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ENTROPY OF T–SUMS AND T–PRODUCTS
OF L–R FUZZY NUMBERS

Anna Kolesárová and Doretta Vivona

In the paper the entropy of L–R fuzzy numbers is studied. It is shown that for a
given norm function, the computation of the entropy of L–R fuzzy numbers reduces to
using a simple formula which depends only on the spreads and shape functions of incoming
numbers. In detail the entropy of TM–sums and TM–products of L–R fuzzy numbers
is investigated. It is shown that the resulting entropy can be computed only by means
of the entropy of incoming fuzzy numbers or by means of their parameters without the
computation of membership functions of corresponding sums or products. Moreover, the
results for some other t-norm–based sums and products are derived. Several examples are
included.

1. INTRODUCTION

Since early beginnings of fuzzy set theory the problem of measuring the degree of
fuzziness of fuzzy sets was discussed by many authors, e. g., by De Luca and Termini
[8], Kaufmann [13], Knopfmacher [17], Loo [21], Trilas and Riera [34], Yager [37],
Ebanks [11], Sander [32], Pal and Bezdek [30], Benvenuti, Vivona and Divari [3],
Vivona [36], among others, compare also [1, 2, 4, 5, 35].

In general, a measure of fuzziness H is a mapping which assigns to each fuzzy
subset F of a considered universal set X a non–negative number H(F ) that quantifies
the degree of fuzziness present in F . All measures of fuzziness should satisfy at least
two very natural properties, namely

(i) fuzziness of crisp sets should be equal to zero,

(ii) if a fuzzy set F1 is sharper than F2, which expressed by membership degrees
means that

F1(x) ≤ F2(x) if F2(x) < 0.5

and

F1(x) ≥ F2(x) if F2(x) > 0.5

for all x ∈ X, then H(F1) should not be greater than H(F2).
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Usually also conditions concerning the maximal fuzziness and equality of degrees of
fuzziness of a fuzzy set F and its complement F c for each F are required.

Various types of measures of fuzziness were proposed and investigated in the
literature: entropy like measures, distance like measures, or general measures of
fuzziness, see [31]. The concept of “entropy” in fuzzy set theory has been already
mentioned by Zadeh [38]. De Luca and Termini using the functional formally similar
to the Shannon entropy and its generalization, defined the “entropy” of a fuzzy set
F (on a finite universal set) by

H(F ) = −K

n∑

i=1

(F (xi) log F (xi) + (1− F (xi)) log (1− F (xi))) ,

where K is a positive constant and F (xi) is a membership degree of the element xi

in F .
H(F ) can be regarded as an “entropy” in the sense that it measures the uncertainty
about presence or absence a certain property described by F . A deeper explanation
can be found in [8, 11, 31, 32]. An exhaustive overview of measures of fuzziness is
given in [31], including the relevant philosophical and axiomatical backgrounds.

In this paper we will deal with special types of fuzziness measures (fuzzy entropy
measures) defined on the set of all fuzzy quantities. A special attention will be paid
to the fuzzy entropy of L–R fuzzy numbers. Finally, the entropy of T–sums and
T–products of L–R fuzzy numbers will be studied.

2. BASIC NOTATIONS AND DEFINITIONS

Denote by F(R) the set of all fuzzy quantities, i. e., fuzzy subsets of the real line
which can be identified with Borel measurable functions F : R→ [0, 1].
Let C(R) denotes the set of all crisp Borel subsets of R. Any C ∈ C(R) can be
regarded as a special fuzzy set for which its membership degree assumes only the
values 0 and 1, thus C(R) ⊂ F(R).
On the set F(R) we will consider the following (partial) order [6]:

Let F1, F2 ∈ F(R). We say that F1 is sharper than F2, with the notation F1 º F2,
if

|F1(x)− 0.5| ≥ |F2(x)− 0.5| for all x ∈ R . (1)

The relation º is larger with respect the relation mentioned in Introduction.
Fuzzy sets comparable by the relation º need not be comparable by that one. We
remark that for any fuzzy subset F it is F º F c and F c º F together, i. e., F
and F c are equivalent with respect to the relation º. Note that only the standard
complement F c(x) = 1− F (x) is considered.

Definition 1. A mapping H : F(R) → R+
0 is called an entropy measure if it

satisfies the properties:

(i) H(F ) = 0 if F ∈ C(R),
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(ii) H(F1) ≤ H(F2) whenever F1, F2 ∈ F(R) such that F1 º F2.

In what follows we will define entropy measures by means of so–called norm
functions [17].

Definition 2. A continuous function h : [0, 1] → [0, 1] with the properties:

(i) h(0) = h(1) = 0, and h(0.5) = 1,

(ii) h is non–decreasing on the interval [0, 0.5],

(iii) h(x) = h(1− x) for each x ∈ [0, 1],

will be called a norm function.

Example 1. The following functions are norm functions:

(i) h1(x) = min{2x, 2− 2x}, x ∈ [0, 1],

(ii) hk(x) = 1− |2x− 1|k, x ∈ [0, 1], k ∈]0,∞[,

(iii) hs(x) = −x log x − (1 − x) log (1 − x) , x ∈ [0, 1], where 0. log 0 = 0 by
convention,

(iv) hl(x) = 4x(1− x) , x ∈ [0, 1].

Note that the function h1 is the classical “tent” function, functions hk are its gen-
eralizations (for k = 1 (ii) gives the function h1 from (i)), hs is called the Shannon
function, because it has been derived from the Shannon entropy and hl is the logistic
function [35].

The global entropy H(F ) of a fuzzy quantity F ∈ F(R) can be defined by means of
a norm function h and the Lebesgue integral with respect to the Lebesgue measure
as follows:

H(F ) =
∫

R
h(F (x)) dx , F ∈ F(R) . (2)

Using the properties of norm functions and the monotonicity of the integral, it can
be directly shown that the mapping H : F(R) → R+

0 defined by (2), is an entropy
measure in the sense of Definition 1.

3. ENTROPY OF L–R FUZZY NUMBERS

In what follows we will deal only with the entropy of L–R fuzzy numbers. L–R fuzzy
numbers were introduced by Dubois and Prade [9]. Their arithmetic was discussed
in several papers, see, e. g., [7, 9, 10, 12, 22, 23, 26, 28]. An L–R fuzzy number is a
convex normal fuzzy subset of the real line R with continuous membership function
and bounded support. The formal definition follows.
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Definition 3. A fuzzy set F ∈ F(R) is called an L–R fuzzy number with the
notation F = (a, b, α, β)LR, if its membership function is given by

F (x) =





1 if x ∈ [a, b]

L
(

a−x
α

)
if x ∈ [a− α, a[

R
(

x−b
β

)
if x ∈]b, b + β]

0 otherwise,

where a, b ∈ R, α, β > 0 and L, R : [0, 1] → [0, 1] are continuous non–increasing
functions such that L(x) = R(y) = 1 iff x = y = 0 and L(x) = R(y) = 0 iff
x = y = 1.

The functions L, R are called shape functions and the constants α, β are spreads.
The set of all L–R fuzzy numbers will be denoted by S.
Recall that for L(u) = R(u) = 1 − u, u ∈ [0, 1], we obtain linear fuzzy numbers,
which are called triangular if a = b, and trapezoidal if a < b. The notation of a
linear fuzzy number will be only F = (a, b, α, β).

For L–R fuzzy numbers the entropy defined by (2) can be simplified and by a direct
computation it can be shown that the entropy H(F ) of an L–R fuzzy number F
depends only on h, L, R and the spreads α, β.

Proposition 1. If F = (a, b, α, β)LR, then H(F ) = αcL + βcR, where

cL =
∫ 1

0

(h ◦ L) (u) du , cR =
∫ 1

0

(h ◦R) (u) du .

P r o o f . Since supp(F ) =]a − α, b + β[ and h(0) = 0, instead of (2) we can
immediately write

H(F ) =
∫ b+β

a−α

h(F (x)) dx ,

and next

H(F ) =
∫ a

a−α

h

(
L

(
a− x

α

))
dx +

∫ b

a

h(1) dx +
∫ b+β

b

(
R

(
x− b

β

))
dx.

Using h(1) = 0 and substitutions a−x
α = u and x−b

β = v, respectively, we obtain the
claim. 2

Before going further let us recall that the multiplication by a real constant c in the
set S is defined by

c(a, b, α, β)LR =

{
(ca, cb, cα, cβ)LR c ≥ 0

(cb, ca,−cβ,−cα)RL c < 0.
(3)
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Note that if c = 0, c(a, b, α, β)LR = 1{0} is not more an L–R fuzzy number in the
sense of Definition 3. However, admitting α = 0 or β = 0 in Definition 3 will not
influence any of the discussed properties, only the continuity of corresponding fuzzy
numbers may be violated. So, e. g., F = (a, b, 0, 0)LR is in fact a crisp subset of R
and hence H(F ) = 0.

Proposition 2. The entropy measure defined by (2) is positively homogeneous on
S, i. e.,

H(cF ) = |c|H(F ) , for all c ∈ R, F ∈ S .

P r o o f . The claim is an easy consequence of (3) and Proposition 1. For c ≥ 0
the claim is evident. We show it only for c < 0.
Consider F = (a, b, α, β)LR. Since cF = (cb, ca,−cβ,−cα)RL, for its entropy we
obtain

H(cF ) = −cβcR − cαcL = −c(αcL + βcR) = |c|H(F ) . 2

In the following Examples 2 – 5 we compute the entropy of a linear fuzzy number
F = (a, b, α, β) by means of norm functions introduced in Example 1 (i) – (iv), and
Proposition 1. Some of these examples can also be found in [35].

Example 2. For the tent function h1 we have

cL = cR =
∫ 1

0

h1(1− u) du =
∫ 0.5

0

2u du +
∫ 1

0.5

(2− 2u) du = 0.5 .

Therefore
H1 ((a, b, α, β)) =

α + β

2
.

Example 3. For norm functions hk from Example 1 (ii), we have

cL = cR =
∫ 1

0

hk(1−u) du =
∫ 0.5

0

(
1− (1− 2u)k

)
du+

∫ 1

0.5

(
1− (2u− 1)k

)
du =

k

k + 1
,

which implies

Hk ((a, b, α, β)) =
k

k + 1
(α + β) .

Example 4. For the Shannon function hs we obtain

cL = cR =
∫ 1

0

(−(1− u) log2(1− u)− u log2 u) du

= −2
∫ 1

0

u log2 u du =
1

2 log 2
= log4 e .

Thus
Hs ((a, b, α, β)) = (α + β) log4 e .
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Example 5. For the logistic function hl

cL = cR =
∫ 1

0

4u(1− u) du =
2
3

,

and so
Hl((a, b, α, β)) =

2
3

(α + β) .

It is evident that for an arbitrary norm function h and a fuzzy quantity F ∈ F(R)

0 ≤ H(F ) ≤ m(supp(F )) ,

where m is the standard Lebesgue measure. For the class S of L–R fuzzy numbers
we can prove the following result.

Proposition 3. Let h be a given norm function and Sc,d be the set of all L–R
fuzzy numbers with support ]c, d[. Then for the entropy H induced by h via (2) we
have Ran

(
H|Sc,d

)
=]0, d− c[ .

P r o o f . Directly from (2) it is clear that for each F ∈ Sc,d and for each norm
function h

0 < H(F ) < d− c

holds.
Now we show that for an arbitrary element k ∈ ]0, d− c[ there exists F ∗ ∈ Sc,d such
that H(F ∗) = k. To this purpose choose any α ∈ ]0, d−c

2 ]. By Proposition 1 the
entropy of any L–R fuzzy number of the form (c + α, d−α, α, α)LR is H((c + α, d−
α, α, α)LR) = α(cL + cR).
Now, let Fn = (c + αn, d− αn, αn, αn)KnKn , n ∈ N, where

Kn(x) =
1 + (1− 2x)2n−1

2
and αn ∈

]
0,

d− c

2

]
.

Since

lim
n→∞

1 + (1− 2u)2n−1

2
=

1
2

,

it holds

lim
n→∞

cKn = lim
n→∞

∫ 1

0

h

(
1 + (1− 2u)2n−1

2

)
du = 1,

and we can conclude that supn∈N cKn = 1.
For a given k ∈ ]0, d − c[ we have k

d−c < 1, and thus there exists p ∈ N such that
cKp > k

d−c .
Put αp = k

2cKp
. Then αp < d−c

2 and for F ∗ = Fp = (c + αp, d− αp, αp, αp)KpKp we
obtain

H(F ∗) =
k

2cKp

2cKp = k .

So we have shown that on the interval [c, d] we are able for any fixed norm function
h and arbitrarily chosen number k ∈ ]0, d − c[, to construct an L–R fuzzy number
whose entropy is just equal to k. 2
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Remark 1. Similarly, it is possible to show that for any fixed L–R fuzzy number
F = (a, b, α, β)LR with strictly monotone shapes L, R, for any k ∈ ]0, α + β[ we can
find a norm function h such that the corresponding entropy of F induced by h is
H(F ) = k.

4. ENTROPY OF T -SUMS OF L–R FUZZY NUMBERS

Using the generalized extension principle of Zadeh we can introduce the sum of
fuzzy quantities F1, . . . , Fn ∈ F(R) based on a t-norm T (T -sum for short) as a
fuzzy quantity with the membership function

F (x) = (F1 ⊕T · · · ⊕T Fn)(x) = supP
xi=x

T (F1(x1), . . . , Fn(xn)) , x ∈ R .

If F1, . . . , Fn ∈ S and T is continuous on [0, 1[2, also F ∈ S.
For the definition of a t–norm and more properties we refer the reader e. g. to
[14, 16, 33].

In what follows we will investigate the entropy of T -sums of L–R fuzzy numbers.
Our aim is to discuss the possibility of computing the resulting entropy H(F ) only
by means of entropy H(Fi) of incoming summands or their parameters.

Let us briefly recall two basic cases. Consider L–R fuzzy numbers F1, . . . , Fn

with the same shape functions L , R, i. e., let Fi = (ai, bi, αi, βi)LR , i = 1, . . . , n. By
the well–known results [9, 10]

(F1 ⊕TM
· · · ⊕TM

Fn) =
(∑

ai,
∑

bi,
∑

αi,
∑

βi

)
LR

,

and
(F1 ⊕TD

· · · ⊕TD
Fn) =

(∑
ai,

∑
bi, max αi, max βi

)
LR

,

where TM is the minimum t-norm defined by TM (x, y) = min(x, y) , (x, y) ∈ [0, 1]2,
and TD is the drastic product given by

TD(x, y) =

{
min (x, y) if max (x, y) = 1

0 otherwise.

As a direct consequence of Proposition 1 we obtain the following results.

Corollary 1. Let Fi = (ai, bi, αi, βi)LR , i = 1, . . . , n. Then

(i) H(F1 ⊕TM
· · · ⊕TM

Fn) =
n∑

i=1

H(Fi) ,

(ii) H(F1 ⊕TD · · · ⊕TD Fn) =
(

max
1≤i≤n

αi

)
cL +

(
max

1≤i≤n
βi

)
cR.
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The first result means that in the considered case the entropy is TM–additive.
This result was recently proved for linear fuzzy numbers in [35]. Note that if αi = βi

for i = 1, . . . , n, then H(F1 ⊕TD
· · · ⊕TD

Fn) = max1≤i≤n H(Fi).

For the t–norm TM we can prove much stronger result which is based on the
properties of α–cuts.
Recall that α–cuts of a fuzzy set F ∈ R are crisp sets

F (α) = {x ∈ R |F (x) ≥ α} , α ∈]0, 1] ,

and strong α–cuts are crisp sets

F [α] = {x ∈ R |F (x) > α} , α ∈ [0, 1[ .

Now, consider a norm function h. It can be regarded as a convex normal fuzzy
set with continuous membership function on [0, 1]. For each α–cut h(a) put

lα = inf h(α) and rα = sup h(α) .

Because of properties of h, h(α) = [lα, rα].
Further, let F ∈ F(R). Then h ◦ F ∈ F(R) and

(h ◦ F )(α) = {x ∈ R | h(F (x)) ≥ α} = {x ∈ R | F (x) ∈ h(α)}
= {x ∈ R | F (x) ∈ [lα, rα]} = F−1([lα, rα]) = F (lα) \ F [rα]. (4)

Lemma 1. Let Fi ∈ S (with any shapes Li, Ri), i = 1, . . . , n, and F = F1 ⊕TM

· · · ⊕TM
Fn. Then with the previous notation we have

m
(

(h ◦ F )(α)
)

=
n∑

i=1

m
(
F (lα) \ F [rα]

)
,

where m is the Lebesgue measure on R.

P r o o f . It is known [29] that

F (α) =
∑

F
(α)
i and F [α] =

∑
F

[α]
i . (5)

Note that right–hand sides expressions mean the sum of intervals defined as usually.
By (4) and (5) we can write

(h ◦ F )(α) = F (lα) \ F [rα] =
(∑

F
(lα)
i

)
\

(∑
F

[rα]
i

)
. (6)

For a fixed α ∈ ]0, 1] denote

F
(lα)
i = [ai, bi] and F

[rα]
i = ]ci, di[ , i = 1, . . . , n .

Since lα ≤ rα, (ci, di) ⊂ [ai, bi] holds, and thus

F
(lα)
i \ F

[rα]
i = [ai, ci] ∪ [di, bi] .
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For the Lebesgue measure of the above difference we obtain

m
(
F

(lα)
i \ F

[rα]
i

)
= ci − ai + bi − di = (bi − ai) + (di − ci)

= m
(
F

(lα)
i

)
−m

(
F

[rα]
i

)
. (7)

Next, ∑
F

(lα)
i =

∑
[ai, bi] =

[∑
ai,

∑
bi

]
= [a, b] (8)

and ∑
F

[rα]
i =

∑
]ci, di[=

]∑
ci,

∑
di

[
=]c, d[ . (9)

Summarizing (6), (8), (9) we obtain

(h ◦ F )(α) = [a, b]\]c, d[= [a, c] ∪ [d, b] .

Thus

m
(

(h ◦ F )(α)
)

= c− a + b− d = (b− a)− (d− c) =
n∑

i=1

((bi − ai)− (di − ci))

=
n∑

i=1

(
m

(
F

(lα)
i

)
−m

(
F

[rα]
i

))
=

n∑

i=1

m
(
F

(lα)
i \ F

[rα]
i

)
,

which is the claim. 2

Theorem 1. Let Fi ∈ S (with any shapes Li, Ri), i = 1, . . . , n, and F = F1 ⊕TM

· · · ⊕TM
Fn. Then

H(F ) =
n∑

i=1

H(Fi) .

P r o o f . Applying (2) and the properties of the Lebesgue integral, especially its
relationship with the Choquet integral, we obtain

H(F ) =
∫

R
h(F (x)) dx =

∫ 1

0

m ({x ∈ R | h(F (x)) ≥ α}) dα

=
∫ 1

0

m
(

(h ◦ F )(α)
)

dα .

We can continue applying Lemma 1:

H(F ) =
∫ 1

0

(
n∑

i=1

m
(
F

(lα)
i \ F

[rα]
i

))
dα =

n∑

i=1

(∫ 1

0

m
(
F

(lα)
i \ F

[rα]
i

)
dα

)

=
n∑

i=1

(∫ 1

0

(
(h ◦ Fi)(α)

)
dα

)
=

n∑

i=1

(∫

R
h(Fi(x)) dx

)
=

n∑

i=1

H(Fi) , (10)

which proves the claim. 2
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Remark 2. (i) When all shapes of fuzzy numbers Fi involved in the assumptions
of Theorem 1 have finite negative derivatives, the claim of Theorem 1 can be proved
in a more transparent way.
Indeed, by [25] the TM–sum F of Fi is of the form F = (a, b, α, β)LR with parameters

a =
n∑

i=1

ai , b =
n∑

i=1

bi , α =
n∑

i=1

αi , β =
n∑

i=1

βi

and the shapes L, R for which the following is valid:

a− αL−1(u) =
n∑

i=1

(
ai − αiL

−1
i (u)

)
, u ∈ [0, 1] ,

i. e.,

L−1(u) =
n∑

i=1

αi

α
L−1

i (u) ,

and analogously,

R−1(u) =
n∑

i=1

βi

β
R−1

i (u) .

Now we can compute cL and cR. It holds:

cL =
∫ 1

0

h(L(u)) du|L(u)=t
= −

∫ 1

0

h(t)L−1(t) dt = −
∫ 1

0

(
h(t)

n∑

i=1

αi

α
L−1

i (t)

)
dt

=
n∑

i=1

αi

α

(
−

∫ 1

0

h(t)L−1
i (t) dt

)
=

n∑

i=1

αi

α
cLi .

Similarly,

cR =
n∑

i=1

βi

β
cRi .

Direct application of Proposition 1 gives

H(F ) = αcL + βcR =
n∑

i=1

(αicLi + βicRi) =
n∑

i=1

H(Fi) .

(ii) Note that the class of the shapes satisfying the requirements of (i) is dense
in the class of all shapes and hence, due to the uniform continuity of all involved
functions to be integrated, Remark 2(i) implies Theorem 1.

Consider again L–R fuzzy numbers Fi = (ai, bi, αi, βi)LR, i = 1, . . . , n, i. e., with
the same shapes. In [18, 19, 20, 27] the problems of preserving the shapes under
t–norm–based additions were studied. These results have interesting impact to the
entropy of T–sums.
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It is well-known that TM– and TD–additions preserve all types of shapes, i. e.,
the corresponding sum has the same shape as the summands. The consequences of
these facts for entropy were formulated in Corollary 1.
However, the shapes of T–sums are preserved also in some other cases. For instance,
the TL–sum of linear fuzzy numbers is again a linear fuzzy number given by

F =
(∑

ai,
∑

bi, max αi, max βi

)
,

i. e., the t–norm TL works as the drastic product TD. Note that TL is the ÃLukasiewicz
t–norm defined by TL(x, y) = max (x + y − 1, 0), (x, y) ∈ [0, 1]2.
When the shapes are preserved it is enough to determine the parameters of a T–sum,
and then due to Proposition 1, the entropy of the result can be simply computed.
Note that the mentioned result for TL is only a special case of the claim (i) of the
following theorem.

Theorem 2. Let Fi = (ai, bi, αi, βi)LR, i = 1, . . . , n, and F = F1 ⊕T · · · ⊕T Fn

where T is a continuous Archimedean t–norm with an additive generator f .

(i) If the composite functions f ◦ L and f ◦R are concave then

H(F ) =
(

max
1≤i≤n

αi

)
cL +

(
max

1≤i≤n
βi

)
cR .

(ii) If f ◦ L = lxp and f ◦R = rxq, p, q > 1, l, r ∈ ]0,∞[ , then

H(F ) =

(
n∑

i=1

αp∗
i

)1/p∗

cL +

(
n∑

i=1

βq∗
i

)1/q∗

cR ,

where
1
p

+
1
p∗

= 1 and
1
q

+
1
q∗

= 1 .

P r o o f . The conditions given in (i) and (ii) are by the results proved in [18, 19,
20, 27] sufficient for preserving the shapes L, R of T–sums. Moreover, the spreads
are

in (i): α = max
1≤i≤n

αi, β = max
1≤i≤n

βi,

and

in (ii): α =

(
n∑

i=1

αp∗
i

)1/p∗

, β =

(
n∑

i=1

βq∗
i

)1/q∗

.

Now the claims follow directly from Proposition 1. 2
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Corollary 2. Let fuzzy numbers in the assumptions of Theorem 2 be symmetric
with spreads γi, i = 1, . . . , n, and f ◦ L = f ◦R = kxp, p > 1, k ∈ ]0,∞[ . Then

H(F ) =

(
n∑

i=1

(H(Fi))
p∗

)1/p∗

=‖ (H(F1), . . . , H(Fn)) ‖p∗ ,

where p∗ = p
p−1 and ‖ . ‖p∗ is the norm in Lp∗–space.

P r o o f . The claim is an easy consequence of Theorem 2(ii) for the symmetric
fuzzy numbers. 2

Example 6. Consider the family of the Yager t–norms {TY
p }p∈]0,∞[, see [16], which

are generated by additive generators f(x) = (1 − x)p, x ∈ [0, 1], and let Fi =
(ai, bi, αi, βi), i = 1, . . . , n, be linear fuzzy numbers (i. e. with shapes L(x) = R(x) =
1− x , x ∈ [0, 1]).

(i) For p ≤ 1 the assumptions of Theorem 2(i) are satisfied. Using the norm function
h1, see Examples 1(i) and 2, for the entropy of TY

p –based sum F of Fi we obtain

H(F ) =
1
2

(α + β) ,

where

α = max
i

αi =‖ (α1, . . . , αn) ‖∞ , β = max
i

βi =‖ (β1, . . . , βn) ‖∞ .

(ii) For p > 1, the assumptions of Theorem 2(ii) are satisfied, therefore for the norm
function h1 we can also derive

H(F ) =
1
2

(α + β) ,

but now

α =

(
n∑

i=1

αp∗
i

)1/p∗

=‖ (α1, . . . , αn) ‖p∗ ,

where p∗ = p
p−1 and β can be determined analogously.

For instance, if we consider triangular fuzzy numbers Fi = (0, 0, 1, 1), i = 1, . . . , n,
then

H(F1 ⊕T Y
p
· · · ⊕T Y

p
Fn) = 1 for p ≤ 1 ,

H(F1 ⊕T Y
p
· · · ⊕T Y

p
Fn) = n1/p∗ for p > 1 .
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5. ENTROPY OF T–PRODUCTS OF L–R FUZZY NUMBERS

Using the generalized extension principle, a t–norm based product of fuzzy quantities
F1, . . . , Fn ∈ F(R) can be introduced as a fuzzy quantity whose membership function
is

F (x) = (F1 ⊗T · · · ⊗T Fn)(x) = supQ
xi=x

T (F1(x1), . . . , Fn(xn)) , x ∈ R .

For a general t–norm T the exact output formula for the T–product has not been
characterized yet. Therefore we restrict our considerations to non–negative L–R
fuzzy numbers, i. e., with supports in R+ and their products based only on t–norms
TM and TD.

For T = TD the situation is simple, since for non–negative L–R fuzzy numbers
Fi = (ai, bi, αi, βi)LR with ai − αi ≥ 0, i = 1, . . . , n, and with the same shapes, the
output formula is [10]

F = (F1 ⊗TD · · · ⊗TD Fn)(x) =

(
n∏

i=1

ai,

n∏

i=1

bi, α, β

)

LR

,

where

α =
n∏

i=1

ai max
1≤i≤n

(
αi

ai

)
, β =

n∏

i=1

bi max
1≤i≤n

(
βi

bi

)
.

As we can see, the shapes are preserved, and the entropy can be computed by means
of Proposition 1

H(F ) = α cL + β cR .

Next, let T = TM . Following [28, 24] the TM–product of two non–negative L-R
fuzzy numbers Fi = (ai, bi, αi, βi)LiRi with ai−αi ≥ 0, and strictly monotone shapes
Li, Ri for i = 1, 2, can be expressed in the form

F = F1 ⊗TM F2 = (a, b, α, β)LR , where

a = a1a2, b = b1b2, α = a1α2 + a2α1 − α1α2, β = b1β2 + b2β1 + β1β2 , (11)

and for the shapes L, R the following is valid:

a− αL−1(u) = (a1 − α1L
−1
1 (u))(a2 − α2L

−1
2 (u)) ,

which implies

L−1(u) =
1
α

(
L−1

1 (u) a2α1 + L−1
2 (u) a1α2 − α1α2L

−1
1 (u)L−1

2 (u)
)

. (12)

Similarly

R−1(u) =
1
β

(
R−1

1 (u) b2β1 + R−1
2 (u) b1β2 + β1β2R

−1
1 (u)R−1

2 (u)
)

.
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Under the assumption that L1, L2 (R1, R2) possess finite negative derivatives on
their domains, we can compute cL, cR.
First,

cL =
∫ 1

0

h(L(u)) du|L(u)=t
= −

∫ 1

0

h(t)
(
L−1(t)

)′
dt

and after substitution (12) into the previous integral and simplifying we obtain

cL =
a2α1

α

(
−

∫ 1

0

h(t)
(
L−1

1 (t)
)′

dt

)
+

a1α2

α

(
−

∫ 1

0

h(t)
(
L−1

2 (t)
)′

dt

)

− α1α2

α

(
−

∫ 1

0

h(t)
(
L−1

1 (t)
)′

L−1
2 (t) dt−

∫ 1

0

h(t)
(
L−1

2 (t)
)′

L−1
1 (t) dt

)
.

Moreover, it holds

−
∫ 1

0

h(t)
(
L−1

1 (t)
)′

L−1
2 (t) dt|

L
−1
1 (t)=u

=
∫ 1

0

h (L1(u)) L−1
2 (L1(u)) du = dL2L1 ,

and analogously the last member of the previous formula gives dL1L2 . Thus

cL =
a2α1

α
cL1 +

a1α2

α
cL2 −

α1α2

α
(dL1L2 + dL2L1) . (13)

Similarly,

cR =
b2β1

β
cR1 +

b1β2

β
cR2 +

β1β2

β
(dR1R2 + dR2R1) . (14)

Theorem 3. Let Fi = (ai, bi, αi, βi)LiRi , i = 1, 2, be non–negative fuzzy numbers
with strictly decreasing shape functions. Then

H(F1 ⊗TM F2) = a2α1 cL1 + a1α2 cL2 − α1α2(dL1L2 + dL2L1)
+ b2β1 cR1 + b1β2 cR2 + β1β2(dR1R2 + dR2R1) . (15)

P r o o f . The claim follows from (13), (14) and Proposition 1. 2

Remark 3. From the fact that all shapes Li, Ri can be approximated uniformly
by shapes satisfying the assumptions of Theorem 3, and because of the uniform
continuity of all involved functions, we can extend Theorem 3 to the class of all
non–negative L-R fuzzy numbers, see also Remark 2(ii).
Note that if a shape L (R) is not strictly decreasing we have to deal with its pseudo–
inverse [15]

L(−1) : [0, 1] → [0, 1] , L(−1)(u) = sup{x ∈ [0, 1] |L(x) > u} .

Thus Theorem 3 can be rephrased in the following way.
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Corollary 3. For arbitrary non–negative L-R fuzzy numbers Fi = (ai, bi, αi, βi)LiRi
,

i = 1, 2, the entropy H(F1 ⊗TM
F2) is given by (15).

Let us still formulate several consequences of the previous theorem in some special
cases.

Corollary 4.

(i) Let Fi = (ai, bi, αi, βi)KK , i = 1, 2, be non–negative fuzzy numbers with the
same left and right shape functions.Then

H(F1 ⊗TM
F2) = (a2α1 + a1α2 + b2β1 + b1β2) cK + 2dK(β1β2 − α1α2) , (16)

where dK = dKK .

(ii) Let F1, F2 be linear fuzzy numbers. Then

H(F1 ⊗TM
F2) = α cK + β cK = (α + β) cK , (17)

where α and β are spreads of the product given by (11).

P r o o f . (i) Let Li = K, i = 1, 2. Then

dL1L2 = dL2L1 = dKK =
∫ 1

0

h(K(u))K−1(K(u)) du =
∫ 1

0

uh(K(u)) du = dK ,

and the same is valid for Ri = K, i = 1, 2. Now the claim follows already directly
from (15).

(ii) Let Li(x) = Ri(x) = K(x) = 1 − x, x ∈ [0, 1]. Then for any norm function h
and the linear shape K we have

cK =
∫ 1

0

h(K(u)) du =
∫ 1

0

h(1− u) du =
∫ 1

0

h(u) du . (18)

Next, by the previous step of the proof it holds

dK =
∫ 1

0

uh(K(u)) du =
∫ 1

0

uh(1− u) du|1−u=v
=

∫ 1

0

(1− v)h(v) dv

=
∫ 1

0

h(v) dv −
∫ 1

0

vh(v) dv =
∫ 1

0

h(v) dv −
∫ 1

0

vh(1− v) dv = cK − dK ,

which means that for linear shapes we have

dK = cK − dK , i. e., dK =
cK

2
.
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Thus using (16) and (11) for the entropy of the TM–product of two non–negative
linear fuzzy numbers we obtain

H(F1 ⊗TM
F2) = (a2α1 + a1α2 + b2β1 + b1β2) cK + 2

cK

2
(β1β2 − α1α2)

= ((a2α1 + a1α2 − α1α2) + (b2β1 + b1β2 + β1β2)) cK

= (α + β) cK ,

which is the claim. 2

Note that the previous result for linear fuzzy numbers is interesting, because al-
though the shape functions of the TM–product of two linear fuzzy numbers are not
preserved, the entropy of the result is computed as for the linear fuzzy number
F = (a, b, α, β). Let us illustrate it by the following example.

Example 7. Take linear fuzzy numbers F1 = F2 = (1, 1, 1, 1). It can be shown
that

F (x) = F1 ⊗TM F2(x) =





√
x if x ∈ [0, 1]

2−√x if x ∈ [1, 4]

0 otherwise,

i. e., F = (1, 1, 1, 3)LR with L(x) =
√

1− x and R(x) = 2−√3x + 1, x ∈ [0, 1].

First, compute the entropy of F directly by definition (2) (for any norm function h):

H(F ) =
∫ 1

0

h(
√

x) dx +
∫ 4

1

h(2−√x) dx .

Since ∫ 1

0

h(
√

x) dx|√x=t
= 2

∫ 1

0

t h(t) dt ,

and ∫ 4

1

h(2−√x) dx|2−√x=t
= 4

∫ 1

0

h(t) dt− 2
∫ 1

0

t h(t) dt ,

for the entropy H(F ) we obtain

H(F ) = 4
∫ 1

0

h(t) dt .

Further, if we compute H(F ) by (17), for α = 1 and β = 3 we have H(F ) = 4cK ,
where

cK =
∫ 1

0

h(K(u)) du =
∫ 1

0

h(1− u) du =
∫ 1

0

h(u) du .

Thus

H(F ) = 4
∫ 1

0

h(u) du ,

which is the same result as in the previous part.
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Remark 4.

(i) Note that for the symmetric non–negative fuzzy numbers F1 = (a1, b1, γ, γ)KK

and F2 = (a2, b2, δ, δ)KK , the entropy is

H(F1 ⊗TM
F2) = ((a1 + a2)γ + (b1 + b2)δ) cK ,

and for symmetric non–negative fuzzy numbers with the same shapes and
spreads γ = δ = ω, the previous formula is of the form

H(F1 ⊗TM
F2) = (a1 + a2 + b1 + b2) ω cK .

(ii) Applying (3) and Proposition 2, Theorem 3 can be immediately extended to
the case of two L–R fuzzy numbers that do not have zero in their supports.

(iii) For the TM–product of more than two non–negative L–R fuzzy numbers, by a
formula related to (12), a generalization of (15) can be obtained.

6. CONCLUSION

Entropy measures for fuzzy quantities defined by means of norm functions and their
properties in the case of L–R fuzzy numbers were studied. We have shown that for a
given norm function h, computing the entropy of L–R fuzzy number can be reduced
to using a simple formula which depends only on the shapes L, R and spreads α, β
of the considered fuzzy numbers.
Moreover, the properties of the entropy of T–sums of L–R fuzzy numbers were
studied. It was shown that the entropy of TM–sum of any L–R fuzzy numbers (not
necessarily with the same shapes) is TM–additive, and so it can be computed as the
sum of entropy of summands. In addition, also the results for the entropy of T–sums
of special L–R fuzzy numbers for some other t–norms (Theorem 2) were derived.
Finally, the entropy of TD– and TM–products of non–negative L–R fuzzy numbers
was discussed. We have also derived the formula for the entropy of TM–product of
any two non–negative L–R fuzzy numbers (with any shapes) which enables comput-
ing the entropy of the result only by means of parameters of incoming numbers and
constants depending on their shapes.
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