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KYBERNETIKA — VOLUME 37 (2001), NUMBER 2, PAGES 183-204

COMBINING FORECASTS
USING THE LEAST TRIMMED SQUARES

Jan Amos ViSEK!

Employing recently derived asymptotic representation of the least trimmed squares es-
timator, the combinations of the forecasts with constraints are studied. Under assumption
of unbiasedness of individual forecasts it is shown that the combination without intercept
and with constraint imposed on the estimate of regression coefficients that they sum to one,
is better than others. A numerical example is included to support theoretical conclusions.

1. INTRODUCTION

It is more that thirty year ago when the paper by Bates and Granger [1] opened the
question of possible improvement of forecast of process in question by combining k
individual forecasts. Bates and Granger proposed to utilize the framework of linear
regression model, namely to consider forecasted process as the response variable and
the individual forecasts as explanatory ones.

Let us briefly discuss a background of this endeavour. One can trace out in the
background the reasons of various types. What concerns heuristics they can be given
as follows:

— Firstly, if k forecasters used efficiently information which they had at hand
and if their information was at least partially disjunct, we may try by com-
bining their forecasts to employ all the information simultaneously and hence
(hopefully) to obtain better forecast.

— Secondly, if they used the information inefficiently and if the inefficiency did
not “happened” in the same way by all of them, then, even in the case when
all the forecasters had the same information, we may hope in an improvement
of efficiency.

Of course, the real situation will be somewhere in-between these two possibilities.
But the task represents also very interesting theoretical challenge. Let us assume

(or imagine, if you wish) that the forecasted process is “in fact” generated by a

(dynamic) linear regression model with normally distributed random noise. The

IResearch was supported by Grant 255/2000/A EK /FSV of the Grant Agency of Charles
university.
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converted commas around in fact indicate that usually we have no idea about a
“mechanism” (if any') which generates the forecasted process. Let us denote the
design matrix of the respective model by X;. We may then interpret the matrix X;
as the information accompanying the forecasted process, so that each single column
represents one explanatory variable. Then, of course we may find the best possible
prediction of the forecasted process by means of estimating corresponding regression
coefficients (the best possible under given circumstances, i.e. e.g. in the case when
we find that the data are contaminated — see e. g. Rubio and Visek [10] and on the
other hand the specification test indicates correlation between explanatory variables
and disturbances — see Vigek [16], we can use robust version of instrumental variables
— see Visek [15] or [19] or in the case when the design matrix exhibits a collinearity
we may use M-estimators or the least trimmed squares subject to some (linear)
constraints — see Rubio et al [9] or Visek [21], etc.). But the design matrix X; is
available neither to us nor to the individual forecasters. Nevertheless, let us assume
that each forecaster has at hand some columns of this matrix, i.e. in other words,
each of them has at hand some part of explanatory information. And we may assume
that they have together the whole relevant information. Of course, sometimes this
last assumption need not be realistic.

Assuming moreover that (typically) the common criterion of a quality of predic-
tion for all the forecasters is the minimum of the sum of squared errors of prediction,
the question appears:

Having at hand k individual forecasts, is it possible to reconstruct — not neces-
sarily by linear combination - the best possible forecast?

Finally, the task of improving forecast has also its practical meaning. The fact
that there is available several forecasts of process in question indicates that the
forecasted process is of considerable importance at given time and place. But it
hints:

Even a small improvement of quality of forecast may be appreciated a lot.

Since 1969, when the paper by Bates and Granger appeared, a large attention
was devoted to the problems which of the many types of regression model should be
used. In other words, the questions of the type:

— Should some constraints be imposed on the coefficients of the model or not?
— Should the intercept be included or not?
— Should the coefficients be considered stable or moving in time and how?

etc. were intensively studied. Less attention was paid to the problems of how the
coefficients are to be estimated (in the cases when we decide for combining the
forecasts by means of linear regression model). It is quite understandable since
the least squares principle, sometimes with the maximum likelihood one, are still
(unfortunately) nearly exclusive tools of econometrics and the advantages of robust
methods did not yet attracted appropriate attention.

It is nowadays already well known that the least squares are extremely vulnerable
to influential points, either outliers or leverage points. Moreover, even in the case

LOf course, it is a philosophical question, very interesting and in the interpretation of results
also very important one, how far the idea that some mechanism generated data, is tenable.
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that no influential point is present?, but the residuals are not normally distributed,
the least squares is optimal estimator only in the class of linear estimator. And un-
fortunately the restriction on the linear estimators is drastic, see e. g. again Hampel
et al [4].

So, even today, more than thirty years after the pioneering paper by Bates and
Granger the problem is still worthwhile to be studied. Of course, at first we may ask
whether the idea to combine the forecasts in the framework of (linear) regression
model is the most appropriate one in all situations. It is easy to see that in the
case when the forecasted process (considered as vector, i.e. all past values of the
forecasted process are taken as coordinates of one vector) is far away from the
space generated by linear combinations of individual forecasts, no linear combination
of individual forecasts may improve the situation too much. In opposite case the
linear combination may give a satisfactory result. But then, admitting that among
the values of forecasted process and/or of individual forecasts a portion of atypical
points® may appear, one should consider an alternative method to the least squares.

In Rubio et al [9] and in Visek [14] the first attempts were made to generalize
result which is due to Clemen [3] and which holds for the ordinary least squares. It
claims that in the case when the individual forecasts are unbiased, it is preferable
to construct the combination of forecasts by means of the regression model with-
out intercept subject to the constraint that the sum of coefficients and of course,
also of estimates, is equal to one. It appeared that this result holds also for M-
estimators and numerical illustration showed that the best results were obtained by
M-estimators with redescending -function. On the other hand, it is well known
that firstly the breakdown point of the M-estimators is equal to k~! where k is the
dimension of regression model in question, i.e. the number of explanatory variables.
In our cases, as it follows from the first lines of this paper, it is the number of indi-
vidual forecasts we have taken into account. In other words, the M-estimators have
the breakdown point limited by dimension of corresponding regression model (see
Yohai and Maronna [23]). Secondly, the M-estimators are not scale- and regression
equivariant. To reach scale- and regression-equivariance one needs to studentize the
residuals by an appropriate scale-invariant and regression-equivariant scale estima-
tor, see Bickel [2] or Jureckova and Sen [7]. Although to evaluate such an estimator
is possible (see Visek [17]), it is not very easy and quick. So it would be preferable
to have a (theoretically supported) possibility to apply for combining forecasts such
robust estimator which is scale- and regression-equivariant and, if possible, with ad-
justable breakdown point. One of such estimators is just the least trimmed squares.
Although we were able already earlier to demonstrate that combining forecasts by
the least trimmed squares can give good numerical results, we were not able to prove
a theoretical result analogous to Clemen’s one. Nowadays, following steps in Visek
[18] we can carry out corresponding proof.

First of all we shall introduce notations and simultaneously recall Clemen’s result.

2There are however studies indicating that it is very rare (if not impossible) case, see Hampel
et al [4] or Huber [6] and references given there.

3 The word atypical means that such point may (but need not) belong to the “true” model,
or in other words, the point does not necessarily represent contamination, nevertheless its value is
such that it worsens the result of prediction anyway.
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We shall keep notations which were used by Clemen and which we have also used
in Vigek [14]. Tt will allow to follow easier the text to reader who is familiar with
Clemen’s one.

2. NOTATION

We shall denote by N the set of all positive integers, by R the real line and by RT its
positive part. Moreover, by R we shall denote the k dimensional Euclidean space.
Finally, we shall consider for any t € N the linear model

et:Ft'ﬁo—Fé‘t (1)

where the forecasted process 8* = (61, 6s,...,0;)T plays the role of response variable
(the capital “T” indicates transposition). We shall assume that the first column of
design matrix F; = (f”)zzll{‘;tk consists of ones, i.e. fi1 = 1fori=1,2,...,¢,
and the rest of it is created by (k — 1) individual forecasts (columns 2,3,...,k). Re-
gression coefficients are denoted by 8° = (37, 39,...,82)T and the vector of random
disturbances in model by &' = (ey,¢2,...,5;)T. Moreover, ith line of the matrix F}
(considered as column vector) will be denoted by f;. (To avoid any misunderstand-
ing what concerns vectors, we shall assume all of them to be column ones.) Now,

the alternative form of the model (1) is

0; = fFa° +e;, i=1,2,...,t

Remark 1. Let us realize that the regression model given in (1) is not the regres-
sion mechanism we have mentioned at the introduction that generates the forecasted
process. Notice that, to emphasize it, we have used for rows of corresponding de-
sign matrix of former model the letters X; while for the latter model (i.e. (1) we
utilized f;.

By I{property describing the set A} (instead of Ity operty describing the set A}) We
shall denote the indicator of set A. The reason is the fact that in what follows we
shall use for description of sets (somewhat) complicated expressions containing also
indices.

Remark 2. There are well-known reasons for inclusion of the intercept into the
model — except of a few situations when we are sure that the regression goes through
the origin. Moreover, insisting on the absence of intercept implicitly indicates our
belief in an absolute character of data which in turn means that we give up otherwise
natural requirement of scale- and regression-equivariance of the estimator of the
regression coefficients. Nevertheless, even with such situation we may meet as we
shall see below. On the other hand, in the case of present paper we have started
with the model with intercept to have a model as general as possible and we shall
see later that another model may appear better (under some conditions).

We shall need the following assumptions.
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Assumptions A. The sequence {(f,&;)T}2°, (fi € RP,e; € R) is the sequence

of independent identically distributed random vectors with fi; =1, IEfi; = 0 and
ZEffj < oo for j =2,3,....,kor Ef;; = 0 and lE’ffj < oo forj =1,2,...,k.
Moreover, IEf; - f{f = Q is regular. The marginal distribution function of f;, say
H(x), is absolutely continuous and such that

1
tT1 ma; il = O,(1). 2
4 L<ict 1X§j§k | fij] p(1) (2)

The conditional distribution function D(z|f) of random fluctuation €; given f;
is absolutely continuous with a bounded density d(z|f) which is positive and has
bounded derivative on the R. Denote G(z|f) the conditional distribution function
of €2 given f;. For some « € [0, %), u2 will be the upper a-quantile of G(z|f), i.e.

P(e? >u2) =1-G2|f) = aand [(1 — a) — ua(d(ua|f) + d(—uqs|f)] # 0. Further

E(eiI{e; <ul}|fi)=0 and [E(c1I{c} <ul}|f1) =02 3)

with Ufl € (0,00). Finally, denote by [a] the integer part of a and for any t € N put
he = [(1 —a)t].

Remark 3. Notice that assumptions in (3) are analogies of the orthogonality and
sphericality conditions. Of course, when we shall recall Clemen’s result for OLS, we
will assume (for a moment) that “ordinary” orthogonality and sphericality conditions
hold, i.e. that

EE'|FR)=0 and B[] |F) = 02T (4)

for any t € N (where “Z” denote the unit matrix). On the other hand, the assump-
tion (3) is quite natural, since it corresponds to computational reality. As we shall
see below, the evaluation of the least trimmed squares estimator is equivalent to the
application of the ordinary least squares on a subset of data. The subset has size
h and is given implicitly by the extremal problem — see (7) below. Nevertheless,
since the ordinary least squares evaluates the estimate so that it corresponds to
the assumption of centered random noise, (3) is “implicitly fulfilled” by numerical
algorithm.

Remark 4. For any 1 < j,¢ < k we have
t
(FFS)je =Y fijfie,
i=1

i.e.

t
FF =Y fiff.
=1

Moreover, we have just assumed that IE f; f{f = @ exist and is regular (and hence the
matrix @ has all elements finite). Together with the assumption that the explanatory
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vectors f;’s are i.i.d. it implies that
I
lim -F, F;, =Q a.e.. (5)
t—oo

Since the matrix @) has finite number of elements and its determinant is positive
(remember that it is positive definite), there is tg € N such that for all ¢ > ¢
determinant of %FtTFt is also positive and the same is true about determinant of
F'F;. But it implies that F,' F} is for ¢ > t( also regular and hence we can evaluate
an inversion matrix. Moreover, (5) then implies that

(FF) ™= 0,(t71). (6)

3. THE LEAST TRIMMED SQUARES

Let us denote for any 8 € R* by 7;(3) = 6; — f3 the ith residual and by r%i)(ﬂ)
the order statistics of squared residuals (for ¢ = 1,2,...,t). In other words, it means
that we have for any 8 € R* (and any w € Q)

0< 7‘(21)(5) < 7"(22)(5) <... < 7‘(Zt) ()

Finally, let us recall that the least trimmed squares estimator is given as
B(LTS,t,h) — argmin Zra)(g) (7)

where % < h < t. One can guess that the value of h implies the level of robustness
of estimator, namely its breakdown point.

Let us recall that for h = t, B(LTS’t>h) coincides with the least squares estimator
BLSD | given of course as

t t

B(Ls»t) = argmkin r?(ﬂ) = argmkin (0; — fiTﬂ)Q.
BER i—1 BER i=1

4. RECALLING CLEMEN’S RESULT
According to the well-known formula, the LS-estimate of 49 is given as
B(Ls’t) = (FtTFt)ilFtT‘gt- (8)

Naturally, one lag forward forecast is evaluated as

k
et(i?t) = th+1,j BJ(LS’t) where  frnr = (1, fiyr,- s frorn) "

Jj=1
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or in an alternative (and more convenient) form can be written as

A(LS,t 4
0t(+1 )= fﬁlﬂ(m’”-

A straightforward calculation gives the mean square error

B {7 — 000)* Py fin | = o8 (FER) ™ fopn + 1), (9)

for o¢ see (4).
In the case when the forecasts are unbiased (we can verify it by some test, see e.
g. Holden and Peel [5]), we would expect that the model subject to the constraints

B=0, B+8+...+8=1 (10)

will be more suitable for the combination and we naturally try to estimate 8° by an
estimator which is subject to the same constraints. It is possible to impose other
constraints e. g. that (10) holds and 8; € [0,1] fori = 1,2,..., k. Extensive literature
discussing it and bringing arguments for and against can be found e.g. in the
special issue of Journal of Forecasting devoted to twenty anniversary of the paper by
Bates and Granger [1]. However, there are examples demonstrating that sometimes
substantial improvement was achieved when some coefficients were either negative
and/or some larger than 1. An explanation is simple. When the projection of the
forecasted process into the linear space generated by the forecasts falls “outside” all
forecasts (instead among them), it is clear that the best combination should contain
also some negative coefficients. The heuristics for this case are straightforward.
Simply all forecasters had interpreted some (common) information in a wrong way
and hence only a possibility to “withdraw” this false step of all (or subtract this
false interpretation, if you wish) can considerably improve the forecast. In such a
case one may immediately object that then probably the individual forecasts are not
unbiased and we should “recognize” it by previously mentioned test. However, it is
sufficient to look into a one paper about testing unbiasedness of forecasts and one
immediately learns that this topic is at least a bit controversial (see again Holden
and Peel [5]).

For theoretical considerations it will be convenient to have the constraints (10)
in the matrix form

S-8° =1~ (11)
where S = (5”)221122,6, s11 = 1,815, =0 for j =2,3,...,k, s91 =0, s9; =1
for j =2,3,...,k and v = (0,1)T. So, we shall look for the least squares estimator
under the constraint (11), i. e. we shall consider

i=1

t
BUSY = arg myin {Z(Gi —fi B2, S8 = 7}

and we hope that it will work better than the OLS given in (8). Following Clemen
[3] and using the Lagrangian technique we can find that

B(LS,t) _ B(LS,t) . (FtTFt)qST [S(FtTFt)ﬂST]—l (SB(LS,t) - 7). (12)
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Again a straightforward calculation yields the mean squared error of the prediction
0,41 based on the “constrained” estimator 3*), namely

FE {(ét(i?t) — 0441)°|Fy, ft+1} (13)

_ _ _ -1 _
= R {sh (BT = (BER) ST [S(FTF) ST T (BT F) Y fea 41
Evidently the matrix
(FTF)~'ST [S(FFF) ST~ S(FTF,)~

is positive semidefinite. It implies that (13) is not larger than (9).

We have already mentioned that the main goal of this paper is to confirm (or
reject) validity of this Clemen result for the least trimmed squares. Since there
is not a close formula for FETSth)  we shall use, similarly as in the case of M-
estimators (see Visek [14]), its asymptotic representation. So first of all, we shall
recall it and try to find also a representation for the least trimmed squares under

constraint (11).
5. ASYMPTOTIC REPRESENTATION OF THE LEAST TRIMMED
SQUARES UNDER A CONSTRAINT

Assertion 1. Let Assumptions A be fulfilled. Moreover write h instead of h;.
Then

VE(BETSEN — ) —475Q 1 [(1 - ) ~ uald(ualf) + d(~ual )] x

t

x> (0= f18°) fi - T{e} <ul} +o0p(1) (14)
1=1
= t75Q 7 [(1—a) —ua(d(ualf)+d(—ual £))] " Zeifi - I{e} <ul}+o,(1)(15)

and [? (LTS:t:h) i asymptotically normal with mean value equal to 5° and covariance
matrix

-2
Ua

V(BETSEN DY = Q7 | (1 — a) — ua(d(ual f) + d(—ualf)) / 2*dD(2[f),

—Ug

i.e.

L (\/175 (B(LTS’t’h) — ﬁ0)> — N(0,V(3ETSEM D)) ast — oo.

For the proof see Vigek [18].
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Now, let us consider the least trimmed squares estimator of 3° which is subject
to the same constraints as given in (11), i.e. the estimator given by

h
BETSER) —  argmin {ZT(Qi) (B) together with S = 7} . (16)
i=1

BERF

Employing Assertion 1, let us try to establish an asymptotic representation for
B(LTS’”’). In order to achieve it, we shall consider the linear regression model for
the variables transformed in the following way. Put 6; = 6; — fiz2, fij = fij+2— fi2
fori=1,2,...,tand j = 1,2,...k—2 and define a mapping 7 : R*~2 — RF which
for any 3 € R*~2 gives (3 € RF so that

k-2
B1 =0, 62:1_26]‘, By = Py_o for=3,4,...k.

J=1

Let us notice that the image of the mapping 7 is the subset of R* for which S5 = 7.
Keeping in mind (11), let us put 3% = (89, 89,...,80)7T, i. e. B) = B?+2 for ¢ =
1,2,...,k —2. Then 7(3°) = 38° and we may write for the model (1) the following
sequence of equations

k
0; = Y fiifl+e =121 (17)
j=1
k k
0; = 1—252 fi2+z,fijﬁ?+5ia
=3 =3
k—2
0; — fio = (fij+2 — fi,2)B? +e
j=1
and finally
0; = fFB° + ¢ (18)

which implies that the random disturbances in the regression model for the trans-
formed variables §;’s and f;’s are the same as in the original model (1). Moreover,

modifying a little the steps from (17) to (18) we obtain for any 3 € R*~? and

B =1(p)

k—2 k
0i =Y [l =0 =) fiB;
J=1 j=1

with S8 = ~. But it implies that for any 3 € R¥2 and 3 = T(B) we have for
i=1,2,.. .t o ] ) )
7:(0) = 0; = ['5 =0, = ;"= ri(B)

and of course also
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But then we have

h
TR (B) =D rE(B)

i=1 i=1
and S8 = ~. However it means that if we find a solution of the problem

h

FUTSID = axg i 3 7%y (8), 19
=1

we immediately have the solution of the problem (16). It is evident that BLTSth) —
T(FULTS M), But then our plan is simple. We shall try to verify that Assumptions
A hold also for transformed random variables 6;’s and f;’s, so that we may write
asymptotic representation (14) also for BETStR)  Then we may try to modify this
representation to obtain a representation of B(LTS’“L). Finally, employing both
representations, i. e. of FETSt) and of FETSE) e may find which of these two
estimators has smaller asymptotic variance. And that will be done in the rest of this
paragraph.

Let us recall that we have denoted by Z the identity (or if you wish, the unit)
matrix. We shall prove

Lemma 1. Let S-3° = v hold. Then under Assumptions A we have

Vi (B(LTS,t,h) — 39

1 -1 -1 -1 -1
= %[(1—04)—ua(d(ualfHd(—ualf)} {T-Q 'S (sQ7's") 'S} x

t
xQ_lzfi (0; — f78°) - I{e? <ul} +0,(1) as t— oo. (20)

i=1

Proof. First of all, we shall show that for ¢t > ¢y the matrix SQ ST is regular
(for to see Remark 2).

Due to the fact that the matrix S is created by two independent vectors, S may
be “expanded” into a regular (p x p)-matrix, say S, with first two lines equal just
to S. SQ~1ST is then the main submatrix of the positive definite matrix SQ 15T,
hence it is also positive definite and finally regular.

Now, we shall verify that for the transformed problem (19) the Assumptions A
also hold, so that we shall be able to use Assertion 1. For any £,r =1,2,... k — 2
we have

Ef_l,éf_l,r = E(fl,[—l—? - f1,2)(fl,r+2 - f1,2)

Qe+2,0+2 — Qo422 — @242 + G2,2- (21)

Denote the expression in (21) by g, and the corresponding matrix by Q, i.e. Q =
(Ge,r)e,r=1,2,.. k—2 . Let us further consider the matrix A = (ag;)e¢,j=1,2,....k such that
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age =1,for £ =1,2,...,k, ap =—1for { =3,4,...,k and ag; = 0 for all other
indices. One easily finds that (AQAT)pi0.,42 = Gop for £,r = 1,2,...k — 2, i.e.
that @ is one of the main submatrices of AQAT. Since the matrix A is evidently
regular, and the matrix @ is positive definite, AQAT is also positive definite and
regular. So the assumption about regularity of matrix @ holds. Employing similar
arguments, we may easy verify (2). The validity of the rest of Assumptions A for
the transformed variables (or if you wish, for the transformed problem (19) ) follows
from (17) and (18) and from properties of conditional moments. Now, recalling that
we have denoted

(Q),, = E(fier2 = fi2)(frr+2 — fi2)

and putting
¥ =[(1—- ) = ua(d(ualf) + d(—ualf))],

we can apply Assertion 1 to the transformed setup and we obtain (from (15) )

¢
t3 (BETSER) 30y — tmzy1Q1 Zﬂ-si I{el <ul}+op(1) as t— oo

or, denoting ¢, - I{af < ui} by k;

S

-2

Ge (BTSN — 59)

S
>
M

1

I\Db—'
I M“ .
i

zml—i—op as t —oo0 for £=1,2,...,k—2. (22)
Similarly the representation (15) may be rewritten as
k
1 S(LTS,t,h
129 a (B - 89)

j=1

t
= t_%Zfi,mi—i—op(l) as t—oo for £=1,2,... k. (23)

i=1

Using (21) we may modify (22) and we obtain

k—2
1 LTS t,h
t2 9 E Qe+2,5+2 — Qe+2,2 — ¢5+2,2 + q2, 2)(ﬂ( ) ?_5_2)
Jj=1

t
= t_% Z(fi,er? - fi72)f<3i + Op(1> as t — oo for £ = 1,27 . .,k — 2.

i=1



194 J.A. VISEK

Combining it with (23), we arrive at

o

—2
LTS t,h
(BSFTEE 59,

k
t2 v > (ae — qg‘z)(ﬂ(LTSt = 39) + (g2, — qe2)
Jj=3 J
k
2 192 qej — q25)( ﬂ(LTS’t’h) — ﬁ?) +o0,(1) as t—oo for £=3,4,... k.
Jj=1

1

Since we have assumed that ¥ # 0 we may omit it and taking into account that
ﬁ(LTS,th _ ﬂ(LTSth for j = 3,4, .k, 6§LTS,t,h) 1 Z?:l B](LTS,t,h) and

~§LTSJ h) =0 (and also ﬂ? = O), we obtain

(qu QZJ)(/B(LTS i4ih) 6;))

~
Nl=
M i

<.
Il
—

~(LTS,t,h
(qej — qw)(ﬁ]( bl B9) + op(1)

|

~

SIS
-

<.
I
—

as t— o0 for £=3,4,...,k

and finally

k
LTS h
£ Y ag (BT - 59)
j=1
k

1 LTS,t,h =(LTS,t,h (LTS, t,1
£ {au (BT = BY) 4 quy (BT = BTSN L 0, (1)

j=1
as t — oo for £=3.,4,... k.

Putting

k
4t Z ﬁ(LTth) B](LTS,t,h)) for (=12, (24)

we obtain
k
1 (LTS t,h
5 Y 0,05 ' 89
j=1

k
= 15 3 g (BT ) £ A as t— oo, (25)
j=1
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and for £ =2,...,k we have
k
1Y e (B - )
j=1
k
= 13 ) e (BT — 89 4 Mg+ 0p(1) s t— o0 (26)
j=1

(notice, please, that (25) is just an equality). Moreover
SB(LTS,t,h) =5 (27)
Putting A = (A1, A2)T, we may rewrite (25)—(27) into the matrix form
t% Q(B(LTS,t,h) 7ﬂ0) _ t% Q(B(LTS,t,h) 750) +ST)\+Op(1) and SB(LTS,t,h) =7.
We have thus obtained
t2 QBUETSEN — 43 QBUETSEM £ §TXA 1o (1) and SPETSHR — .

Expressing TS0 ag BUTSh) 4 4=5Q-16T \ 4 op(t*%) we may write

N = SRETSHR) — g [B(LTS,t,h) L Q7 ISTA+ op(t_%)]

and so ) . R
A=tz [SQTIST] T (y — SBUETSEMY 4o, (1)

(keep in mind that at the beginning of the proof we have shown that SQ~1ST is
regular). This means that we have arrived at

~ A~ _ _ _1 A _1

ﬂ(LTS,t,h) — 6(LTS,t,h) =+ Q 15T [SQ lsT] (7 _ Sﬂ(LTS’t’h)) + Op(t é)
We have assumed that v = S3° so that

t% (B(LTS,t,h) _ ﬁO)
1 A _ _ -1 -
_ té {(6(LTS,t,h) _ ﬁ()) +Q 15T [SQ lsT} S(ﬁo _ ﬁ(LTS,t,h))} +0p(1)

Now, employing asymptotic representation of \/E(B(LTSJ”Z) — %) once again we
obtain

V(BTSN —3%) = %19‘1 {T-Q7's"(sQ"'s") 718} x

t
xQ'S"fi [ I{e2 <ul}] +0,(1) as t— oo

i=1

which concludes the proof. o
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Remark 5. Since S- 3% = v implies that 3? = 0 and the same holds for BLTSnh)
it may be of interest to verify that the expansion (20) is consistent with it.

First of all, notice that due to Assumptions .4 in the case when we assume model
with intercept (and hence the constraint S - 3° = 4 has a sense), the matrix @ has

the form
1, oF
0, H

where 0 = (0,0,...,0)T. Due to the assumption about regularity of @, also H is

regular. Hence
1

OT

-1 _ )

ol 8]

Now let us look on the structure of matrix Z — Q~1ST(SQ~1ST)~1S. Taking into
account the structure of matrices Q! and S we easy verify that

seistt=| 5|

v
~1
where v = Zle 25:1 q]g} for G;p = [Q_l}w. But then

ST(SQflsT)flsz 17 OT
0, T

where (T1);; = v (for all 4 and ¢) and finally

Q—lsT(SQ—lsT)—lsz 17 OT
0, H'T
It means that
—1qT —1qgT\—-1¢ _ 07 OT
T-Q 1sT(8Q~1sT) S_{O’ I—HlT}

6. COMBINING FORECASTS USING LEAST TRIMMED SQUARES
ESTIMATOR WITH CONSTRAINTS

Prior to a comparison of the combined forecasts based on the least trimmed squares
estimators with and without constraints, let us return for a moment to (9) and (13),

and let us find how large is the difference of the corresponding mean squared errors.

We easy find that the variance of the prediction égift) is equal to

(LS, A(LS, (LS, _
var (Qt(«LH ”\Ft,ft“) =F {(9£i1 R O t))Q\Fule} =00 [ (F )7 fegr

Taking into account (6), we conclude that var (ét(f_‘f’t)\Ft, le) is also of order

O,(t™1). On the other side, the mean squared error is close to the conditional
variance of 6; which is equal to ¢2. Similarly, in (13), the term

1 [(FFR) ™ = (R R ST [S(FTR) T ST] T S(FTR) ™ S = O0p(t7)
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represents the conditional variance of the prediction égift) Now comparing (9)

and (13) we conclude that the gain obtained by using the constrained least squares
estimator instead of the unconstrained one, decreases in the rate t~! when ¢ increases.
Nevertheless, having left aside how large the gain is, the expressions (9) and (13)
imply that there are part of the mean squared error which may be influenced by
the selection of our approach while remainders are given by circumstances which are
beyond our control. In other words, the mean square error of the prediction consists
of variance of process in question and of variance of prediction. The former is given,
the later is under our control. So keeping in mind that in both (9) and (13) the
terms o3 & | (F'Fy) 7! fi41 and
o1 [(FT R = (FFF) ST [S(FTFR)™ST] T SR fu

represent the conditional variances of égf_‘ft) and of égif’t), respectively, it was suffi-
cient to compare the conditional variances of combined forecasts to find the respec-

tive gain (or loss). So in what follows, we will compare var(ét(ilTS’t’h)|Ft, fir+1) with

var(égifs’t’h”Ft, fi+1) rather than their respective mean squared deviations from

0¢+1. Denoting
0 T 30
6t+1 = t+1ﬂ
and then using Assertion 1 we obtain

N(LTS,t,h) _ pT A(LTS,t,h
9t+1 = ft+15( )

t
1
= O+ ;ﬁflftTﬂQil E fieill{el <ul} +o,(t77) as t— oo,
=1

i.e.

A(LTS,t,h
VEOETS 69, )

¢
_ . 1
= 90 1\%;fieil{efgui}+op(l) as t— oo. (28)

Unfortunately, this relation does not permit us to obtain either IF/ (égi?s’t’h) |}, ft+1)

or var (éﬁ_?s’t’h) |Fy, ft+1) because of presence of op(t_%) within it. Due to this well-

known problem (see e. g. Huber [6]), in such cases we usually consider the asymptotic
mean and the asymptotic variance (more precisely, the mean and the variance of the
asymptotic distribution of the given statistic). It has even advantage against the
precise (mean and) variance of the respective statistic because it depresses the influ-
ence of large and rarely appearing values of the statistic in question (these values are
“hidden” in the term o0,(1)). In other words, it eliminates the influence of values of
the statistic which the statistic attains for w’s from the sets of very small probability,
or, still in other words, it avoids misleading effect of atypical values of the statistic
in question, see Visek [12] and compare also Huber [6], page 744. Taking this into
account we will be able to give a generalization of Clemen’s result in the following
theorem and corollary. Earlier however we shall prepare a lemma.
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Lemma 2. Let Assumptions A be fulfilled. Then the random vectors

t
€W =t72971Q Y fi el {e? <ul}

i=1

and
C(t) — t—%ﬁ—l [Q—l _ Q—lsT(SQ—lsT 1SQ Z'fl 57([{5 <u }

are asymptotically distributed as k-dimensional normal vectors with zero means and
covariance matrices given by

0 %0, Q7" (29)
and
9720, Q [T~ 5T(5Q1ST) 1S,
respectively.
Proof. We shall use Varadarajan theorem (see Assertion A.1 of Appendix).
Let b € R* be nonzero otherwise arbitrary vector. We shall verify of course the

assumptions of the central limit theorem for bT¢® and bT¢Y). Denoting for j,¢ =
1,2,....k Gje=(Q")je, we have

t
ng(t) — t*%ﬂfleQfl Zf’ eil{af < ui}
i=1
k

‘ k
= YAl <D YD ke
=1 ¢

j=1 =1

Put
W, =t 29~ e I{e} <ul}) Zb quefze
j=1 (=1

Fori=1,2,...,t and j,{ = 1,2,...,k we have IE {IE [g,I{e? <uZ})fulfi]} =0,
so that

EW; = 0. (30)
Similarly
2
k
EW? = tW202E | by diefi
j=1 (=1

k k k k
= t_lﬂ_ngl.ZE Z ZQjEfiE [Z brz(jrsfis
j=1 /=1 r=1 s=1

= tW 2V QT E[F'F]Q '
= 97202 07Q7'b < . (31)

| ES—
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Since the sequence {W;};~, is the sequence of independent and identically dis-
tributed random variables, and b was arbitrarily selected vector from R¥, taking
into account (30) and (31) and employing Lindeberg-Lévy and Varadarajan theo-
rems, we conclude the proof of the first assertion of lemma.

The second assertion of lemma can be proved along similar lines. O

Theorem 1. Let Assumptions A be fulfilled. Then the conditional asymptotic
variances

var (VE G5 = 000 S ) and var (VE (@75 < 00,0) foan)

are given by
07200, [ Qe (32)

and

0200, fia [Q71 = Q7IST(SQTIST) TISQTY] fran (33)

Proof. Let us fix an arbitrary 6 € (0,1) and find K > 0 so that for any t € N
for

By={weQ:|fi(w)l > K}

we have P(B;) < 0 (due to the fact that all f;’s are identically distributed, it is
possible). Moreover, denoting by D¢ (y) the distribution function of & ®) and by
Do,vy(y) k-dimensional normal distribution with zero mean and covariance matrix
V given by (29), due to Lemma 2 we may find ty € N so that for any t > ¢

)
su D, - D < —.
yelgk | e ) (y) N,V (W) I

Now for any t > tp and any w € Byy1 we have

Sub, 1Dr,e0 W) = Dyvo,sty v W) <0

where we have denoted by Dyr e (y) and DN(07f1T+1Vft+l)(y) the distribution func-

tions of fg_lf () and of normal random variable with zero mean and variance fEHV fre1-
Since § was arbitrary, the proof of the first assertion of the theorem follows.
The second assertion can be proved in a similar way. O

Corollary 1. Let the Assumptions A be fulfilled. Then the approximate confi-

dence interval (on any significance level) for égilTS’t’h) is not wider than that one for

f(LTS.t.h)
t+1 .

Proof follows from the definite positivity of the matrices at (32) and (33).
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7. NUMERICAL ILLUSTRATION

As we have promised we shall give now a numerical example demonstrating how the
theoretical result works. To offer comparison with the previous results for LS- and
for M-estimators, we shall use the same data as in Visek [14]. They were originally
given in Holden and Peel [5] and they describe the economic growth in United
Kingdom since 1977/1 to 1985/2. The abbreviation in the next table means that
the forecasts were prepared by the Henley Centre for Forecasting, by the London
Business School, by the National Institute of Economic and Social Research, by the
Organization for Economic Co-operation and Development and, finally, by Phillips
and Drew. The data are presented in the following table.
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Table 1. Economic growth in U. K.

201

Case Year HCF LBS NI OECD PD Growth
1 1977/1 2.5875 2.650 1.270 1.125 —0.400 1.76899
2 1977/2 3.0375 2.360 3.310 1.000 1.000 3.62319
3 1977/3 3.4500 2.240 3.150 1.875 1.500 3.40205
4 1977/4 3.0750 2.050 2.570 1.500 -0.400 2.76075
5 1978/1 3.1000 3.470 3.460 2.875 -3.000 2.04499
6 1978/2 2.9125 3.340 1.470 2.000 2.200 3.39661
7 1978/3 3.2125 1.660 0.830 2.125 3.000 2.79163
8 1978/4 3.1375 2.820 2.620 1.750 4.500 2.58706
9 1979/1 2.7000 3.160 2.960 1.875 3.500 2.30461
10 1979/2 1.9250 3.100 1.980 1.500 0.900 —2.70532
11 1979/3 0.3375 -0.930 1.100 2.625 -0.400 | —3.68575
12 1979/4 | -0.1375 | -0.100 0.820 1.000 0.800 -5.04364
13 1980/1 | —1.9000 | —0.980 1.850 -1.625 1.500 -3.91773
14 1980/2 | -1.0125 | —0.040 0.470 -0.500 | —3.700 | —2.58193
15 1980/3 | —0.6375 | —0.200 1.600 2.750 —2.600 | —0.50352
16 1980/4 | —0.5500 1.980 1.130 -1.000 | —5.000 2.04290
17 1981/1 1.4000 2.270 -0.050 | —1.000 | -5.600 1.63099
18 1981/2 | —0.4500 2.480 -0.230 | —-1.250 | —4.500 2.34455
19 1981/3 0.5500 2.560 0.150 —0.250 | —2.400 1.31579
20 1981/4 1.4500 2.470 0.530 0.750 -0.500 1.10111
21 1982/1 | —1.7500 2.790 0.310 1.000 1.000 3.10932
22 1982/2 1.6375 3.020 1.090 1.750 1.800 2.49004
23 1982/3 1.9375 2.910 0.860 1.750 1.200 4.09591
24 1982/4 2.2875 2.180 1.850 1.625 0.400 4.05940
25 1983/1 1.6250 2.210 1.780 1.500 1.300 3.11285
26 1983/2 2.1375 2.120 1.250 1.625 2.400 2.62390
27 1983/3 2.5125 2.920 1.200 2.375 3.000 2.69714
28 1983/4 2.0875 2.430 1.100 2.250 3.400 2.66413
29 1984/1 2.5000 2.360 1.980 2.250 1.700 3.30189
30 1984/2 2.2500 4.050 3.050 1.750 3.900 4.92424
31 1984/3 2.1000 2.220 3.740 2.750 2.710 3.45794
32 1984/4 2.3500 2.180 2.950 2.000 2.980 2.78035
33 1985/1 2.8300 3.400 1.360 3.630 2.810 2.37442
34 1985/2 2.4500 2.600 1.350 2.880 2.740 1.35379
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The next table (Table 2) was taken from Visek [14] to give the reader a possibility
to compare directly the predictions prepared by means of the least squares and
by means of the least trimmed squares. Both tables (Table 2 and 3) gather the
. . A(LTS,t,h) 2 A(LTS,t,h) 2
successive sums of squared differences (6,7 — 0441)° and (6,7 — 0i11)
for the period since 1982/2 to 1985/2, i.e. for the same period as in Visek [14].
(We have started from 1982/2 and not from 1982/1 because the combined forecast
prepared by means of BLSH) had very large error just when predicting on 1982/1.)
As it is indicated at the head of tables we have considered all possible models, i. e.
models with or without intercept, with or without constraints and the sums

¢ ¢
Z (égiips%h) - 9t+1>2 and Z (ét(iirs’tﬁh) - 9t+1)2 (34)

t=22 t=22

for £ = 22,23, ...,34 were collected in the tables.

Table 2. Cumulative losses of forecasts — Least squares.

Cumulative losses

Period | Forecasted With intercept Without intercept

value Without With Without With

constraints | constraints | constraints | constraints

1982/2 2.490 0.073 0.310 0.000 0.457
1982/3 4.096 3.527 1.304 2.076 1.269
1982/4 4.059 9.739 5.012 7.250 4.697
1983/1 3.113 12.356 6.236 9.406 5.825
1983/2 2.624 13.328 6.236 9.515 5.825
1983/3 2.697 13.370 7.012 9.748 6.620
1983/4 2.664 13.691 7.077 9.763 6.704
1984/1 3.302 15.099 7.741 11.121 7.282
1984/2 4.924 15.708 9.312 14.081 8.752
1984/3 3.458 18.479 12.556 19.705 12.553
1984/4 2.780 18.997 12.710 20.253 12.978
1985/1 2.374 21.240 15.418 21.803 14.653
1985/2 1.354 22.444 17.910 23.574 16.709
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Table 3. Cumulative losses of forecasts — the Least Trimmed squares.

Cumulative losses

Period | Forecasted With intercept Without intercept

value Without With Without With

constraints constraints constraints constraints

1982/2 2.490 0.1811 0.1822 0.7018 0.1257
1982/3 4.096 4.1263 4.8516 3.7062 4.6367
1982/4 4.059 8.5138 7.9669 7.8661 8.1897
1983/1 3.113 9.5638 8.5913 8.5033 9.1743
1983/2 2.624 11.7590 8.9688 8.6232 9.4879
1983/3 2.697 12.1565 9.7919 8.9712 10.2122
1983/4 2.664 14.0899 9.9348 9.0334 10.4225
1984/1 3.302 14.3538 10.0405 9.5536 11.3630
1984/2 4.924 17.0939 12.2915 14.0979 12.3501
1984/3 3.458 18.4300 13.7886 14.4764 12.7249
1984/4 2.780 18.4305 14.0241 14.4825 12.8664
1985/1 2.374 22.4658 22.6739 15.2322 12.9524
1985/2 1.354 23.6412 23.5476 16.0211 13.2033

We may see that the cumulative sums given in the last row of Table 2 and 3 are
smaller for models without intercept. It may seem to be in a contradiction with the
assertion that it is usually recommended not to delete intercept from the regression
model, even in the case when it is indicated (by the corresponding ¢-statistics and
p-value) that the intercept is not significant, see e.g. Visek [13].

First of all, we have to distinguish between the situations when we look for an
explanation of data and when we look for a forecast (in the latter one, the quality
of the forecast is typically measured by the mean square error). In situation when
we look for a forecast, as after all Clemen’s result showed, under assumption that
the “true” model does not include the intercept, the results are better for model
without intercept.

One can compare the desired results, namely sum of squared errors of the forecasts
prepared by means of the ordinary least squares (Table 2) and by means of the least
trimmed squares (Table 3). Relatively small values of sums of squared errors of
forecasts prepared by means of the least squares (see the last value in the last row
of Table 2) indicated that the data are not too much contaminated. Nevertheless
the least trimmed squares have succeeded to improve a bit (about 21 % ) the final
results.
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8. CONCLUSIONS

It suffices a brief look into e. g. Journal of Forecasting and one cannot longer hesitate
that combining the forecasts occupies a considerable part of theoretical research and
plays an important role in applications. After all, we have already in the introduc-
tion reminded the reason for it. We have also recalled why employment of robust
methods, especially with high breakdown point, may be effective in combining the
forecasts. Hence it is plausible that the theoretical considerations which had been
made in present paper have confirmed that Clemen’s result could be generalized also
on the least trimmed squares. The short numerical study presented above than gave
a very first idea how useful the employment of such method may be. On the other
hand, as the rows at the middle of the Tables indicate, the asymptotics will work
better for larger data. To give a more complete picture of possibilities of robust
procedures in combining the forecasts a large study is to be carry out with more
contaminated data. That is why the implementation of method is offered to be sent
on request.

APPENDIX

Assertion A.1. Let D; be the distribution function of k-dimensional vector
(fit, fizs- - fir)T, i=1,2,... and Dy, the distribution function of the linear com-
bination by f;1 +bo fio +. . .+ bi fix. Necessary and sufficient condition for the conver-
gence of the distribution function D; to a k-dimensional d.f. D is that Dy ; converges
to a d.f. for any b.

For the proof see Rao [8] (also Varadarajan [11] or Wald and Wolfowitz [22]).

Specification of the assertion for normal distribution (which also shows that re-
spective moment correspond) can be found also in Rao [8] (such assertion is not
isolated there, however it is simple consequence of Assertion A.1).

(Received September 10, 1999.)
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