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A NOTE ON CONTROLLABILITY OF NONLINEAR
VOLTERRA INTEGRODIFFERENTIAL SYSTEMS

K. Balachandran and P. Balasubramaniam

Sufficient conditions for complete controllability of nonlinear Volterra integrodifferential systems
with implicit derivative are established. The results are generalization of the previous results and
are obtained through the notions of condensing map and measure noncompactness of a set.

1. INTRODUCTION

The problem of controllability of dynamical systems described by nonlinear ordinary
differential equations has been investigated by several authors with the help of fixed
point theorems [6]. Dacka [8] introduced a new method of analysis to study the
controllability of nonlinear systems with implicit derivative based on the measure of
noncompactness of a set and Darbo’s fixed-point theorem. This method has been
extended to a larger class of dynamical systems by Balachandran [2, 3, 4]. Anichini
et al. [1] studied the problem through the notions of condensing map and measure of
noncompactness of a set. They used the fixed-point theorem due to Sadovskii [9]. In
this paper, we shall study the controllability of nonlinear Volterra integrodifferential
systems with implicit derivative, by suitably adopting the technique of Anichini et
al. [1]. The results generalize the results of Balachandran [5].

2. MATHEMATICAL PRELIMINARIES

We first summarize some facts concerning condensing maps; for definitions and re-
sults about the measure of noncompactness and related topics, the reader can re-
fer the paper of Dacka [8]. Let X be a subset of a Banach space. An operator
T : X → X is called condensing if, for any bounded subset E in X with µ(E) 6= 0,
we have µ(T (E)) < µ(E), where µ(E) denotes the measure of noncompactness of
the set E.

We observe that, as a consequence of the properties of µ, if an operator T is the
sum of a compact operator and a condensing operator, then T itself is a condensing
operator. Further, if the operator P : X → X satisfies the condition |Px − Py| ≤
k |x−y| for x, y ∈ X, with 0 ≤ k < 1, then the operator P is a µ-contractive operator
with constant k; that is, µ(T (E)) ≤ kµ(E) for any bounded set E in X. In this case,
P has a fixed point property [9]. However, the condition |Px−Py| ≤ k |x−y| (x, y ∈
X) is insufficient to ensure that P is a condensing map or that P will admit a fixed
point (see [7]). The fixed point property holds in the condensing case (see [9]).

Let Cn(J) denote the space of continuous IRn-valued functions on the interval J .
For x ∈ Cn(J) and h > 0, let

θ(x, h) = sup {|x(t)− x(s)| : t, s ∈ J with |t− s| ≤ h} ,

and write θ(E, h) = supx∈E θ(x, h), so that θ(E, ·) is the modulus of continuity of
a bounded set E; and let Ω be the set of functions ω : IR+ → IR+ that are right
continuous and nondecreasing such that ω(r) < r, for r > 0, put J = [to, t1].
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Lemma 1 (cf. [9]). Let X ⊂ Cn(J) and let β and γ be functions defined on
[0, t1 − to] such that lims→0 β(s) = lims→0 γ(s) = 0. If a mapping T : X → Cn(J) is
given such that it maps bounded sets into bounded sets and, it is such that

θ (T (x), h) < ω (θ(x, β(h) ) + γ(h) for all h ∈ [0, t1 − to] and x ∈ X

with ω ∈ Ω, than T is a condensing mapping.

Lemma 2 (cf. [1, 9]). Let X ⊂ Cn(J), let J = [0, 1] and let S ⊂ X be a bounded
closed convex set. Let H : J × S → X be a continuous operator such that, for any
α ∈ J, the map H(α, ·) : S → X is condensing. If x 6= H(α, x) for any α ∈ J and
any x ∈ ∂S (the boundary of S), then H(1, ·) has a fixed point. Finally it is possible
to show that, for any bounded and equicontinuous set E in C1

n(J), the following
relation holds:

µC1
n
(E) ≡ µ1(E) = µ(DE) ≡ µCn

(DE)

where DE = {ẋ : x ∈ E} .

3. MAIN RESULT

Consider the nonlinear Volterra integrodifferential system

ẋ(t) = A(t)x(t) +

t∫

to

H(t, s)x(s)ds + B(t)u(t) + f(t, x)(t), ẋ(t), u(t)) (1)

where the state x(t) is an n-vector and the control u(t) is an m-vector. The entries
of the matrix functions

A : J → IRn2
, B : J → IRnm and H : ∆ → IRn2

, ∆ = {(t, s) : to ≤ s ≤ t ≤ t1}

are assumed to be continuous, also f : J × IR2n+m → IRn is a continuous n-vector
function. The solution of the system (1) is given by

x(t) = R(t, to)xo +

t∫

to

R(t, s)B(s)u(s)ds +

t∫

to

R(t, s)f(s, x)(s), ẋ(s), u(s))ds

where

∂R(t, s)
∂s

+ R(t, s)A(s) +

t∫

s

R(t, η)H(η, s)dη = 0

R(t, t) = identity for to ≤ s ≤ t ≤ t1.

We say that system (1) is completely controllable if for any xo, x1 ∈ IRn there exists a
continuous control function u(t) defined on J such that the solution x of (1) satisfies
x(t1) = x1. Define the controllability matrix

G(to, t) =

t∫

to

R(t, s)B(s)B∗(s)R∗(t, s)ds

where the star denotes the matrix transpose. The main result concerning the con-
trollability of the system (1) is given in the following theorem.
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Theorem 1. Suppose that the above conditions are satisfied for the system (1)
and assume the additional conditions:

(i) lim sup
|x|→∞

|f(t, x, y, u)|
|x| = 0

(ii) there exists a continuous nondecreasing function
ω : IR+ → IR+, with ω(r) < r, such that
|f(t, x, y, u)− f(t, x, z, u)| < ω(|y − z|)

for all (t, x, y, u) ∈ J × IR2n × IRm

(iii) the symmetric matrix G(to, t1) is nonsingular for some t1 > to.

Then the system (1) is completely controllable on J .
P r o o f. Define the nonlinear transformation

T : Cm(J)× C1
n(J) → Cm(J)× C1

n(J)

by
T (u, x)(t) = (T1(u, x)(t), T2(u, x)(t))

where the pair of operators T1 and T2 is defined by

T1(u, x)(t) = −B∗(t)Φ∗(t1, t)G−1(to, t1)

×



t1∫

to

Φ(t1, s)f(s, x(s), ẋ(s), u(s))ds− x1 + Φ(t1, to)xo




T2(u, x)(t) = Φ(t, to)xo +

t∫

to

Φ(t, s)B(s)T1(u, x)(s)ds

+

t∫

to

Φ(t, s)f(s, x(s), ẋ(s), T1(u, x)(s))ds

Since all the functions involved in the definition of the operator T are continuous,
T is continuous. Moreover by direct differentiation with respect to t, a fixed point
for the operator T gives rise to a control u and a corresponding function x = x(u),
solution of the system (1) satisfying x(to) = xo, x(t1) = x1. Let

ηo = (uo, xo) ∈ Cm(J)× C1
n(J),

η = (u, x) 6= 0 ∈ Cm(J)× C1
n(J)

and consider the equation
ηo = η − α T (η),

where α ∈ [0, 1]. This equation can be equivalently written as

u = uo + α T1(u, x) (2)

x = xo + α T2(u, x) (3)

From condition (i), for any ε > 0 there exists R > 0 such that if |x| > R then
|f(t, x, y, u)| < ε|x|. Then from (2) we get

|u| ≤ |uo|+ |α| |B| |Φ| |G−1| {|Φ| ε |x| |δ + |x1|+ |Φ| |xo|}
≤ |uo|+ k1 + |B| |Φ|2|G−1| ε δ|x| (4)
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where δ = t1 − to and k1 = |B| |Φ| |G−1|(|x1|+ |Φ| |xo|).
From this inequality and from (3), by applying the Gronwall lemma, we obtain

|x| ≤ [|xo|+ |Φ| |xo|+ |T1(u, x)| |Φ| |B| δ] exp (|Φ| ε δ)
≤ [|xo|+ |Φ| |xo|+ (k1 + |B| |Φ|2|G−1| ε δ|x|)|Φ| |B| δ] exp (|Φ| ε δ) (5)

Note that

d
dt

T2(u, x)(t) = A(t)T2(u, x)(t) +
t∫

to

H(t, s)T2(u, x)(s)ds

+B(t)T1(u, x)(t) + f(t, x(t), ẋ(t), T1(u, x)(t))

By application of the Gronwall lemma and by using the change of order of integra-
tion, we get

T2(u, x) ≤ [|B| |T1(u, x)| δ + ε δ|x|] exp (Ao) (6)

where

Ao =

t1∫

to

|A(s) +

t1∫

s

H(η, s)dη|ds.

Taking the derivative with respect to t, we obtain from (3)

ẋ =
dxo

dt
+ α

d
dt

(T2(u, x)(t))

and that gives,

|ẋ| ≤ |ẋo|+ |A| |T2(u, x)|+ |H| |T2(u, x)| δ + |B| |T1(u, x)|+ ε|x|
≤ |ẋo|+ |T1(u, x)| [(|A|+ |H| δ)|B| δ exp (Ao) + |B| ]

+|x| [(|A|+ |H| δ)ε δ exp (Ao) + ε ]
= |ẋo|+ k2 + |x| [|B|2 |Φ|2 |G−1| δε {(|A|+ |H| δ) δ exp (Ao) + 1}

+(|A|+ |H| δ)ε δ exp (Ao) + ε ] (7)

where
k2 = k1[|B |(|A|+ |H| δ) δ exp (Ao) + 1]

From (4) we get
|u| − |B| |Φ|2|G−1| ε δ |x| ≤ |uo|+ k1

and from (5), (6) and (7)

|x| [ exp (−|Φ| ε δ)− |B|2 |Φ|3 |G−1 | δ · εδ] ≤ k3 + |xo|

where
k3 = |Φ| |xo|+ k1|B| |Φ| δ

and

|ẋ| − |x| [|B|2 |Φ|2 |G−1| ε δ { (|A|+ |H| δ) δ exp (Ao) + 1 }
(|A|+ |H|δ) εδ exp (Ao) + ε] ≤ k2 + |ẋo|

Taking the sums of all the above quantities we obtain

|u| − |x|{|B| |Φ|2 |G−1| ε δ − exp (−|Φ| ε δ ) + |B|2 |Φ|3 |G−1| δ · ε δ

+|B|2 |Φ|2 |G−1| ε δ [ (|A|+ |H| δ) δ exp (Ao) + 1 ]
+ (|A|+ |H| δ) ε δ exp (Ao) + ε}+ |ẋ|

= |u| − λ |x|+ |ẋ| ≤ |uo|+ k1 + k3 + |xo|+ k2 + |ẋo| .
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where

λ = |B| |Φ|2 |G−1| ε δ {1 + |B| |Φ| δ + |B| [ (|A|+ |H |δ) δ exp (Ao) + 1]}
+ε + (|A| |H| δ) ε δ exp (Ao)− exp (−|Φ| ε δ)

Then, for suitable positive constants a, b, c we can write

|u| − [ εa− exp (−ε b)] |x|+ |ẋ| ≤ |uo|+ |xo|+ |ẋo|+ c,

so we divide by |u|+ |x|+ |ẋ| and, from the arbitrariness of ε, we get the existence
of a ball S in Cm(J)× C1

n(J) sufficiently large such that

|η − α T (η)| > 0 for η = (u, x) ∈ ∂S.

We want to show that T is a condensing map. To this aim, we note that T1 :
Cm(J) → Cm(J) is a compact operator and then, if E is a bounded set, µ(T1(E))
= 0. Then it will be enough to show that T2 is a condensing operator. For that, let
us consider the modulus of continuity of DT2(u, x)(·). Now, for t, s ∈ J, we have

|D T2(u, x)(t)−D T2(u, x)(s)| ≤ |A(t) T2(u, x)(t)−A(s)T2(u, x)(s)|

+|
t∫

to

H(t, η)T2(u, x)(η)dη −
s∫

to

H(s, η) T2(u, x)(η)dη|

+|B(t)T1(u, x)(t)−B(s)T1(u, x)(s)|
+|f(t, x(t), ẋ(t), T1(u, x)(t))− f(s, x(s), ẋ(s), T1(u, x)(s))|

For the first three terms of the right side of the inequality we may give the upper
estimate as βo(|t− s|) with limh→0 βo(h) = 0 and it may be chosen independent of
the choice of (u, x). For the fourth term we can give the following estimate:

|f(t, x(t), ẋ(t), T1(u, x)(t))− f(s, x(s), ẋ(s), T1(u, x)(s))|
≤ |f(t, x(t), ẋ(t), T1(u, x)(t))− f(t, x(t), ẋ(s), T1(u, x)(t))|
+|f(t, x(t), ẋ(s), T1(u, x)(t))− f(s, x(s), ẋ(s), T1(u, x)(s))|

For the first term we have the upper estimate ω(|ẋ(t) − ẋ(s)|) whereas for the
second term we may find an estimate

β1(|s− t|) with lim
h→0

β1(h) = 0.

Hence
θ(D T2(u, x), h) ≤ ω(θ(DE, h)) + β(h)

where β = βo + β1. Therefore, by Lemma 1, we get

θo(DT2(E)) < θo(DE)

Hence from

2µ1(T2(E)) = 2µ(DT2(E)) = θo(DT2(E)) < θo(DE)
= 2µ(DE) = 2µ1(E)

it follows that µ1(T2(E)) < µ1(E). Then the existence of a fixed point of the operator
T follows from Lemma 2; that is, there exist functions u∗ ∈ Cm(J) and x∗ ∈ C1

n(J)
such that

T (u∗, x∗) = (u∗, x∗),

that is,
u∗(t) = T1(u∗, x∗)(t), x∗(t) = T2(u∗, x∗)(t)

These functions are the required solutions. Further, it is easy to verify that the
function x(·) given above by the system (1) satisfies the boundary conditions x(to) =
xo and x(t1) = x1. Hence the system (1) is completely controllable. 2
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Remark 1. If we assume that the nonlinear function in the equation (1) also
satisfies the Lipschitz condition with respect to the state variable, then we can
obtain the unique response determined by any control.

Remark 2. The result of Theorem 1 still holds if we replace the condition (i) by

|f(t, x, ẋ, u)| ≤ α(t)|x|+ β(t)

where α and β are continuous functions.

4. EXAMPLE

We give an example of application of the above result to the following scalar nonlinear
Volterra integrodifferential system.

ẋ(t) = (e−3(t1−t) − 3) x(t) + 3

t∫

to

e−5(t−s)x(s)ds + e−2tu(t) +
log x√
1 + u2

+ arctg ẋ,

for t1 > to.

We have here

A(t) = e−3(t1−t) − 3, H(t, s) = 3e−5(t−s), B = e−2t, f =
log x√
1 + u2

+ arctg ẋ,

It has been easily seen that

R(t, s) = e−2(t−s) satisfies

∂R(t1,s)
∂s + R(t1, s)A(s) +

t1∫
s

R(t1, η)H(η, s)dη = 0.

so that

G(to, t1) =

t1∫

to

e−4t1ds

= e−4t1(t1 − to) > 0 for some t1 > to.

Furthermore

|f(t, x, y, u)− f(t, x, z, u)| = | arctg y − arctg z|
< arctg |y − z| if y 6= z

and lim
|x|→∞

|f(t, x, y, u)|
|x| = 0, so the hypotheses of Theorem 1 are satisfied. Hence

the system is completely controllable.
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