therefore for all x < b we have

U(z,y) = U(min(z,v),y) = UU(z,v),y) =U(z,U(v,y)) = U(x,e) = x.

By commutativity of the operation Uljy .2 we obtain U(y,z) = x for x € [0,b] and
y € [b,e]. In similar way as above we obtain U(y,z) = min(z,y) for = € [0,b],
y € [b,1). If we assume that U(xz,b) = b for x € (b, e) then the proof is analogous.O

By duality we obtain

Lemma 7. Let e € (0,1) and U € U(e) be continuous in (0,1)%. If there exists
a € (e,1), such that U(a,y) = a for y € (e,a) or U(z,a) = a for z € (e,a) then
U(z,y) =U(y,x) = max(z,y) for z € [a,1] and y € (0, al.

Lemma 8. (cf. Hu and Li [7]) Let e € (0,1) and U € U(e) be continuous in (0, 1)2.
Then there exist idempotent elements a € [0,e) and b € (e, 1] such that operations
Ul(a,e)> and Ul py> are strictly increasing. Moreover a = 0 or b = 1.
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,,,,,,,,,,,,,,

0 a e b 1

Fig. 4. The operation U € U(e) from Lemma 8.

Proof. By Lemma 2 operation Ul 2 is isomorphic to a continuous ¢-norm.
By Theorem 6 there exists a countably family of intervals (ag,bx) C [0, €] such that
Uljo,e> is an ordinal sum of semigroups Ty = Ul(q, b2 With Archimedean property
or T3 = min.

Suppose that there does not exist such a € [0, e) that Ul 2 is a semigroup with
Archimedean property. Then there exists r € [0, e) such that Ul .2 = min or for
every neighborhood of the point e there exists k such that interval (a, by) is included
in that neighborhood, i.e. there exists an increasing subsequence {b; } of sequence
{br} convergent to e. So, we construct the sequence of idempotent elements {c,},

e.g ¢, =e€— ﬁ € [r,e) in the first case, and ¢, = by, in the second case.

According to (6) we have U(cyp,,y) = ¢, for all y € (¢, €e). By Lemma 6, U(z,y) = =
for z € [0, ¢, and y € (e,1). It implies that U(z,y) = z for z € [0,e) = U, [0, ¢n]
and y € (e,1). Now, by Lemma 3, operation U is not continuous in (0,1)?, which
is a contradiction. So, there exists a € [0,e) such that U|[a,e]2 is isomorphic to a
continuous Archimedean t-norm. Moreover a is an idempotent element of operation
U and the zero element of operation U, 2.

Now we show that Ul(, ¢ is strictly increasing. Suppose that it is not. It means
that Ul,,e2 is isomorphic to the Lukasiewicz t-norm T7,. By continuity of U there
exist p € (a,e) and w € (e,1) such that U(p,w) = e. By the fact that Ul >
is isomorphic to T}, (all elements from (a,e) are zero divisors, where zero element
is equal to a) it follows that U(p,q) = U(g,p) = a for some ¢ € (a,e) and by
monotonicity of operation U and because U(a,a) = a we have U(t,p) = a for all
t € [a,q]. Therefore U(t,U(p,w)) = U(t,e) =t and U(U(t,p),w) = U(a,w). By
associativity of U we have U(a, w) = t for all ¢ € [a, g], which leads to a contradiction.
Thus Ul(qg,ep2 is strictly increasing.

In similar way we prove that there exists idempotent element b € (e, 1], which is
the zero element of Ul y)2, such that Ul )2 is strictly increasing.

Suppose that ¢ > 0 and b < 1. Since U(a,y) = a for all y € (a,e), Lemma 6
implies that U(x,y) = min(z,y) for € [0,a] and y € (e, 1). Similarly, since b is the
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zero element of U] )2, Lemma 7 implies that U(z,y) = max(x,y) for x € (0,e) and
y € [b,1]. Therefore U(z,y) = x and U(z,y) =y for z € (0,a] and y € [b,1), which
is a contradiction.

Accordingly a =0 or b= 1. ]

Lemma 9. Let e € (0,1) and U € U(e) be continuous in (0,1)%. If there exists
a € [0,e) such that operations Ul(, 2 and Ul 1)2 are strictly increasing then the
operation Ul 1) is strictly increasing.

Proof. To show, that Ul 1)2 is strictly increasing we must show that U is
strictly increasing on the set (a,e] x [e,1) U [e, 1) x (a,e]. By Lemma 2 operations
Uljo,e)> and U 1j2 are commutative. Let =,y € (a,¢], * <y and z € [e, 1). Suppose
that U(z,z) = U(y, z). Then z > e because U(z,e) =z <y =U(y,e).

If U(z,z) = U(y, z) < e then by continuity of U and inequality Ule, z) = z > e
there exists s € (z,e) such that U(s,z) = e. Then

T = U(:z:,e) = U(sz(S,Z)) = U(U(IJ,S),Z) = U(U(va)ﬂz) = U(Sv U(as,z))
= U(Sa U(y,z)) = U(U(Say)v Z) = U(U(y7 8)7 Z) = U(y7 U(S,Z)) = U(y7 6) =Y

which is a contradiction.

If U(xz,2) = U(y, z) > e then, by continuity of U and condition U(z,e) =z, x <
y < e, there exists ¢ € (e, 2] such that U(z,c) =y. From U(y,e) =y <e < Ul(y, 2),
there exists d € [e, z] such that U(y,d) = e. Thus Ul(e, z) = z and

=U(e,2) =U(U(y,d),2) = U(y,U(d, 2)) = U(y,U(z,d))
=UU(x,¢),U(z,d)) = U(z,U(c,U(z,d))) = Uz, U(U(c, 2), d))
= U(x,U(U(2,¢),d)) = U(z,U(z,U(c,d))) = U(z,U(z,U(d, c)))
=U(U(z,2),U(d,¢)) =U(U(y,2),U(d,c)) = U(y,U(z,U(d,c)))
=U(y, U(U(z,d),c)) = U(y, UU ( 2),0)) =U(y,U(d,U(z,0)))
=U(U(y,d),U(z,¢)) = U(e,U(z, U(z,0).

Moreover operation U‘[e,l)Z is strictly increasing and z,c¢ € (e,1). This leads to a
contradiction. Therefore U is strictly increasing with respect to the first variable in
the (a, €] x [e, 1).

Now let z,y € [e,1), z < y and 2z € (a,e]. Suppose that U(z,z) = U(z,y). Then
z < e because Ule,x) =z <y =Ule,y).
If U(z,x) = U(z,y) > e then, by continuity of U and inequality U(z,e) = z < e,
there exists s € (e, x) such that U(z, s) = e. Therefore

x=Ule,x) =UU(z,8),z) =U(2,U(s,z)) =U(z,U(x,s)) =U(U(z,x),s)
= U(U(Z,y), S) = U(Zv U(y’ 8)) = U(Zv U(Svy)) = U(U(Z, S)vy) = U(eay) =Y,

which is a contradiction.
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x <y, there exists ¢ € (z,e) such that U(c,y) = . From U(e,z) =2 > e > U(z, )
there exists d € [z, €] such that U(d, ) = e. Therefore

If U(z,xz) = U(z,y) < e then, by continuity of U and condition Ule,y) =y, e <

z2=U(z,e) =U(2,U(d,x)) =U(U(z,d),z) =UU(d, 2), x)
=U(U(d,2),U(c,y)) = U(d,U(z,U(¢,y))) = U(d, U(U(2,¢),y))
=U(d,U(U(c,2),9)) = U(d,U(c,U(z,9))) = U(U(d, ¢),U(z,y))
=UUl(c,d),U(z,2)) = UU(U(c,d), z),z) = U(U(c,U(d, 2)), z)
=U(U(c,U(z,d),z) = UU(U(¢, 2),d), x) = U(U(c, 2), U(d, ))
=U(Ul(c,2),e) =Ulc, 2).

Moreover, operation Ul is strictly increasing and z,c € (a,e). This leads to
a contradiction. Thus U is strictly increasing with respect to second variable on
(a,e] x [e, 1).

In a similar way we prove that U is strictly increasing on [e, 1) X (a,¢]. |

Theorem 8. Let e € (0,1) and U € U(e) be continuous in (0,1)2. If there exists
an idempotent element a € [0,¢e) of U such that operations Ul(a,e2 and U\[e,1)2 are
strictly increasing, then operation Ul 1)2 is an ordinal sum of continuous semigroup
Ul[0,q2 With the neutral element a and continuous group U, 1)> with Archimedean
property and the neutral element e.

Proof. By Lemma 2, the operation Ul .2 is isomorphic to a continuous t-norm
and, since a is an idempotent element of this operation, Uljg 4> is also isomorphic
to a continuous t-norm. By Lemma 9, operation U], 1)> is strictly increasing and
therefore it is isomorphic to the real numbers with addition. Now, taking into
account Lemma 6 we have that Ul )2 is an ordinal sum of the semigroup Uy 42
and the group U|(,,1)2.

Similarly, we obtain the following results:

Lemma 10. Let e € (0,1) and U € U(e) be continuous in (0,1)2. If there exists
b € (e,1] such that operations Ul(g 2 and Ul )2 are strictly increasing then the
operation Ul(g )2 is strictly increasing.

Theorem 9. Let e € (0,1) and U € U(e) be continuous in (0,1)%. If there exists
an idempotent element b € (e,1] of U such that operations Ul 2 and Ul p)2
are strictly increasing then operation Ul(g,1j2 is a dual ordinal sum of continuous
group Ul(g,p)2 with Archimedean property and the neutral element e and continuous
semigroup Uy, 12 with the neutral element b.

So, we have the characterization of this operation in the open unit square. Now
we ask about it’s structure on the boundary.
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Lemma 11. Let e € (0,1) and U € U(e) be continuous in (0,1)2. If there exists
an idempotent element a € [0, ¢e) of U such that operations Ul(a,e2 and U\[e,1)2 are
strictly increasing then there exist idempotent elements ¢, d € [0, a] of operation U
such that

T, if x € [0,¢),

U(z,1) =<} 1, if x € (¢, 1], (8)
zorl, ifz=c,
x, if x € [0,d),

Ull,z)=¢ 1, if x € (d, 1], (9)

rzorl, ifz=d.

Moreover ¢ = d.

Proof. By the Lemma 1, U(0,1) = 0 or U(0,1) = 1. If U(0,1) = 1 then by
monotonicity of U we have U(x,1) = 1 for z € [0,1]. Therefore we obtain (8) for
¢ = 0. Moreover 0 is an idempotent element of the operation U.

If U(0,1) = 0 then by Theorem 9 the semigroup Ul,,1)2 is isomorphic to the real
numbers with addition. Thus we have lim, ,; U(z,y) = 1 for € (a,1) and by
monotonicity of the operation U we obtain U(z,1) = 1 for € (a,1]. Let 2 € (0, al.
First we will prove that U(z,1) = x or U(z,1) = 1. Suppose that there exists
z € (0,a] such that z < U(z,1) < 1 and let w = U(z,1).

If w € (a,1) then for y € (e, 1), by associativity of U and strictly monotonicity of
Ul(a,1)2, We obtain

w =U(z,1)=U(2U(y, 1)) =U(z,U(1,y))
=U(U(z,1),y) =U(w,y) > U(w,e) = w,
which is a contradiction.
If w € (z,a] then by the conditions U(0,w) = 0, U(e,w) = w and continuity of

Uljo,e> there exists v € (0,e) such that U(v,w) = z and by associativity of U, we

obtain
w =

U(z,1) =UU(v,w),1) =UU(v,U(z,1)),1)
U(U(Ua Z)7 U(lv 1)) = U(U(Ua Z)a 1) = U(Uﬂ U(Zv 1)) = U(Uﬂ w) =z,

which is a contradiction. Therefore U(z,1) =z or U(z,1) =1 for z € [0, 1].
Thus, for ¢ = inf{z € [0,a] : U(z,1) =1} we obtain (8), moreover ¢ € [0, a].
Let z € (0,¢), y € (¢, ] then we have

Ulz,y) =U(y,2)=U(yU(z,1))=UU(y,z),1)
=U(z,y),1) =U(z,U(y,1)) =U(z,1) = x = min(z, y).
By monotonicity of U and inequality U2 < min we obtain U(c,y) = c for

y € (¢,e). By above and continuity of U we have U(c,c¢) = ¢, i.e. ¢is an idempotent
element of operation U. Similarly we prove (9).
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To prove that ¢ = d suppose that d < ¢. Then there exists y € (d, c¢) such that
U(l,y) =1and U(y,1) = y. Taking z € (d,y) we have U(1,2) = 1 and

Y= U(ya 1) = U(y7 U(laz» = U(U(y’ 1)’2) = U(yaz) < U(G,Z) =z <y,

which is a contradiction, thus d > c.
If we suppose that d > ¢ then there exists y € (¢, d) such that U(1,y) = y and
U(y,1) = 1. Taking z € (y,d) we have

z=U(,2) =UU(y,1),2) = Uy, U(1,2)) = U(y,2) <U(y,e) =y < 2,

which is a contradiction. Thus ¢ = d. O

Lemma 12. Let e € (0,1) and U € U(e) be continuous in (0,1)2. If there exists
an idempotent element b € (e, 1] of U such that operations Ul(g 2 and Ul p> are
strictly increasing then there exist idempotent elements p,q € [b, 1] of operation U
such that

07 if X E [0’p)7

Uw,0)=4 = itze(pl), (10)
Oorz, ifxz=np,
0, if x €[0,q),

UO,5) =4 = ifze(ql) (11)

Oorz, ifz=gq.

Moreover p = q.

1 e R
n%lin
e 1 l]‘ (a71)2
Hjnin
a [ T S P
d *’"’L’T’H(T,Zi]g”’ min ’I‘I’Hﬁ”‘

0 c a e 1

Fig. 5. Operation U € U(e) continuous in the open unit square with a > 0.

As a results of our considerations we obtain

Theorem 10. Let e € (0,1) and U € U(e) be continuous in (0,1)?. Then one of
the following two cases holds:
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(i) There exist idempotent elements a € [0,¢e) and ¢ € [0,a] of operation U such
that Ulpp,1)2 is an ordinal sum of continuous semigroup Ul 4)2 with the neutral
element a and continuous group U |(a$1)2 with Archimedean property and the
neutral element e and conditions (8) and (9) hold.

(ii) There exist idempotent elements b € (e, 1] and p € [b, 1] of operation U, such
that Ul(g,1j> is a dual ordinal sum of continuous semigroup Ul 12 with the
neutral element b and continuous group Ul )2 with Archimedean property
and the neutral element e and conditions (10) and (11) hold.

1
q @ T - IaX - ""U}[éo;l’}2””
bt 1
1 mjax
e Ul
mjaX
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 e b p 1

Fig. 6. Operation U € U(e) continuous in the open unit square with b < 1.

Proof. By Lemma 8 there exist a € [0,e) and b € (e,1] (a =0 or b = 1) such
that U], )2 is strictly increasing (Lemma 9 and 10).

If b =1 then by Theorem 8 and Lemma 11 we obtain (i).

If a = 0 then by Theorem 9 and Lemma 9 we obtain (ii). O

Remark 2. Operation U in the previous theorem is commutative in the set
(i) [0,2]*\ {(c; 1), (1, )},
(ii) [0,2]*\ {(0,p), (p,0)}-

5. CONCLUSION

By the above consideration we obtain the following results known from the pa-
pers [6] and [7]
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Theorem 11. (Hu and Li [7], Theorem 4.5) Let e € (0,1) and U be a uninorm
which is continuous in (0,1)2. Then U can be represented as follows:

el'(Z,4), if z,y €10, 4],
B (h(2) + (), 2,y € (a,1),

() Ula.y) = z, ?faze [0,a], y € (a,1) or z € [0,¢), y =1,
Y, if x € (a,1),y € [0,a] or x =1, y €[0,¢),
1, ifze(gly=lorz=1, y€ (1],
T or ¥, ifr=cy=lorz=1,y=c,

where a € [0,¢€), ¢ € [0,a], Ulc,
and h(a) = —oo, h(e) = 0, h(1)

) = ¢, function A : [a,1] — [—00, +00] is strict

e+(l—e 4=°), ifx,ye[b,l],

) (1 e’ l—e
h=(h(z) + h(y)), if 2,y € (0,0),
) v, if 2 € (0,0), ye[b1]orz =0, y € (p,1],
(ii) U(z,y) = ,
x, ifz€b1], ye(0,b)orze(pll], y=0,
0, ifx=0,y€[0,p) orzel0,p), y=0,
T or vy, ifr=p,y=0, orx=0, y=np,
where b € ( ] p € b, ] U(p,p) = p, function h : [0,b] — [—o0, +0] is strict
and h(0) = h(e) = h(b) +o0.

Theorem 12. (Fodor, Yager and Rybalkov [6]) Let e € (0,1) and U be a uninorm
continuous without the points (0,1) and (1,0). Then operations Ul > and Ul 1)
are strictly increasing and

U(x,y)_{ h=t(h(z) + h(y)), for (z,y) € [0,1]2\ {(0,1),(1,0)}, 12

Oorl, elsewhere,
where h : [0,1] — [—o00,400] is an increasing bijection such that h(e) = 0.

Proof. Operation Ul(g 1) is continuous. Suppose that in Theorem 10 the con-
dition (4) holds, i.e. there exists a € [0,¢), such that operation Ul(4,1)2 is strictly
increasing. By Lemma 11 there exists ¢ € [0, a] such that (8) holds.

Suppose that ¢ < a, then for © € (¢,a) and y € (e,1) we have U(z,y) =
min(z,y) = « and U(z,1) = 1. It means that U is not continuous at the points
(z,1), z € (¢,a). Therefore ¢ = a.

Suppose now, that ¢ > 0. By Lemma 11 we have U(z,1) = x for « € [0,a) and
U(z,1) =1 for z € (a,1]. It means that the point (a, 1) is a point of discontinuity
of the operation U, which leads to a contradiction. Thus a = 0. Now, directly by
the above theorem, we obtain (12). O

(Received April 17, 2006.)
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