
KY BERNET I K A — V OL UME 2 8 (1 9 9 2) , N UM B ER 4 , PAGE S 2 4 9 – 2 6 2

COMPUTATIONAL EXPERIENCE WITH IMPROVED
CONJUGATE GRADIENT METHODS FOR
UNCONSTRAINED MINIMIZATION

Ladislav Lukšan

The paper contains a description of new restart procedures for the conjugate gradient meth-
ods and a numerical investigation of the influence of line search and scaling on their efficiency.
Computational results obtained by means of 15 sufficiently difficult problems are given.

1. INTRODUCTION

We are concerned with the finding of a local minimum x∗ ∈ IRn of the function
F : X → IR on an open set X⊂ IRn, i. e. a point x∗∈ IRn that satisfies the inequality
F (x∗)≤F (x) ∀x∈B(x∗, ε) for some ε > 0, where B(x∗, ε) = {x∈ IRn : ‖ x − x∗ ‖<
ε} ⊂ X is an open ball contained in X ⊂ IRn. The most frequently used methods
for this purpose are the variable metric (VM) methods whose iteration step has the
form

x+ = x + α s (1)

where x and x+ are old and new vectors of variables respectively, α is a positive
stepsize chosen so that

F+ − F ≤ ε1α sTg (1.2a)

and
sTg+ ≥ ε2s

Tg (1.2b)

with 0 < ε1 < 1/2 and ε1 < ε2 < 1, where F and F+ are old and new values of the
objective function respectively, g and g+ are old and new gradients of the objective
function respectively, and s is a direction vector satisfying the equation Bs + g = 0,
where B is a symmetric positive definite approximation of the Hessian matrix that
is constructed iteratively (see [17]).

If the number of variables is large, then matrix B cannot be stored, nor factored
in a reasonable time, so other methods have to be used. There exist several classes
of such methods: conjugate gradient methods [10], difference versions of truncated
Newton methods [7], variable metric methods with limited storage [19], sparse vari-
ants of variable metric methods [26], and partitioned variable metric methods for
separable problems [12]. The last two classes require the special structure of opti-
mization problems. From the other classes the simplest are the conjugate gradient
methods which need only 3–5 n-dimensional vectors (it depends on their implemen-
tation). Recently new attention has been given to these methods because they are
globally convergent with mild and reasonable assumptions.

In this paper, we are concerned with an efficient implementation of the conjugate
gradient (CG) methods. These methods are iterative and their iteration step has

250 L. LUKŠAN

the form (1.1) where α is a positive stepsize chosen so that

F+ − F ≤ ε1α sTg (1.3a)

and
|sTg+| ≤ ε2|sTg| (1.3b)

with 0 < ε1 < ε2 < 1/2 and s is a direction vector which is constructed iteratively
by means of the formula

s+ = −g+ + β s (4)

(with s = −g in the first iteration). The parameter β is computed so that the CG
method with perfect line search finds the minimum of a quadratic function after a
finite number of steps. There are three possibilities: the Hestenes and Stiefel [13]
method

βHS =
yTg+

yTs
(1.5a)

the Polak and Ribire [20] method

βPR =
yTg+

gTg
(1.5b)

and the Fletcher and Reeves [10] method

βFR =
(g+)Tg+

gTg
(1.5c)

(we use notation d = x+−x and y = g+−g). Although the Hestenes and Stiefel (HS)
method (1.5a) is most general and the Fletcher and Reeves (FR) method (1.5c) is the
simplest with good global convergence properties (theoretical), the most numerically
efficient was proved to be the Polak and Ribier (PR) method (1.5b).

The CG methods are more sensitive to their implementation than the VM meth-
ods:

1. The initial estimate α1 = 1 of α+ in the line search algorithm does not have
theoretical justification for CG methods. Therefore the CG methods are more
sensitive to the initial estimate α1 than the VM methods.

2. CG methods need more perfect line search than VM methods. We usually use
ε2 = 0.1 in (1.3) instead of ε2 = 0.9 in (1.2).

3. CG methods strongly depend on restarts while VM methods need not be
restarted.

In this paper we propose several efficient implementations of the CG methods
based on recent convergence results. Computational efficiency of these implementa-
tions is demonstrated on 15 sufficiently complicated test problems.

2. RECENT CONVERGENCE RESULTS

It is well known that any CG method with perfect line search (with (1.3b) where
ε2 = 0) finds the minimum of a quadratic function after at most n steps. This
property implies that any convergent CG method with asymptotically perfect line
search and with periodic restart is n-step quadratically convergent (see [2]). This
result is very useful because asymptotically perfect line search can be easily realized
by both quadratic and cubic interpolations.

The global convergence of CG methods can be assured by suitable restart rules.
The simplest such rule is the so-called angle test which consists in setting β = 0 in
(1.4) whenever

cos ϑ = − sTg

‖ s ‖ ‖ g ‖ < ε0 (1)

Computational Experience with Improved Conjugate Gradient Methods 251

where ε0 is a prescribed constant (usually ε0 = 10−3). A more complicated angle test
is proposed in [25]. If the line search is asymptotically perfect, the global convergence
of CG methods can be assured by periodic restarts (see [16]).

The first global convergence result which does not depend on restarts has been
obtained by Zoutendijk [28] and Powell [22], who proved that the FR method with
perfect line search is globally convergent in the sense that

lim inf ‖ g ‖ = 0 (2)

where lim inf is taken over the iterative process (1.1). Later Al-Bali [1] generalized
this result to include the FR method without perfect line search. He has shown that
(2.2) holds for the FR method whenever ε2 < 1/2 in (1.3). Recently great effort
was devoted to generalizing this result to other CG methods. Touati-Ahmed and
Storey [27] have shown that the iterative process (1.1) and (1.4) with a line search
satisfying (1.3) is globally convergent if

0 ≤ β ≤ η2βFR (2.3)

and
λ ‖ g+ ‖2≤ (1/η2)

k (2.4)

hold in every iteration, where 0 < λ, 1 < η2 < 1/(2ε2) are suitable constants and k
is the iteration number counted from the last restart. Moreover, (2.3) and 1 < η2 <
1/(2ε2) imply the inequality

gTs ≤ −1− 2ε2η2

1− ε2η2

‖ g ‖2< 0 (2.5)

independently of (2.4) (see the proof of Theorem 2.2 given in [27]). Therefore the
CG method is a descent one if (2.3) and 1 < η2 < 1/(2ε2) hold. The most general
result has been obtained by Gilbert and Nocedal [11], who have shown that the both
PR and HS methods are globally convergent if they generate positive values of β
and if (2.5) holds. This result is very important because it allows us to develop a
great number of useful restart procedures for CG methods.

3. NEW RESTART PROCEDURES

We limit our attention to the PR method, but the same considerations can be used
for the HS method. Usually the PR method is implemented with periodic restarts
and with angle test which serves as a safeguard. Let us denote this possibility as
REST = 1 :

β = 0 if (2.1) holds,

β = 0 if k = n + 1,

β = βPR otherwise,

where k is the iteration number counted from the last restart (i. e. from the last
iteration with β = 0).

In [23], Powell points out that the PR method works better if it is restarted also
whenever

βPR < 0. (3.1)

Let us denote this strategy as REST = 2 :

β = 0 if (2.1) holds,

β = 0 if k = n + 1

β = 0 if (3.1) holds,

β = βPR otherwise.

252 L. LUKŠAN

Convergence results noted in the previous section together with our computa-
tional experiments show that the PR method is more efficient if it is restarted not
only when (3.1) holds, but also whenever

βPR > η2βFR (3.2)

(see (2.3)) where 1 < η2 < 1/(2ε2) is a suitable constant (we recommend η2 = 1.34,
all recommended values given in this paper were obtained experimentally by means
of extensive computations). Let us denote this strategy as REST = 3 :

β = 0 if (2.1) holds,

β = 0 if k = n + 1,

β = 0 if either (3.1) or (3.2) holds, and

β = βPR otherwise.

We have performed several tests with these three rules. The best results were ob-
tained with the choice REST = 3, which is the first restart procedure we recommend.
Note that the test (2.1) has not been active in any problem chosen for detailed study
of restart causes.

The PR method with periodic restarts can be disadvantageous for some problems
that require more restarts at the beginning of the iterative process. Therefore we
tried to adapt the criterion (2.4) for substituting the periodic restarts. The original
form (2.4) is also disadvantageous because it does not depend on the number of vari-
ables and for n large it can cause too frequent restarts. Therefore we are proposing
a new rule which implies restart whenever

λ ‖ g+ ‖2> ωk (3.3a)

where
ω = 10−

τ
n+1 (3.3b)

and where λ and τ are suitable constants (we recommend λ = 10−8 and τ = 4.1).
This leads to the new restart procedure we denote as REST = 4 :

β = 0 if either k = 12n or (2.1) holds,

β = 0 if either (3.1) or (3.2) holds,

β = 0 if (3.3) holds, and

β = βPR otherwise.

Test k = 12n serves only as a safeguard and it has not been active in any problem
chosen for detailed study of restart causes.

Another restart condition can be derived from gradient orthogonality. If any CG
method with perfect line search is applied to a quadratic function, then necessarily
gTg+ = 0. In the general case, we can require gTg+ ∼= 0, which gives βPR

∼= βFR.
Therefore we are proposing the rule which implies restart whenever either (3.2) or

βPR < η1βFR (3.4)

holds, where η1 is a suitable constant (we recommend η1 = 0.74). Let us denote the
resulting procedure as REST = 5 :

β = 0 if either k = 12n or (2.1) holds,

β = 0 if either (3.4) or (3.2) holds,

β = βPR otherwise.

Computational Experience with Improved Conjugate Gradient Methods 253

Note that for η1 = 0.8 and η2 = 1.2 we obtain the Powell restart procedure proposed
in [21]. The Powell restart procedure will be denoted as REST = 6.

The gradient orthogonality is not the only condition which can be used for mon-
itoring the PR method. Another such condition is mutual conjugacy. If any CG
method with perfect line search is applied to a quadratic function, then necessarily
yTs+ = 0. Therefore we are proposing the new rule which implies restart whenever

|yTs+| > η0 ‖ y ‖ ‖ s+ ‖ (3.5)

where η0 is a suitable constant (we recommend η0 = 0.015). This leads to the new
restart procedure we denote as REST = 7 :

β = 0 if either k = 12n or (2.1) holds,

β = 0 if either (3.1) or (3.2) holds,

β = 0 if (3.5) holds,

β = βPR otherwise

The proposed restart procedures were proved very efficient as will be shown in
Section 5. Note that we have studied many other restart procedures, such as ones
given in [11, 14, 27], but the results obtained have been worse then those given in
Section 5.

4. LINE SEARCH AND SCALING

Since the CG methods require more perfect line search than other methods, they
are very sensitive to its realization. We essentially use the standard line search
implementation, which can be represented by the following algorithm:

Algorithm 4.1. Input data: ∆ > 0, 0 < β1 < β2 < 1, 0 < ε1 < ε2 < 1/2.

Step 1. Determine the initial estimate α1 of α+. Set σ1 := 0. Set i := 1.

Step 2. Set αi := min(αi, ∆/ ‖ s ‖). Set ρi := σi and σi := αi. If the conditions
(1.3) are satisfied with F+ and g+ replaced by F (x + αis) and g(x + αis)
respectively, then set α+ := αi and terminate the computation. If both (1.3a)
and sTg(x + αis) < 0 hold then go to Step 3, else go to Step 4.

Step 3. If αi = ∆/ ‖ s ‖ then set α+ := αi and terminate the computation, else de-
termine the new estimate αi by cubic extrapolation. Set αi := max(αi, σi/β2),
set αi := min(αi, σi/β1), and go to Step 2.

Step 4. Determine the new estimate αi by cubic interpolation. Set αi := max(αi, ρi+

+ β1(σi − ρi)), set αi := min(αi, ρi + β2(σi − ρi)).
Step 5. If the conditions (1.3) are satisfied, with F+ and g+ replaced by F (x+αis)

and g(x+αis) respectively, then set α+ := αi and terminate the computation.
If both (1.3a) and sTg(x + αis) < 0 hold then set ρi := αi, else set σi := αi.
Go to Step 4.

Comments.

1) CG methods are sensitive to the order of interpolation. Therefore we recommend
the cubic interpolation given in [5] over the quadratic one. The results obtained
with the quadratic interpolation was much worse that those given in Section
5. Good results were obtained also with the conic interpolation proposed in
[3].

254 L. LUKŠAN

2) All results shown in Section 5 were obtained with the input data ε1 = 0.0001, ε2 =
0.1, β1 = 0.01, β2 = 0.9. We have performed also tests with other values of ε2,
but ε2 = 0.1 was proved very reasonable. Bound ∆, which serves to safeguard
against overflows, depends on the problem to be solved, and corresponding
values are given in Section 5.

Great attention was devoted to the choice of the initial estimate α1 in Step 1 of
the line search algorithm. There exist two standard choices:

α1 = 1 (4.1)

for the Newton method and
α1 = 2

Fmin − F

sTg
(4.2)

for the CG methods (see [10]), where Fmin is the lower bound for the minimal value
F (x∗). These simple choices are inefficient, but they are often combined. In [9], the
initial estimate

α1 = min
(

1, 2
Fmin − F

sTg

)
(4.3)

is recommended, while in [6] and [15], the authors propose the initial estimates

α1 = min
(

1, 4
Fmin − F

sTg

)
(4.4)

and

α1 = min
(

2, 2
Fmin − F

sTg

)
(4.5)

respectively. The choice (4.4) is frequently used for the VM methods. Our experience
show that the choice (4.3) is slightly better then (4.4) and (4.5) and we recommend
it over all choices (4.1) – (4.5).

Other initial estimates can be derived from the assumption that F+ − F ∼=
F − F−, where F− is the value of the objective function in the previous iteration.
Therefore, we can substitute F − F− for Fmin − F in (4.2) and we obtain

α1 = 2
F − F−

sTg
(4.6)

as in [8]. Again (4.3) can be combined with (4.1). The resulting initial estimate has
the form

α1 = min
(

1, 2
F − F−

sTg

)
, (4.7)

which generalizes (4.3). The choice (4.7) is shown to be very effective in Section 5.
This choice was proved more efficient than other more complicated choices we have
tested, and we recommend it in connection with CG methods.

For the simplification of subsequent considerations, we denote by INIT = 1 the
choice (4.1), by INIT = 2 the choice (4.2) if Fmin is given or (4.1) otherwise, by
INIT = 3 the choice (4.3) if Fmin is given or (4.1) otherwise, by INIT = 4 the
choice (4.6), and by INIT = 5 the choice (4.7).

Another useful tool for improving CG methods is scaling, which was originally
developed for VM methods (see [24]). The scaling consists in replacing (1.4) by

s+ = γ+(−g+ + βs), (4.8)

where γ+ is the scaling factor. We can use the same scaling factor as for the BFGS
method (see [17]). Then

γ+ =
yTd

yTy
(4.9)

Computational Experience with Improved Conjugate Gradient Methods 255

(again y − g+ − g and d = x+ − x). Note that when we use (4.8) then (1.5b) and
(1.5c) have to be replaced by

βPR =
1
γ

yTg+

gTg
(4.10b)

and

βFR =
1
γ

(g+)Tg+

gTg
(4.10c)

where γ is the scaling factor used in the previous iteration.
For the simplification of subsequent considerations, we denote by SCAL = 1 the

choice
γ+ = 1

and by SCAL = 2 the choice

γ+ = γ1, if yTd
yTy < γ1

γ+ = γ2, if yTd
yTy

> γ2

γ+ = yTd
yTy

, otherwise,

where 0 < γ1 < 1 < γ2 (we recommend γ1 = 0.005 and γ2 = 200). The bounds γ1

and γ2 serve for improvement of stability.

5. COMPUTATIONAL EXPERIMENTS

In this section, we present results of a comparative study of CG methods obtained by
means of 15 sufficiently difficult test problems given in [17], which are modifications
of test problems given in [4]:

1. The chained Rosenbrock function.
2. The chained Wood function.
3. The chained Powell singular function.
4. The chained Cragg and Levy function.
5. A generalization of the Broyden tridiagonal function.
6. A generalization of the Broyden banded function.
7. Toint’s 7-diagonal generalization of the Broyden tridiagonal function.
8. A generalization of the Nazareth trigonometric function.
9. A generalization of the Toint trigonometric function.

10. A penalty function.
11. An augmented Lagrangian function.
12. A generalization of the first Brown function.
13. A generalization of the second Brown function.
14. A discrete boundary value problem.
15. A discrete variational problem.

All test problems were solved for 20 (n = 20) and 100 (n = 100) variables and
selected problems were solved for 200 (n = 200) and 500 (n = 500) variables. For
most problems we used the bound ∆ = 1000 (see Algorithm 4.1), for problems 4, 10,
12, 13 we chose ∆ = 10, and for problems 9, 11 we chose ∆ = 1. The computation
was always stopped whenever the gradient norm became less then 10−6. The results
of our experiments are summarized in several tables. Table 1, Table 2, Table 4
and Table 5 contain detailed tests for 20 and 100 variables. Rows of these tables
correspond to 15 test problems and columns correspond to selected methods. The
results are presented in the form IT–IF, where IT is the number of iterations and IF
is both the number of function evaluations and the number of gradient evaluations
(in our line search algorithm the value and the gradient of the objective function
are evaluated at the same time). The asterisk in the second row of several tables
means that a nonoptimal point with the gradient norm less then 10−6 was obtained.
The row denoted by Σ contains the total number of iterations and the total number

256 L. LUKŠAN

of function evaluations. Table 3 contains only total numbers of iterations and total
numbers of function evaluations. Table 6 contains detailed tests for 200 variables.
Test problems 2, 8, 9, 14, and 15 were not used because problem 2 has many almost
stationary points, problems 8 and 9 are too dense, problem 14 is too ill-conditioned,
and problem 15 is unbounded.

Table 1 shows the efficiency of individual restart procedures for “standard” choices
INIT = 5 and SCAL = 2. We can see that the periodic restart procedure (REST =
3) can be less efficient for problem 14, which requires more frequent restarts.

Computational Experience with Improved Conjugate Gradient Methods 257

Table 1

(PR) INIT = 5, SCAL = 2
n = 20 REST = 3 REST = 4 REST = 5 REST = 6 REST = 7

1 221–433 244–476 235–489 244–504 247–479
2 147–291 137–271 226–447 124–247 138–273
3 55–117 55–117 58–121 52–116 51–122
4 139–282 136–276 141–289 116–234 132–267
5 19–39 19–39 20–44 19–40 19–39
6 25–59 25–59 25–59 26–63 28–68
7 20–42 20–42 20–43 19–43 19–43
8 24–68 24–68 24–68 30–82 24–68
9 36–83 37–88 32–76 32–76 34–83

10 73–111 73–111 73–111 71–108 74–116
11 170–346 118–255 178–382 175–387 135–285
12 10–28 10–28 10–28 14–48 10–31
13 3–10 3–10 3–10 3–10 3–10
14 236–462 129–253 101–197 180–348 102–198
15 35–69 51–100 41–84 40–81 49–97
Σ 1213–2440 1081–2193 1187–2448 1145–2387 1065–2179

Table 2 contains results obtained for different initial estimates in the line search
algorithm (for the choices REST = 3 and SCAL = 2). This table demonstrates the
great effectiveness of the initial estimate (4.7) and it shows that (4.3) is better than
both (4.1) and (4.2). Similar results were obtained also for other restart procedures.

Table 2

(PR) REST = 3, SCAL = 2
n = 20 INIT = 1 INIT = 2 INIT = 3 INIT = 4 INIT = 5

1 209–438 204–635 211–422 193–383 221–433
2 445–951? 305–1078 329–678 168-339 147–291
3 59–140 64–139 49–104 60–132 55–117
4 149–319 136–917 134–267 166–322 139–282
5 20–48 18–26 18–36 17–43 19–39
6 25–66 26–52 25–51 25–67 25–59
7 22–48 20–162 20–38 22–49 20–42
8 34–127 28–73 36–81 24–70 24–68
9 37–90 37–90 37–90 36–83 36–83

10 75–112 73–114 72–108 74–102 73–111
11 162–354 168–532 167–364 119–264 170–346
12 9–31 11–38 12–31 10–33 10–28
13 3–7 3–6 3–6 3–16 3–10
14 234–458 326–741 221–435 251–479 236–462
15 45–92 45–92 45–92 39–75 35–69
Σ 1528–3281 1464–4695 1379–2803 1207–2457 1213–2440

More extensive tests are presented in Table 3. Here the influence of initial esti-
mates and scaling options is shown for all 7 restart procedures described in Section 4.
We can see that the new restart procedures are very efficient in connection with the
“standard” choices INIT = 5 and SCAL = 2, while the simplest restart procedures
based on periodic restarts (first two rows in the table) perform worse in this case.

Table 3

(PR) INIT = 3 INIT = 3 INIT = 5 INIT = 5
n = 20 SCAL = 1 SCAL = 2 SCAL = 1 SCAL = 2

REST = 1 1477–3818 1445–2928 1615–3234 1753–3480
REST = 2 1456–3796 1505–3040 1320–2650 1445–2890
REST = 3 1531–3889 1379–2803 1299–2623 1213–2440
REST = 4 1276–3320 1309–2652 1362–2728 1081–2193
REST = 5 1641–4164 1668–3409 1380–2764 1187–2448
REST = 6 1475–3858 1343–2818 1155–2370 1145–2387
REST = 7 1817–4541 1763–3553 1082–2231 1065–2179

258 L. LUKŠAN

Although almost all tests were performed for the PR method, Table 4 contains
some experiments with other CG methods. Here the surprisingly good performance
of the FR method with the choice REST = 7 is shown and the worse efficiency of
the HS method in comparison with the PR method is demonstrated.

Table 4

(FR) INIT = 5, SCAL = 2 (HS) INIT = 5, SCAL = 2
n = 20 REST = 3 REST = 7 REST = 3 REST = 7

1 259–479 260–528 226–439 262–490
2 164–327 114–232 160–318 205–401
3 79–159 56–123 49–110 49–110
4 136–273 123–254 110–220 176–346
5 19–39 21–46 18–37 18–37
6 26–55 30–70 26–61 26–61
7 20–40 18–41 20–42 20–42
8 44–101 21–57 24–68 24–68
9 56–114 33–76 37–92 38–88

10 98–147 76–119 74–115 74–115
11 137–270 173–377 162–333 318–619
12 27–61 12–37 11–31 11–31
13 5–11 3–10 3–10 3–10
14 346–670 105–209 261–509 208–405
15 40–81 29–60 41–79 54–106
Σ 1456–2827 1074–2239 1222–2464 1486–2929

Table 5 shows the efficiency of individual restart procedures for 100 variables.
Here a good robustness of the choice REST = 7 is demonstrated.

Computational Experience with Improved Conjugate Gradient Methods 259

Table 5

(PR) INIT = 5, SCAL = 2
n = 100 REST = 3 REST = 4 REST = 5 REST = 6 REST = 7

1 649–1152 737–1298 854–1761 855–1756 829–1591
2 886–1718? 730–1409 986–1951? 1525–3063? 705–1377?

3 48–103 48–103 47–103 47–103 70–148
4 158–319 249–496 159–325 225–468 157–312
5 20–41 20–41 20–41 21–45 22–44
6 28–68 28–68 28–68 30–72 28–68
7 24–50 24–50 25–53 25–53 24–53
8 37–95 620–752 19–54 19–54 39–92
9 125–252 134–256 123–250 115–235 118–237

10 91–149 91–149 92–152 93–173 91–154
11 164–327 226–440 162–336 147–305 112–234
12 14–40 14–34 14–40 15–40 15–50
13 3–10 3–10 3–10 3–10 3–10
14 8819–17489 6707–13340 3197–6371 3051–6075 3197–6371
15 9–18 9–18 9–18 9–18 9–18
Σ 11075–21831 9640–18464 5738–11533 6180–12470 5419–10759

The influence of initial estimates and scaling options for 200 variables is shown
in Table 6. Here the expressive efficiency of the initial estimate (4.7) and the scaling
(4.9) is demonstrated.

Table 6

(PR) REST = 7
n = 200 INIT = 3 INIT = 3 INIT = 5 INIT = 5

SCAL = 1 SCAL = 2 SCAL = 1 SCAL = 2
1 1492–7073 1185–2374 1566–2993 1532–2902
3 53–107 51–107 52–114 52–118
4 157–375 132–277 161–314 137–276
5 24–45 27–53 21–50 20–46
6 29–54 30–59 29–66 30–67
7 24–55 24–49 24–55 25–54

10 47–123 48–99 47–134 46–89
11 96–222 879–1749 134–269 108–217
12 17–44 17–45 18–53 18–54
13 3–7 3–7 3–10 3–10
Σ 1942–8105 2396–4819 2055–4058 1971–3833

Finally our restarted CG method (the PR method with choices REST = 3, INIT =
5, and SCAL = 2) was compared with other optimization methods. Table 7 con-
tains the comparison of this CG method with the 5-step limited memory (LM) BFGS
method proposed in [19], with the difference version of the truncated Newton (TN)
method given in [7], and with the partitioned variable metric (VM) method de-
scribed in [12] implemented with an imperfect iterative solution of the linear system
Bs+g = 0. Problem 10 and Problem 12 were modified for the computations yielding
Table 7 since a partitioned structure was required.

260 L. LUKŠAN

Table 7

n = 500 CG LM TN VM
1 2537–4052 2564–2819 823–10423 1497–1825
3 44–97 240–257 23–124 44–45
4 253–536 108–115 21–221 38–40
5 23–51 23–25 14–64 18–20
6 28–65 34–36 15–145 147–148
7 25–61 33–38 12–56 21–25

10 138–291 172–217 26–281 18–21
11 246–451 124–132 109–387 85–89
12 191–441 127–135 104–302 117–120
13 83–88 83–84 81–164 84–85
Σ 3568–6133 3508–3858 1228–12167 2069–2418

Time 7:32.86 7:11.17 12:49.67 11:49.69

Results in the last table show that the simple conjugate gradient method can be
competitive with other more complicated methods.

(Received February 28, 1991.)

REF ERE NC ES

[1] M. Al-Bali: Descent property and global convergence of the Fletcher-Reeves method with
inexact line search. IMA J. Numer. Anal. 5 (1985), 121–124.

[2] P. Baptist and J. Stoer: On the relation between quadratic termination and convergence
properties of minimization algorithms. Part 2. Applications. Numer. Math. 28 (1977), 367–
391.

[3] P. Bjorstadt and J. Nocedal: Analysis of a new algorithm for one-dimensional minimization.
Computing 22 (1979), 93–100.

[4] A.R. Conn, N. I.M. Gould and P. L. Toint: Testing a class of methods for solving minimization
problems with simple bounds on the variables. Math. Comp. 50 (1988), 399–430.

[5] W.C. Davidon: Variable metric method for minimization. A.E.C. Research and Development
Report ANL-5990, 1959.

[6] W.C. Davidon: Optimally conditioned optimization algorithms without line searches. Math.
Programming 9 (1975), 1–30.

[7] R. S. Dembo and T. Steihaug: Truncated-Newton algorithms for large-scale unconstrained
minimization. Math. Programming 26 (1983), 190–212.

[8] R. Fletcher: A FORTRAN subroutine for minimization by the method of conjugate gradients.
Report No. AERE-R7073, Atomic Energy Research Establishment, Harwell 1972.

[9] R. Fletcher and M. J.D. Powell: A rapidly convergent descent method for minimization. Com-
puter J. 6 (1963), 163–168.

[10] R. Fletcher and C.M. Reeves: Function minimization by conjugate gradients. Computer J. 7
(1964), 149–154.

[11] J. C. Gilbert and J. Nocedal: Global convergence properties of conjugate gradient methods
for optimization. Report No. 1268, Institut National de Recherche en Informatique et en
Automatique, 1990.

[12] A. Griewank and P. L. Toint: Partitioned variable metric updates for large structured opti-
mization problems. Numer. Math. 39 (1982), 119–137.

[13] M.R. Hestenes and C. M. Stiefel: Methods of conjugate gradient for solving linear systems. J.
Res. Nat. Bur. Standards 49 (1964), 409–436.

[14] Y. F. Hu and C. Storey: A Global Convergence Result for Conjugate Gradient Methods.
Report No. A134, Loughborough University of Technology, 1990.

[15] K.M. Khoda, Y. Liu and C. Storey: A Generalized Polak-Ribire Algorithm. Report No. A128,
Loughborough University of Technology, 1990.

[16] L. Lukšan: Variable Metric Methods. Unconstrained Minimization. Academia, Prague 1990.
In Czech.

[17] L. Lukšan: Computational experience with improved variable metric methods for uncon-
strained minimization. Kybernetika 26 (1990), 415–431.

[18] J. J. Moré, B. S. Garbow and K.E. Hillström: Testing unconstrained optimization software.
ACM Trans. Math. Software 7 (1981), 17–41.

[19] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comp. 35 (1980),
773–782.

[20] E. Polak and G. Ribire: Note sur la convergence de methodes de directions conjugees. Revue
Francaise Inform. Mech. Oper. 16-R1 (1969), 35–43.

[21] M. J.D. Powell: Restart procedures of the conjugate gradient method. Math. Programming
12 (1977), 241–254.

[22] M. J.D. Powell: Nonconvex Minimization Calculations and the Conjugate Gradient Method.
Report No. DAMTP 1983/NA14, University of Cambridge, 1983.

Computational Experience with Improved Conjugate Gradient Methods 261

[23] M .J.D. Powell: Convergence Properties of Algorithms for Nonlinear Optimization. Report
No. DAMPT 1985/NA1, University of Cambridge, 1985.

[24] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math. Comp.
24 (1970), 647–656.

[25] D. F. Shanno: Globally convergent conjugate gradient algorithms. Math. Programming 33
(1985), 61–67.

[26] P. L. Toint: On sparse and symmetric matrix updating subject to a linear equation. Math.
Comp. 31 (1987), 954–961.

[27] D. Touati-Ahmed and C. Storey: Efficient hybrid conjugate gradient techniques. J. Optim.
Theory Appl. 64 (1990), 379–397.

[28] G. Zoutendijk: Nonlinear programming, computational methods. In: Integer and Nonlinear
Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 93–121.

Ing. Ladislav Lukšan, DrSc., Ústav informatiky a výpočetńı techniky ČSAV (Insti-
tute of Computer and Information Science – Czechoslovak Academy of Sciences),
Pod vodárenskou věž́ı 2, 182 07 Praha 8. Czechoslovakia.

	INTRODUCTION
	RECENT CONVERGENCE RESULTS
	NEW RESTART PROCEDURES
	LINE SEARCH AND SCALING
	COMPUTATIONAL EXPERIMENTS

