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Managing Editors:

Karel Sladký
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THE VARIATIONAL PRINCIPLE
OF FIXED POINT THEOREMS
IN CERTAIN FUZZY TOPOLOGICAL SPACES1

P. Balasubramaniam and S. Murali Sankar

The main purpose of this paper is to introduce the concept of F -type fuzzy topological
spaces. Further variational principle and Caristi’s fixed point theorem have been extended
in the F -type fuzzy topological spaces.

1. INTRODUCTION

General topology can be regarded as a special case of fuzzy topology where all
membership functions in question take values 0 and 1 only. The usual fuzzy metric
spaces, fuzzy Hausdorff topological vector spaces, and Menger probabilistic metric
spaces are all the special cases of F -type fuzzy topological spaces. Therefore, one
would expect weaker results in the case of fuzzy topology. Recently several metric
space fixed point theorems were extended to fuzzy topological spaces. Many authors
introduced the concept of fuzzy metric spaces in different ways (see [4, 5, 11]).
Grabiec [5] proved the contraction principle in the setting of fuzzy metric spaces
introduced by Kramosil and Michálek [7]. The famous Ekeland’s variational principle
and Caristi’s fixed point theorem are forceful tools in nonlinear analysis, control
theory, economic theory and global analysis for details (see [1, 2, 3]).

In this paper, we establish a variational principle and Caristi’s fixed point theorem
in F -type fuzzy topological spaces and utilize the results to obtain a fixed point
theorem for Menger probabilistic metric spaces. Our results generalize the previous
results of [1, 2, 3].

2. PRELIMINARIES

In this section some necessary definitions are stated. Throughout this paper D =
(D,<) denotes a direct set, < a partial order relation.

Definition 2.1. (L. A. Zadeh [11]) Let X be any set. A fuzzy set A in X is a
function with domain X and values in [0, 1].

1This work is supported by CSIR grants No. 25 (0109)/99/EMR–II, New Delhi, India.



148 P. BALASUBRAMANIAM AND S. MURALI SANKAR

Definition 2.2. (B. Schweizer and A. Sklar [9]) A binary operation ∗ : [0, 1] ×
[0, 1] → [0, 1] is a continuous t-norm if ([0, 1], ∗) is an abelian topological monoid
with unit 1 such that a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d, (a, b, c, d ∈ [0, 1]).

Definition 2.3. (A. George and P. Veeramani [4]) The 3-tuple (X,M, ∗) is said
to be a fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm and M
is a fuzzy set on X2 × (0,∞) satisfying the following conditions:

1. M(x, y, t) > 0.

2. M(x, y, t) = 1 if and only if x = y for all t > 0.

3. M(x, y, t) = M(y, x, t).

4. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s).

5. M(x, y, ·) : (0,∞) → [0, 1] is continuous
x, y, z ∈ X and t, s > 0.

Definition 2.4. (A. George and P. Veeramani [4]) A sequence {xn} in a fuzzy
metric space (X,M, ∗) is called Cauchy if limn→∞M(xn+p, xn, t) = 1 for every t > 0
and p > 0. (X,M, ∗) is complete if every Cauchy sequence in X converges in X.
A sequence {xn} in X is convergent to x ∈ X if limn→∞M(xn, x, t) = 1 for each
t > 0.

Definition 2.5. (R. Srivastava, S. N. Lal and A. K. Srivastava [10]) A fuzzy topol-
ogy on a set X is a collection T of fuzzy sets in X such that

i) ∅, X ∈ T .

ii) A, B ∈ T ⇒ A ∩B ∈ T .

iii) {Ai/i ∈ I} ⊆ T ⇒ S
iAi ∈ T .

Members of T are called T -open fuzzy sets and the pair (X,T ) is called a fuzzy
topological space. Complements of open fuzzy sets are called closed fuzzy sets.

Definition 2.6. (A.K. Katsaras and D. B. Liu [6]) A fuzzy topological vector
space E equipped with a fuzzy topology such that the two maps

(a) ϕ : E × E → E
(x, y) → x+ y

(b) ψ : K × E → E
(λ, x) → λx

are continuous when K has the usual topology and E×E, K×E are given product
fuzzy topologies.
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Definition 2.7. (R. Srivastava, S. N. Lal and A. K. Srivastava [10]) A fuzzy point
p is said to belong to a fuzzy set A in X (notation: p ∈ A) if and only if

µp(xp) < µA(xp) and µp(x) ≤ µA(x) if x 6= xp.

Throughout this paper we shall use ‘p ∈ A’ in the sense of definition.

Definition 2.8. (R. Srivastava, S.N. Lal and A. K. Srivastava [10]) Let p be a
fuzzy point in (X,T ). A fuzzy set N is called a fuzzy neighbourhood of p if and
only if there exists a T -open fuzzy set A such that p ∈ A ⊆ N . If N is T -open it is
called a fuzzy open neighbourhood of p in (X,T ).

Definition 2.9. (R. Srivastava, S. N. Lal and A. K. Srivastava [10]) A fuzzy topo-
logical space (X,T ) is said to be fuzzy Hausdorff if and only if for any two distinct
fuzzy points p, q ∈ X, there exists a disjoint U, V ∈ T with p ∈ U and q ∈ V .

Definition 2.10. A fuzzy topological space (X,T ) is said to be F -type, if it is
Hausdorff and for each x ∈ X, there exists a neighbourhood base

Ux = {Ux(λ, r, t) |λ ∈ D, t > 0, 0 < r < 1}
of x with the following properties:

(F.1) If y ∈ Ux(λ, r, t), then x ∈ Uy(λ, r, t).

(F.2) Ux(λ, r1, t) ⊂ Uy(µ, r2, t) for λ < µ, r1 ≤ r2.

(F.3) For every λ ∈ D there exists µ ∈ D with λ < µ such that

y ∈ Ux(λ, r1 + r2, t) whenever Ux(µ, r1, t) ∩ Uy(µ, r2, t) 6= ∅. (1)

(F.4) X = S
0<r<1 Ux(λ, r, t) for each λ ∈ D and x ∈ X.

Definition 2.11. An F -type fuzzy topological space (X,T ) is sequentially com-
plete if and only if every Cauchy sequence is convergent.

Definition 2.12. The 3-tuple (X,M, ∗) is said to be a fuzzy quasi-metric space if
X is an arbitrary set, ∗ is a continuous t-norm, D is a directed set and M is a fuzzy
set on X2 × (0,∞) satisfying the following conditions:

(Q.1) Mλ(x, y, t) = 1 if and only if x = y for all t > 0 and λ ∈ D.

(Q.2) Mλ(x, y, t) = Mλ(y, x, t).

(Q.3) Mλ(x, y, t) ≤Mµ(x, y, t) for λ < µ.

(Q.4) For every λ ∈ D there exists µ ∈ D with λ < µ such that

Mµ(x, y, t) ∗Mµ(y, z, t) ≤Mλ(x, z, t) for all x, y, z ∈ X, t > 0. (2)
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Theorem 2.1. Let Q = {Mλ/λ ∈ D} be a family of fuzzy quasi-metrics on X.
Let

Bx(λ, r, t) = {y ∈ X : Mλ(x, y, t) > 1− r} (3)

where x ∈ X and t > 0 and 0 < r < 1. Then there exists a unique fuzzy Hausdorff
topology TQ on X such that (X,TQ) is an F -type fuzzy topological space and

Bx = {Bx(λ, r, t) : λ ∈ D, t > 0 and 0 < r < 1}
is a neighbourhood base of x for TQ. The fuzzy topology TQ is called the fuzzy
topology on X deduced by the family Q of fuzzy quasi-metrics.

P r o o f . Let Nx = {W |W ⊂ X, ∃Bx(λ, r, t) ⊂ W} for each x ∈ X. It is easy to
verify that Nx satisfies the following conditions:

(1) If W ∈ Nx, then x ∈W .

(2) If W1, W2 ∈ Nx, then W1 ∩W2 ∈ Nx.

(3) If W ∈ Nx and W ⊂ V , then V ∈ Nx.

(4) If W ∈ Nx, then ∃V ∈ Nx such that V ⊂W and W ∈ Ny for each y ∈ V .

We prove only (4), since W ∈ Nx, Bx(λ, r, t) ⊂ W for some λ ∈ D and t > 0 and
0 < r < 1. By (Q.4), for above λ there exists an µ ∈ D with λ < µ such that (2)
holds. Obviously,

V = Bx(λ, r/2, t) ∈ Nx.

Moreover, for each y ∈ V we can prove that By(µ, r/2, t) ⊂ W . In fact, if z ∈
By(µ, r/2, t) then Mµ(y, z, t) > 1− (r/2).

Note that Mµ(x, y, t) > 1− (r/2).

Thus by (2) we have

Mλ(x, z, t) ≥ Mµ(x, y, t) ∗Mµ(y, z, t)
> {1− r/2} ∗ {1− r/2}
> (1− r) for all 0 < r < 1

and so z ∈ Bx(λ, r, t) ⊂W .
Hence By(µ, r/2, t) ⊂W . This implies that W ∈ Ny.
Therefore, there exists a unique fuzzy topology on X, written TQ such that Nx

is the neighbourhood system of x for TQ. By the definition of Nx, it is easy to know
that Bx is a neighbourhood base of x.

Now we prove that TQ is fuzzy Hausdorff. Let x, y ∈ X, x 6= y. By (Q.1), there
exists some λ ∈ D such that Mλ(x, y, t) = 1− r. By (Q.4), there exists µ ∈ D with
λ < µ such that (2) holds. From this we can prove that Bx(µ, r/2, t)∩By(µ, r/2, t) =
∅. Suppose z ∈ Bx(µ, r/2, t) ∩By(µ, r/2, t) then

1− r = Mλ(x, y, t)
≥ Mµ(x, z, t) ∗Mµ(z, y, t)
> {1− r/2} ∗ {1− r/2}
> (1− r) for all 0 < r < 1
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which is a contradiction. Hence TQ is Hausdorff.
Moreover, it is not difficult to show that Bx satisfies (F.1) to (F.4), we only verify

(F.3) others are trivial. For λ ∈ D, by (Q.4) there exists µ ∈ D with λ < µ such
that (2) holds.

If Bx(µ, r1, t) ∩ By(µ, r2, t) 6= ∅, then there is z ∈ Bx(µ, r1, t) ∩ By(µ, r2, t), so
that

Mµ(x, z, t) > 1− r1 and Mµ(y, z, t) > 1− r2.

Thus by (2) we have,

Mλ(x, y, t) ≥ Mµ(x, z, t) ∗Mµ(z, y, t)
> (1− r1) ∗ (1− r2)
> (1− r) for all 0 < r < 1

which implies that y ∈ Bx(λ, r1 + r2, t). Therefore (X,TQ) is F -type. 2

Theorem 2.2. Let (X,T ) be an F -type fuzzy topological space. Then there exists
a family Q = {Mλ : λ ∈ D} of fuzzy quasi-metrics on X satisfying (Q.1) to (Q.4)
in Theorem 2.1 such that TQ = T . In this case, Q is called the generating family of
quasi-metrics for T .

P r o o f . Let Ux = {Ux(λ, r, t) : λ ∈ D, t > 0, 0 < r < 1} be a neighbourhood
base of x for T satisfying (F.1) to (F.4). By (F.4), for each λ ∈ D we can define a
mapping Mλ : X2 × (0,∞) → [0, 1] as

Mλ(x, y, t) = inf{0 < r < 1 : y ∈ Ux(λ, r, t)}

Now, we prove that Q = {Mλ : λ ∈ D} satisfies (Q.1) to (Q.4). It is trivial that
(F.1) implies (Q.2) and (F.2) implies (Q.3).

(Q.1) By the definition of Mλ, it is obvious that Mλ(x, x, t) = 1 for all λ ∈ D.
Conversely, if x, y ∈ X with x 6= y then by Hausdorff property of T , there exist
Ux(λ, r1, t) and Uy(µ, r2, t) such that

Ux(λ, r1, t) ∩ Uy(µ, r2, t) = ∅.

This implies that y /∈ Ux(λ, r1, t) and so Mλ(x, y, t) ≤ 1− r.
(Q.4) Let λ ∈ D. By (F.3) there exists µ ∈ D with λ < µ such that (1) holds.

By the definitions of Mµ(x, z, t) and Mµ(z, y, t) for any given 0 < ε < 1 there exists
0 < r1, r2 < 1 with

1− r1 > Mµ(x, z, t) ∗ (1− ε)

and
1− r2 > Mµ(z, y, t) ∗ (1− ε)

such that z ∈ Ux(µ, r1, t) and z ∈ Uy(µ, r2, t) which implies

Ux(µ, r1, t) ∩ Uy(µ, r2, t) 6= ∅.
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Thus, it follows from (1) that y ∈ Ux(λ, r1 + r2, t) and so

Mλ(x, y, t) ≥ (1− r1) ∗ (1− r2)
> Mµ(x, z, t) ∗Mµ(z, y, t) ∗ (1− ε)2.

By the arbitrariness of ε we get

Mλ(x, y, t) ≥Mµ(x, z, t) ∗Mµ(z, y, t).

Lastly, we prove that T = TQ. By Theorem 2.1 we know that

Bx = {Bx(λ, r, t) : λ ∈ D, t > 0, 0 < r < 1}
is a neighbourhood base of x to TQ, where

Bx(λ, r, t) = {y ∈ X : Mλ(x, y, t) > 1− r}.
It is obvious that Bx(λ, r, t) ⊂ Ux(λ, r, t) and Ux(λ, r/2, t) ⊂ Bx(λ, r, t).

Hence T = TQ. 2

Corollary 2.1. Let (X,T ) be an F -type fuzzy topological space and Q = {Mλ :
λ ∈ D} be a generating family of fuzzy quasi-metrics for T , {xn} ⊂ X and x ∈ X.
Then

1. xn → x if and only if limn→∞Mλ(xn, x, t) = 1 for all λ ∈ D, t > 0.

2. {xn} is a Cauchy sequence if and only if for each λ ∈ D and each 0 < ε < 1
there exists a positive integer N such that Mλ(xm, xn, t) > 1 − ε whenever
m, n > N .

Example 2.1. Every fuzzy metric space (X,M, ∗) is an F -type fuzzy topological
space. In fact, we can arbitrarily take a directed set D, say D = (0, 1) and define

Mλ(x, y, t) = M(x, y, t) for all λ ∈ D, t > 0, x, y ∈ X.

Then it is easy to see that {Mλ : λ ∈ D} satisfies (Q.1) to (Q.4) in Theorem
2.1. Therefore (X,TM ) is an F -type fuzzy topological space where TM is a fuzzy
topology deduced by the metric M on X.

Example 2.2. Every fuzzy Hausdorff topological vector space X is an F -type
fuzzy topological space. In fact, let U = {Uα : α ∈ D} be a balanced neighbourhood
base of 0. Define a partially order on D as α < β ⇔ Uβ ⊂ Uα. Thus D = (D,<) is
directed set. Let

Uλ(λ, r, t) = x+ rUλ for x ∈ X, λ ∈ D, 0 < r < 1.

Obviously, Ux = {Ux(λ, r, t) : λ ∈ D, t > 0, 0 < r < 1} is a neighbourhood base
of x. Notice that U has the following properties: every Uα in U is balanced and
absorbing and for each Uα ∈ U there exists an Uβ ∈ U such that Uβ + Uβ ⊂ Uα.
Hence it is not difficult to show that Ux (x ∈ X) satisfies (F.1) to (F.4). Hence X is
F -type.
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3. VARIATIONAL PRINCIPLE AND FIXED POINT THEOREM

Lemma 3.1. Let (X,T ) be a sequentially complete F -type fuzzy topological space
and {Mλ : λ ∈ D} be a generating family of fuzzy quasi-metrics for T . Let {Wn}
be a sequence of nonempty subsets in X with the following properties:

1. Wn ⊃Wn+1, (n = 1, 2, . . .).

2. limn→∞ δλ(Wn) = 1 for all λ ∈ D where
δλ(A) = sup{Mλ(x, y, t) : x, y ∈ A and t > 0}. Then

lim
n→∞

δλ(Wn) = 1 for all λ ∈ D (4)

and there exists a unique ξ ∈ T∞n=1Wn.

P r o o f . We first prove (4). For any given λ ∈ D and n ∈ N , by the definition of
δλ(Wn) we can choose two sequences {xm} and {ym} in Wn such that

lim
m→∞

Mλ(xm, ym, t) = δ2(Wn)

since xm, ym ∈Wn, there exists two sequences {xk
m}∞k=1, {yk

m}∞k=1 in Wn such that
xk

n → xm, yk
m → ym as k →∞ so that,

lim
k→∞

Mα(xk
m, xm, t) = 1

and
lim

k→∞
Mα(yk

m, ym, t) = 1 for all α ∈ D, t > 0.

Notice that {Mλ : λ ∈ D} satisfies (Q.3) and (Q.4). Hence for the given λ ∈ D there
exists µ ∈ D with λ < µ such that

Mλ(xm, ym, t) ≥ Mµ(xm, x
k
m, t) ∗Mµ(xk

m, y
k
m, t) ∗Mµ(yk

m, ym, t)
≥ Mµ(xm, x

k
m, t) ∗ δµ(Wn) ∗Mµ(yk

m, ym, t).

Letting k →∞ we get
Mλ(xm, ym, t) ≥ δµ(Wn)

and so
δλ(Wn) = lim

m→∞
Mλ(xm, ym, t) ≥ δµ(Wn).

Noting that, limn→∞Mµ(Wn) = 1, hence (4) holds.
Next we show that there exists a point ξ ∈ T∞n=1Wn. Arbitrary taking xn ∈Wn,

(n = 1, 2, . . .) by (4), for each 0 < ε < 1 and λ ∈ D there exists N ∈ ℵ, the set of all
natural numbers such that

sup
x,y∈W n

Mλ(x, y, t) > 1− ε whenever n > N.
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Since xm ∈Wm ⊂Wn for m, n ∈ N with m ≥ n we have

Mλ(xm, xn, t) > 1− ε whenever m ≥ n > N.

This implies that {xn} is a Cauchy sequence in (X,T ). By the sequential complete-
ness of X, there exists a point ξ ∈ X such that

lim
n→∞

xn = ξ.

Notice that xm ∈Wn, m ≥ n, (n = 1, 2, . . .).
Hence we have ξ ∈Wn, (n = 1, 2, . . .). Thus ξ ∈ T∞n=1Wn.
Lastly we prove the uniqueness of ξ. Assume that there exist η ∈ T∞n=1Wn with

η 6= ξ. Since {Mλ : λ ∈ D} satisfies (Q.1), there exists λ ∈ D such that

Mλ(ξ, η, t) > 1− r for all 0 < r < 1.

By (4), we have
δλ(WN ) > 1− r for some N ∈ ℵ.

Let ξ, η ∈Wn, we get

Mλ(ξ, η, t) ≥ δλ(WN )
> Mλ(ξ, η, t)

which is a contradiction. This completes the proof. 2

Lemma 3.2. Let (X,T ) be an F -type fuzzy topological space and {Mλ : λ ∈ D}
be a generating family of fuzzy quasi-metrics for T . Let ϕ : X → [0, 1] be a lower
semi-continuous function, bounded from below and k : D → (0,∞) be non-increasing
function. We define a relation < on X as x < y iff

Mλ(x, y, t) ≤Mλ(ϕ(x), ϕ(y), tk(λ)) for all λ ∈ D, t > 0. (5)

Then (X,<) is a partial order set and it has a maximal element.

P r o o f . We first prove that < is a partial order on X. It is obvious that x < x
for each x ∈ X. If x, y ∈ X, x < y and y < x then by (5), we have ϕ(x) ≥ ϕ(y),
and ϕ(x) ≤ ϕ(y), so that ϕ(x) = ϕ(y). From this it follows that,

Mλ(x, y, t) = 1 for all λ ∈ D and so x = y.

If x, y, z ∈ X with x < y and y < z then we have

Mα(x, y, t) ≤Mα(ϕ(x), ϕ(y), tk(α))

and
Mα(y, z, t) ≤Mα(ϕ(y), ϕ(z), tk(α)) for all α ∈ D and t > 0.
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By (Q.3), for every λ ∈ D there exists µ ∈ D, λ < µ such that

Mλ(x, z, t) ≥ Mµ(x, y, t) ∗Mµ(y, z, t)
≥ Mµ(ϕ(x), ϕ(z), tk(µ)).

Note that k(λ) is non increasing. We have

Mλ(x, z, t) ≤Mλ(ϕ(x), ϕ(z), tk(λ)) for all λ ∈ D and so x < z.

Therefore < is a partial order on X. Next, we prove that the partially ordered set
(X,<) has a maximal element.

Suppose that C is totally ordered subset of X. By (5), it is easy to know that ϕ
is monotone decreasing on C. Note that ϕ is bounded from below. Hence we can let
γ = infx∈C ϕ(x) and can choose an increasing sequence {xn} in C such that ϕ(xn)
decreasing γ as n→∞. Let

Wn = {x ∈ C : ϕ(x) ≤ ϕ(xn)}, (n = 1, 2, . . .).

Obviously, Wn 6= ∅, since xn ∈Wn and Wn ⊃Wn+1 (n = 1, 2, . . .).
Moreover, let y, z ∈ Wn then γ ≤ ϕ(z) and ϕ(y) ≤ ϕ(xn). Without loss of

generality we assume y < z. By (5), we have

Mλ(y, z, t) ≤ Mλ(ϕ(y), ϕ(z), tk(λ))
≤ Mλ(ϕ(xn), γ, tk(λ)) for all λ ∈ D

and so
δλ(Wn) ≤Mλ(ϕ(xn), γ, tk(λ)) for all λ ∈ D.

Letting n→∞ we get limn→∞ δλ(Wn) = 1 for all λ ∈ D.
Thus from Lemma 3.1, it follows that limn→∞ δλ(Wn) for all λ ∈ D and exists a

unique ξ ∈ T∞n=1Wn. Since xn ∈Wn ⊂Wn (n = 1, 2, . . .) we have

lim
n→∞

Mλ(xn, ξ, t) = 1 for all λ ∈ D.

Now we show that ξ is an upper bound of C. For x ∈ C consider the following two
cases.

Case (1): Let xn < x (n = 1, 2, . . .). Then ϕ(x) ≤ ϕ(xn), that is, x ∈ Wn,
(n = 1, 2, . . .). Notice that T∞n=1Wn = {ξ}, hence x = ξ.
Case (2): Let x < xn0 for some n0 ∈ N . Then x < xn whenever n ≥ n0. Thus when
n ≥ n0

Mα(x, xn, t) ≤Mα(ϕ(x), ϕ(xn), tk(α)) for all α ∈ D. (6)

Because {Mλ : λ ∈ D} satisfies (Q.3) and xn → ξ. Hence for any λ ∈ D there exists
µ ∈ D with λ < µ such that

Mλ(x, ξ, t) ≤ lim
n→∞

Mµ(x, xn, t). (7)
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Since ϕ is lower semicontinuous, we have

ϕ(ξ) ≤ lim
n→∞

ϕ(xn).

Notice that k(λ) is nonincreasing, by (6) and (7) we obtain

Mλ(x, ξ, t) ≤Mλ(ϕ(x), ϕ(ξ), tk(λ)) for all λ ∈ D.

Hence x < ξ. This implies that ξ is an upper bound of C. Thus by Zorn’s lemma
(X,<) has a maximal element. 2

Theorem 3.1. Let (X,T ) be a sequentially complete F -type fuzzy topological
space and {Mλ : λ ∈ D} be a generating family of fuzzy quasi-metrics for T . Let ϕ :
X → [0, 1] be a lower semicontinuous function and k : D → (0,∞) be nonincreasing
function. Suppose further that the mapping f : X → X satisfies the conditions

Mλ(x, f(x), t) ≤Mλ(ϕ(x), ϕ(f(x)), tk(λ)) for all λ ∈ D, t > 0. (8)

Then f has a fixed point in X.

P r o o f . From Lemma 3.2, (X,<) is a partially ordered set, where < is defined
by (5), and (X,<) has a maximal element say x∗. By (8), we have

Mλ(x∗, f(x∗), t) ≤Mλ(ϕ(x∗), ϕ(f(x∗)), tk(λ)) for all λ ∈ D.

This implies that x∗ < f(x∗). Note that x∗ is a maximal element in (X,<).
Hence f(x∗) = x∗. 2

The following theorem is an equivalent form of Theorem 3.1.

Theorem 3.2. Let (X,T ) be a sequentially complete F -type fuzzy topological
space and Ux = {Ux(λ, r, t) : λ ∈ D, t > 0, 0 < r < 1} be a neighbourhood
base of x in X with the properties (F.1) – (F.4). Let ϕ : X → [0, 1] be a lower
semicontinuous function and k : D → (0,∞) be non-increasing function. Suppose
further that the mapping f : X → X satisfies the following condition: For each
x ∈ X, ϕ(x) ≥ ϕ(f(x)) and

f(x) ∈ (Ux(λ, r,Mλ(ϕ(x), ϕ(f(x))), tk(λ)) + ε) for all λ ∈ D, ε > 0. (9)

Then f has a fixed point in x.

Caristi’s fixed point Theorem: Let (X,T ) be a complete fuzzy metric space
and ϕ : X → [0, 1] be a lower semicontinuous function and if the mapping f : X → X
satisfies the condition

M(x, f(x), t) ≤M(ϕ(x), ϕ(f(x)), t),
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then f has a fixed point in X.

P r o o f . Arbitrarily take a directed set D and let

Mλ(x, y, t) = M(x, y, t) for all x, y ∈ X and λ ∈ D, t > 0.

Then by Example 2.1, (X,TM ) is an F -type fuzzy topological space and let {Mλ :
λ ∈ D} be a generating family of fuzzy quasi-metrics for TM .

Then by Theorem 3.1, we have

Mλ(x, f(x), t) = Mλ(ϕ(x), ϕ(f(x)), tk(λ)),

taking k(λ) = 1 for all λ ∈ D, we have

M(x, f(x), t) = M(ϕ(x), ϕ(f(x)), t).

Hence f has a fixed point. 2

4. APPLICATIONS

In this section, we shall apply the results of Section 3 to obtain a fixed point theorem
and a variational principle in Menger probabilistic metric spaces (briefly, a Menger
PM-space [8]).

Example 4.1. Let (X,=,∆) be a complete Menger space with a t-norm ∆ satis-
fying sup0<t<1 ∆(t, t) = 1. Let ϕ : X → [0, 1] be a lower semicontinuous function
and k : (0, 1) → (0,∞) be non-increasing function. Suppose that the mapping
f : X → X satisfies the following condition: For each x ∈ X, ϕ(x) ≥ ϕ(f(x)) and

Fx,f(x)(t) ≥ H(t− (ϕ(x)− ϕ(f(x)))) for all x ∈ X, and t > 0. (10)

Then f has a fixed point in X.

P r o o f . Let (X,=,∆) be a Menger PM-space with a t-norm satisfying
sup0<t<1 ∆(t, t) = 1. Then X is an F -type fuzzy topological space in (ε, λ)-topology
T of (X,=,∆).

In fact, ((0, 1), <) is a directed set, where the partial oder < is defined by

α < β ⇔ α ≥ β.

By a neighbourhood base of x for topology T , Ux(λ, ε) = {y ∈ X |Fx,y(ε) > 1− ε}
and the definition of distribution function, it is easy to see that Ux = {Ux(λ, r, ε)/λ ∈
(0, 1), ε > 0, 0 < r < 1} (x ∈ X) satisfies (F.1), (F.2) and (F.4).

Now, we prove that (F.3) is also true. Since sup0<t<1 ∆(t, t) = 1, for any λ ∈
(0, 1) there exists µ ∈ (0, λ] such that ∆(1 − µ, 1 − µ) > 1 − λ. Assume that
Ux(µ, r1, t1) ∩ Uy(µ, r2, t2) 6= ∅, then we take z ∈ Ux(µ, r1, t1) ∩ Uy(µ, r2, t2), and so
Fx,z(t1) > 1− µ and Fy,z(t2) = Fz,y(t2) > 1− µ.
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Thus from Menger PM-space, it follows that

Fx,y(t1 + t2) ≥ ∆(Fx,z(t1), Fz,y(t2))
≥ ∆(1− µ, 1− µ) > 1− λ

which implies y ∈ Ux(λ, t1+t2). Hence X is an F -type fuzzy topological space in the
(ε, λ)-topology of (X,=,∆). X is a sequentially complete F -type fuzzy topological
space for the (ε, λ)-topology of (X,=,∆). Moreover, it is easy show that (10) implies
(9). In fact, for any ε > 0 we put t = ϕ(x) − ϕ(f(x)) + ε. Thus from Theorem 3.2
f has a fixed point in X.
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