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TRANSFER FUNCTION EQUIVALENCE
OF FEEDBACK/FEEDFORWARD COMPENSATORS1

Vladiḿır Kučera

Equivalence of several feedback and/or feedforward compensation schemes in linear
systems is investigated. The classes of compensators that are realizable using static or
dynamic, state or output feedback are characterized. Stability of the compensated system
is studied. Applications to model matching are included.

1. INTRODUCTION

This is a tutorial which presents a study of equivalence, from the transfer function
point of view, of several commonly used feedback and/or feedforward compensation
schemes. Two compensators will be called transfer-function equivalent if their appli-
cation to the given system results in systems that have the same transfer function.
It is shown that a cascade compensator is transfer-function equivalent to a two-
degree-of-freedom compensator as well as to a static feedback applied to a dynamic
extension of the system.

The subclasses of these compensators that are equivalent to a standard static or
dynamic, state or output feedback are identified. The proofs are constructive and
provide simple design procedures.

Two transfer-function equivalent compensators can have different internal proper-
ties. That is why an original result on the stability of the overall closed-loop system
is included.

These results are important per se in linear system theory. They are also useful in
applications. A typical application area is the model matching problem. The results
presented allow splitting the problem in two linear subproblems: first a cascade
compensator is determined to achieve the match and then realized in terms of the
configuration desired.

1This work was supported by the Grant Agency of the Czech Republic under contract
102/97/0861 and by the Ministry of Education of the Czech Republic under project VS97/034.
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2. CLASSES OF COMPENSATORS

We shall study several common feedback and/or feedforward configurations with an
eye on the equivalence of various compensation schemes.

Consider a linear system governed by the equations

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (1)

where u ∈ Rm is the input, x ∈ Rn is the state, and y ∈ Rp is the output. The
system gives rise to the tranfer functions

T (s) = (sI −A)−1B (2)
T ′(s) = C(sI −A)−1B (3)

which are rational, strictly proper n×m matrices.
A common compensation scheme used to modify (1) is the static state feedback

defined by
u(s) = Fx(s) + Gv(s) (4)

where v ∈ Rm is an external input and F, G are constant matrices.
A more general compensator is one which involves a dynamic state feedback

according to the equation

u(s) = F (s) x(s) + Gv(s) (5)

where F is a proper rational matrix and G is constant.
A set of p integrators

ẋ′(t) = u′(t)

can be adjoined to system (1) to give an extended system. A static state feedback
applied to the extended system according to the equations

u(s) = F11x(s) + F12x
′(s) + G1v(s)

u′(s) = F21x(s) + F22x
′(s) + G2v(s) (6)

will result in a dynamic compensation relative to the original system (1).
One can define a compensator of the form

u(s) = F (s)x(s) + G(s) v(s) (7)

which makes explicit the presence of a dynamic state feedback as well as a dynamic
feedforward, the so-called two-degree-of-freedom compensator. Here F and G are
proper rational matrices of appropriate sizes.

The equation
u(s) = K(s) v(s) (8)

where K is a proper rational matrix, defines a pure feedforward dynamic com-
pensator, or cascade compensator, which is frequently used in the classical control
theory.
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Output feedback can be used in lieu of state feedback. In particular, static output
feedback is defined by

u(s) = F ′y(s) + G′v(s) (9)

where F ′ and G′ are constant matrices, while

u(s) = F ′(s) y(s) + G′v(s) (10)

is a dynamic output feedback when F ′ is a proper rational matrix and G′ is constant.
Similarly, one can consider a static output feedback applied to the extended

system according to the equations

u(s) = F ′11y(s) + F ′12x
′(s) + G′1v(s)

u′(s) = F ′21y(s) + F ′22x
′(s) + G′2v(s) (11)

or a two-degree-of-freedom compensator of the form

u(s) = F ′(s) y(s) + G′(s) v(s) (12)

where F ′ and G′ are proper rational matrices, or again a cascade compensator

u(s) = K ′(s) v(s) (13)

where K ′ is a proper rational matrix.

3. TRANSFER FUNCTION EQUIVALENCE

Consider the classes of compensators defined by (4) – (13). Each class is obtained by
allowing F, G or F ′, G′ or K, K ′ to vary within the specified limits.

Two compensator classes are said to be transfer function equivalent if, for any
compensator of one class, one can find a compensator in the other class such that
their application to the given system (1) will result in systems that have the same
transfer function.

This kind of equivalence reflects just the ability of two compensators to produce
the same input-output behaviour. In particular this equivalence says nothing about
the dynamical order, stability, or other properties of the systems which depend on
a particular realization. This problem will be addressed later.

Our first goal is to investigate which classes are transfer function equivalent.

Lemma 1. [4], [7] The compensator classes (6), (7), and (8) are transfer func-
tion equivalent.

P r o o f . We shall establish the following chain of implications.
We first show that each compensator (6) can be represented in the form (7). To

this end we apply (6) to the extended system to obtain the overall system equations

ẋ(t) = (A + BF11)x(t) + BF12x
′(t) + BG1v(t)

ẋ′(t) = F21x(t) + F22x
′(t) + G2v(t)

u(t) = F11x(t) + F12x
′(t) + G1v(t)
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and calculate the transfer functions from x and v to u. On identifying with (7), one
obtains

F (s) = F11 + F12(sI − F22)−1F21

G(s) = G1 + F12(sI − F22)−1G2.

Since sI − F22 has a strictly proper inverse, both F and G are proper rational
matrices.

We now show that any compensator (7) can be realized in the form (8). To see
this, we apply (7) to equation (1) in the transfer function form (2),

x(s) = T (s) u(s)

and calculate the transfer function from v to u. Comparing with (8), one obtains

K(s) = [I − F (s)T (s)]−1 G(s).

Since T is strictly proper, and F is proper, I −FT is bi-proper. Hence K is proper.
Finally let us show that each compensator (8) can be represented in the form (6).

Given a proper rational K, let

K(s) = C(sI −A)−1B + D

for some state-space ralization (A, B, C,D). Then

F11 = 0 F12 = C G1 = D

F21 = 0 F22 = A G2 = B

define a state feedback of the form (6). 2

Lemma 2. [8] The compensator classes (11), (12), and (13) are transfer func-
tion equivalent.

P r o o f . Following the pattern of Lemma 1, we shall prove the following chain of
implications.

We first show that each compensator (11) can be represented in the from (12). To
see this, we apply (11) to the extended system to obtain the overall system equations

ẋ(t) = (A + BF ′11C)x(t) + BF ′12x
′(t) + BG′1v(t)

ẋ′(t) = F ′21Cx(t) + F ′22x
′(t) + G′2v(t)

y(t) = Cx(t)
u(t) = F ′11y(t) + F ′12x

′(t) + G′1v(t)

and calculate the transfer functions from y and v to u. On identifying with (12), one
obtains

F ′(s) = F ′11 + F ′12(sI − F ′22)
−1F ′21

G′(s) = G′11 + F ′12(sI − F ′22)
−1G′2.
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Since sI − F ′22 has a strictly proper inverse, both F ′ and G′ are proper rational
matrices.

We now show that any compensator (12) can be represented in the form (13). To
this end we apply (12) to equations (1) in the transfer function form (3),

y(s) = T ′(s)u(s)

and calculate the transfer function from v to u. Comparing with (12), one obtains

K ′(s) = [I − F ′(s)T ′(s)]−1G′(s).

Since T ′ is strictly proper and F ′ is proper, I−F ′T ′ is biproper. Hence K ′ is proper.
Finally let us show that any compensator (13) can be realized in the form (11).

Given a proper rational K ′, let

K ′(s) = C
′
(sI −A

′
)−1B

′
+ D

′

for some state-space realization (A
′
, B

′
, C

′
, D

′
). Then

F ′11 = 0 F ′12 = C
′

G′1 = D
′

F ′21 = 0 F ′22 = A
′

G′2 = B
′

define an output feedback of the form (11). 2

Note that the pure feedforward compensators (8) and (13) can be equally realized
with state or output feedback. Therefore Lemma 1 and Lemma 2 can be combined
to give the following result.

Theorem 1. The compensator classes (6), (7), (8) and (11), (12), (13) are trans-
fer function equivalent.

In view of this equivalence, and the special role played by (8) or (13), the cascade
compensator (8) will be used to represent any of the above feedback/feedforward
compensators.

The class of static/dynamic state feedback compensators (4) and (5) as well as
the class of static/dynamic output feedback compensators (9) and (10) is less general
than (8) and will be studied in the sections to follow.

4. DYNAMIC STATE FEEDBACK

Dynamic state feedback (5) is a special case of (6), hence of (8). It is interesting to
identify the subclass of cascade compensators K which are transfer function equiv-
alent to dynamic state feedback.

These compensators satisfy

K(s) = [I − F (s)T (s)]−1G. (14)

We impose a restrictive assumption that G is non-singular; this will greatly sim-
plify the analysis [3].
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Theorem 2. [1], [7] Given a proper rational m×m matrix K, there exist a proper
rational F and a constant non-singular G such that (8) holds if and only if K is
bi-proper.

P r o o f . Since T is strictly proper and F is proper, I −FT is bi-proper. Since G
is non-singular, K is bi-proper as well.

Conversely, suppose that K is bi-proper. Let G be defined by

G = K(∞).

Then V (s) = K−1(s)−G−1 is a strictly proper rational matrix. The equation

V (s) = X(s) T (s) (15)

has a proper rational solution X if and only if the infinite zero structure of T coincides

with that of
[

T
V

]
. The infinite zero structure of T is given by (s−1, . . . , s−1), see

[8]. Since V is strictly proper, the solvability condition is verified and a proper
rational X exists that satisfy (15). Let F be defined by

F (s) = −GX(s).

Then
K−1(s) = G−1 −G−1F (s) T (s)

and (14) holds. 2

5. STATIC STATE FEEDBACK

This is a further specialization in which both F and G are constant. Which cascade
compensators K are transfer function equivalent to static state feedback (4)? Those
which satisfy

K(s) = [I − FT (s)]−1G. (16)

We again assume that G is non-singular and write T in the form

T (s) = N(s)D−1(s) (17)

where N and D are right coprime polynomial matrices.

Theorem 3. [2], [7] Given a proper rational m×m matrix K, there exist constant
matrices F and G with G non-singular, such that (16) holds if and only if

(a) K is bi-proper

(b) K−1D is polynomial.

P r o o f . Condition (a) follows from Theorem 2. Then

K−1(s)D(s) = G−1D(s)−G−1F N(s)
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is a polynomial matrix, which is (b).
Conversely, let K satisfy (a) and define G by

G = K(∞).

Then V (s) = K−1(s) − G−1 is a strictly proper rational matrix. Furthermore, let
K satisfy (b). Then

V (s) = M(s)D−1(s)

for a polynomial matrix M. Polynomial row vectors w(s) such that w(s)D−1(s) is
strictly proper form an R−linear space V. Using (17), we have

T (s) = N(s)D−1(s)

and note that the rows of N span V. Therefore the equation

V (s) = XT (s) (18)

has a constant solution X and
F = −GX

makes (16) hold. 2

If system (1) is controllable, then the rows of N form a basis for V and the
matrices F, G that realize K are unique.

6. DYNAMIC OUTPUT FEEDBACK

Dynamic output feedback (10) is a special case of (12), hence also of (8). It is
of interest to identify the subclass of cascade compensators K which are transfer
function equivalent to a dynamic output feedback.

These compensators satisfy

K(s) = [I − F ′(s)T ′(s)]−1G′. (19)

We impose a restrictive assumption that G′ is non-singular. This will simplify
the analysis [3].

Theorem 4. [8] Given a proper rational m ×m matrix K, there exist a proper
rational F ′ and a constant non-singular G′ such that (19) holds if and only if

(a) K is bi-proper

(b) T ′ and
[

T ′

K−1
SP

]
have identical infinite zero structure, where K−1

SP denotes the

strictly proper part of K−1.
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P r o o f . Since T ′ is strictly proper and F ′ is proper, I −F ′T ′ is bi-proper. Since
G′ is non-singular, K is bi-proper as well. This is (a).

Write
K−1(s) = G′−1 −G′−1F ′(s)T ′(s) .

Then
K−1

SP (s) = −G′−1F ′(s)T ′(s)

and [
T ′(s)

K−1
SP (s)

]
=

[
I 0
−G′−1F ′(s) I

] [
T ′(s)

0

]
.

This proves (b), for the two matrices are related by a bi-proper transformation.
Conversely, suppose that K satisfies (a) and define G′ by

G′ = K(∞).

Then V (s) = K−1(s)−G′−1 = K−1
SP (s), the strictly proper part of K−1(s). In view

of (b), the equation
V (s) = X ′(s) T ′(s) (20)

has a proper rational solution X ′, see [8]. Define

F ′(s) = −G′X ′(s).

Then
K−1(s) = G′−1 −G′−1F ′(s)T ′(s)

and (19) holds. 2

A comparison of Theorem 2 and Theorem 4 reveals that the class of cascade
compensators that can be realized via dynamic output feedback is a subclass of
those that are realizable using a dynamic state feedback. It is the condition (b) of
Theorem 4 that makes the difference. This conditon is needed to solve equation (20).
Its state feedback counterpart, equation (15), has a guaranteed solution thanks to a
special infinite zero structure of the input-state transfer function T. This property
is not shared by T ′, hence solvability of (20) must be ensured by an assumption.

7. STATIC OUTPUT FEEDBACK

This is a further restriction which requires both F ′ and G′ to be constant. Which
cascade compensators K are transfer function equivalent to static output feedback
(9)? Those which satisfy

K(s) = [I − F ′T ′(s)]−1G′. (21)

We again assume that G′ is non-singular. Using (17), write T ′ in the form

T ′(s) = CT (s)
= CN(s)D−1(s)
= N ′(s) D−1(s) (22)

where N ′ and D are polynomial matrices, not necessarily right coprime.
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Theorem 5. [8] Given a proper rational m ×m matrix K, there exist constant
matrices F ′ and G′ with G′ non-singular, such that (20) holds if and only if

(a) K is bi-proper
(b) K−1D is polynomial

(c) N ′ and
[

N ′

K−1
SP D

]
have identical row span in V.

P r o o f . Condition (a) follows from Theorem 4. Then

K−1(s)D(s) = G′−1D(s)−G′−1F ′N ′(s)

is a polynomial matrix, which is (b). Furthermore,

K−1
SP (s)D(s) = −G′−1F ′N ′(s).

This shows that the row span of K−1
SP D is included in that of N ′. Consequently (c)

holds.
Conversely, let K satisfy (a) and define G′ by

G′ = K(∞).

Then V (s) = K−1(s)−G′−1 = K−1
SP (s), the strictly proper part of K−1(s). Further-

more, let K satisfy (b). Then V (s) D(s) is a polynomial matrix. In view of (c), the
equation

V (s)D(s) = X ′N ′(s) (23)

has a constant solution X ′. Letting

F ′ = −G′X ′

we obtain (21), which completes the proof. 2

Comparing Theorem 3 with Theorem 5 we observe that the class of cascade
compesansotors that can be realized via static output feedback is a subclass of those
that are realizable using a static state feedback. The additional property needed
is the conditon (c) of Theorem 5. This condition ensures that equation (23) has a
constant solution. Its state feedback counterpart, equation (18), has a guaranteed
solution as the rows of N span the R−linear space V. The rows of N ′ span only a
subspace of V, hence solvability of (23) must be secured by an assumption.

8. STABILITY

Transfer function equivalent compensators can have different internal properties,
those which depend on a particular realization.

Stability is the most important design specification of this sort. That is why it
is natural to ask when a compensator, in one of of the forms (4) – (7) or (9) – (12),
which is transfer function equivalent to a cascade compensator (8) or (13), stabilizes
the system.



Transfer Function Equivalence of Feedback/Feedforward Compensators 619

The requirement of stability will mean that the states of the system and of the
compensator go to zero from all initial values. A necessary requisite is of course that
system (1) is stabilizable and, in the case of output feedback, also detectable.

For the general configuration of the compensator, namely (6), (7) or (11), (12),
only general stability checks are available. Thus, for static state feedback (6) applied
to an extended system, the state-transition matrix

[
A + BF11 BF12

F21 F22

]

should be a stability matrix. Similarly, for static output feedback (11) applied to an
extended system, the matrix

[
A + BF ′11C BF ′12

F ′21C F ′22

]

should be a stability matrix. In the case of a two-degree-of-freedom compensator
(7) based on state feedback, we write as in (17)

T (s) = N(s)D−1(s)

where N,D is a pair of right coprime polynomial matrices and

F (s) = −P−1(s)Q(s), G(s) = P−1(s) R(s) (24)

where P, Q,R is a triple of left coprime polynomial matrices. Then [5] the matrix

(PD + QN)−1(s)

should be a stable (i.e., analytic in Re s ≥ 0) rational matrix. Similarly, when a
two-degree-of-freedom compensator (12) based on output feedback is used, we write
as in (22)

T ′(s) = N ′(s)D−1(s)

(the polynomial matrices N ′ and D may not be right coprime, but their common
right divisors are stable by the assumption of stabilizability and detectability) and

F ′(s) = −P ′−1(s) Q′(s), G′(s) = P ′−1(s) R′(s) (25)

where P ′, Q′, R′ is a triple of left coprime polynomial matrices. Then [5]

(P ′D + Q′N ′)−1(s)

should be a stable rational matrix.
When the compensator is realized as a dynamic state or output feedback, see (5)

and (10), then G and G′ are constant non-singular matrices and simplified stability
checks are available which make use of the underlying transfer-function equivalent
precompensator (8) or (13). Indeed, write

G−1F (s) = −P
−1

(s)Q(s)
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where P and Q is a pair of left coprime polynomial matrices. Then P , Q is related
with P,Q, R defined in (24) as

P = PG−1, Q = Q, R = P

and

(PD + QN)−1(s) = D−1(s)[I − F (s) T (s)]−1P−1(s)

= D−1(s)K(s)P
−1

(s)

on using (14). Thus a dynamic state feedback (5) will stabilize system (1) if and only
if D−1KP

−1
is a stable rational matrix, where K is the transfer-function equivalent

cascade compensator (14). In the case of dynamic output feedback (10), write

G′−1F ′(s) = −P
′−1

(s)Q
′
(s)

where P
′
and Q

′
is a pair of left coprime polynomial matrices. Then P

′
, Q

′
is related

with P ′, Q′, R′ defined in (25) as

P ′ = P
′
G′−1, Q′ = Q

′
, R′ = P

′

and

(P ′D + Q′N ′)−1(s) = D−1(s) [I − F ′(s)T ′(s)]−1P ′−1(s)

= D−1(s)K(s)P
′−1

(s)

on using (19). Thus a dynamic output feedback (10) will stabilize system (1) if
and only if D−1KP

′−1
is a stable rational matrix, where K is the transfer-function

equaivalent cascade compensator (19).
These results are particularly useful when K is realized using static state or

output feedback, see (4) and (9). Then a further simplification occurs: F and F ′

are constant as well, which entails that P and P
′
are constant matrices. Then one

can tell whether the static state or output feedback will stabilize system (1) from
D−1K, where K is the underlying transfer-function equivalent cascade sompensator
given by (16) or (21), depending on the type of feedback in question. In fact, K−1D
is a polynomial matrix in these cases and its determinant is the pole polynomial of
the closed-loop system [6].

9. MODEL MATCHING

A typical application of the above results is the problem of model matching [7], [9], [10].
Given a plant

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

with a strictly proper, rational l × m transfer function matrix TP of rank m and
a model transfer function matrix TM , which is assumed to be also strictly proper,
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rational, and of size l ×m and rankm. We seek to find a compensator, specified in
one of the forms (4) – (7) and (9) – (12), such that the closed-loop system is stable
and has transfer matrix TM .

To make contact with the preceding sections, we recall (2) and (3) and identify
TP with T ′. Then the model matching equation, namely

TP (s)[I − F (s)T (s)]−1G(s) = TM (s)

relevant for compensators (4) – (7), or

TP (s) [I − F ′(s) T ′(s)]−1G′(s) = TM (s)

in the case of compensators (9) – (12), immediately suggests the following two-step
solution: determine a matching cascade compensator K from the equation

TP (s)K(s) = TM (s) (26)

and then realize K in one of the forms (4) – (7) desired,

K(s) = [I − F (s) T (s)]−1G(s)

where F and G are either proper rational or constant matrices, or in one of the
forms (9) – (12),

K(s) = [I − F ′(s)T ′(s)]−1G′(s),

where F ′ and G′ are either proper rational or constant matrices.
The assumptions that TP and TM have full column rank m secure that the model

matching equation (26) has at most one rational matrix solution K.
The matching equation (26) has a proper rational solution K if and only if the

matrices [TP TM ] and TP have identical infinite zero structure [8]. In the scalar
case, this means that the relative degree of TP does not exceed that of TM .

Using the equivalence result provided by Theorem 1, the above condition is nec-
essary and sufficient to achieve the match via any of the two-degree-of-freedom com-
pensation schemes (6), (7) or (11), (12).

Suppose we want to implement dynamic state feedback (5). Theorem 2 requires
that K be bi-proper. Thus the equation

TM (s)K−1(s) = TP (s)

should have a proper rational solution K−1(s). This is the case if and only if the
matrices [TP TM ] and TM have identical infinite zero structure [8]. Combining the
two conditions, a match via (5) is possible if and only if TP and TM have identical
infinite zero structure. This reduces to identical relative degrees in the scalar case.

Finally, let us realize the match using static state feedback (4). Theorem 3
imposes a further condition that K−1D be polynomial. Writing TP and TM in
terms of their right coprime polynomial factorizations,

TP (s) = NP (s)D−1(s)

TM (s) = NM (s)E−1(s)
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and using (26), we observe that

K−1(s) D(s) = E(s) N−1
M (s) NP (s)

is a polynomial matrix if and only if NM divides NP on the left. This means that
the equation

NM (s)X(s) = NP (s)

must be solvable for a polynomial matrix X. A necessary and sufficient condition is
that the matrices [TP TM ] and TM have identical finite zeros structures [8].

Having achieved the match desired, we can check for stability of the closed-loop
system. In the case of static state feedback, D−1K is required to be stable, which
means that the equation

NP (s) Y (s) = NM (s)

is to have a stable rational solution Y. Thus a stable match can be achieved if and
only if the matrices [TP TM ] and TP have identical finite unstable zeros structures
[8]. In the scalar case, this amounts to the requirement that all non-minimum-phase
zeros of TP must be included in TM .

In case the match is to be achieved via output feedback, additional conditions
must be satisfied, viz. Theorem 4(b) and Theorem 5(c). These conditons, however,
involve deeper properties of TP and TM than just their finite or infinite zeros. An
example is included to illustrate the application of transfer function equivalence to
model matching.

Example 1. Consider a plant (1) given by

A =
[

0 1
−1 −1

]
B =

[
0
1

]
C = [−1 − 1 ]

with the input-state transfer function

T (s) =
1

s2 + s + 1

[
1
s

]

and the input-output transfer function

TP (s) =
s− 1

s2 + s + 1
.

Which models TM (s) of McMillan degree less than or equal to 2 can be matched with
this plant using dynamic/static state feedback and dynamic/static output feedback?

For dynamic state feedback (5), the relative degree of TM should equal that of
TP , hence 1. This gives the model class

TM5(s) = c
s + b

s2 + a1s + a0

where a0, a1, b, and c 6= 0 vary over real numbers.



Transfer Function Equivalence of Feedback/Feedforward Compensators 623

For static state feedback (4), TM5 should have in addition either one zero at 1 or
no finite zero at all. This yield the model class

TM4(s) = c
s− 1

s2 + a1s + a0

where a0, a1, and c 6= 0 are any real numbers. The case of no finite zero occurs when
1 + a1 + a0 = 0.

For dynamic output feedback (10), the model class TM5 is further constrained by
the condition (b) of Theorem 4. However, our particular TP has relative degree 1
and so has

K−1
SP (s) =

1
c

(a1 − b− 2)s2 + (a0 − a1 − b− 1) s− (a0 + b)
(s2 + s + 1)(s + b)

. (27)

Thus no further constraint applies and the achievable model class is

TM10(s) = TM5(s).

For static output feedback (9), the model class TM4 is further constrained by the
condition (c) of Theorem 5. We calculate

K−1
SP (s) =

1
c

(a1 − 1)s − (1− a0)
s2 + s + 1

(28)

and align its numerator with that of TP . This results in a1 − 1 = 1 − a0 and the
achievable class is given by

TM9(s) = c
s− 1

s2 + (2− a0) s + a0

where a0 is any real number.
Let us now check for the ability of the above compensation schemes to stabilize

the system. The dynamic state feedbacks (5) that achieve TM5 are given by (15) as

F (s) = − 1
s + b

[ τs − (a0 + b)(a1 − b− 2) s + (a0 − a1 − b− 1− τ) ]

G = c (29)

where τ is any real parameter. Thus

D−1KP−1 =
c

(s + 1)(s2 + a1s + a0)

and (29) can never stabilize (1) unless F (s) is constant.
The static state feedback (4) that achievers TM4 is given by (18) as

F = [ 1− a0 1− a1 ], G = c

and
D−1K =

c

s2 + a1s + a0
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stable implies the constraint a0 > 0, a1 > 0.
The dynamic output feedback (10) that achieves TM10 is given by (20) as

F ′(s) = − (a1 − b− 2)s2 + (a0 − a1 − b− 1)s− (a0 + b)
(s− 1)(s + b)

G′ = c (30)

and again (30) cannot stabilize (1) unless F ′ is constant.
The static output feedback (9) that achieves TM9 is given by (23) as

F ′ = a0 − 1, G′ = c

and
D−1K =

c

s2 + (s− a0) s + a0

stable implies the constraint 0 < a0 < 2.

(Received April 8, 1998.)
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