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ON M-DIMENSIONAL UNIFIED
(r, s)-JENSEN DIFFERENCE DIVERGENCE MEASURES
AND THEIR APPLICATIONS

Maria L. Menndez, Leandro Pardo and Inder J. Taneja

During past years the Jensen difference divergence measure (Sibson [18], Rao [12]) has found its
importance towards applications in various statistical areas. In this paper, we have presented three
different ways to generalize this measure by using two scalar parameters. These generalizations
have been put in unified expressions. Some connections with income inequality, generalized mutual
information, Markov chains, deflation factor etc., have been made.

1. INTRODUCTION

Let

∆n =

{
P = (p1, .., pn) | pi > 0,

n∑

i=1

pi = 1

}

be the set of all complete finite discrete probability distributions. For all P ∈ ∆n,
the Shannon’s entropy is written as

H(P ) = −
n∑

i=1

pi log2 pi. (1)

Concavity of Shannon’s entropy gives the following inequality :

M∑

j=1

λjH(Pj) ≤ H




M∑

j=1

λjPj


 , (2)

where P1, P2, . . . , PM ∈ ∆n, i. e., Pj = (p1j , p2j , . . . , pnj) ∈ ∆n, for each j =
1, 2, . . . , M ; and λi ≥ 0,

∑M
i=1 λi = 1.

The Jensen difference divergence measure (cf. [12]) or Information radius (cf. [18])
for M -probability distribution is given by

R(P1, P2, . . . , PM ) = H




M∑

j=1

λjPj


−

M∑

j=1

λjH(Pj). (3)

We can write

R(P1, P2, . . . , PM ) =
M∑

j=1

λjD

(
Pj ‖

M∑

k=1

λkPk

)
, (4)

where D(P‖Q) is the Kullback–Leibler’s directed divergence given by

D(P‖Q) =
n∑

i=1

pi log2

pi

qi
, (5)
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for all P, Q ∈ ∆n.
We shall call the measure (3) or (4), the M -dimensional R-divergence. We shall

now present some different ways to generalize this measure. In order to do so, first
we shall give a unified two parametric generalization of (5).

1.1. Unified (r, s)-directed divergence

Taneja [20] wrote some of the known generalizations of the measure (5) in a unified
way. This unification is given by

Fs
r (P‖Q) =





Ds
r(P‖Q) =

(
1− 21−s

)−1

{(
n∑

i=1

pr
i q

1−r
i

) s−1
r−1

− 1

}
, r 6= 1, s 6= 1

Ds
1(P‖Q) =

(
1− 21−s

)−1 (
2(s−1) D(P‖Q) − 1

)
, r = 1, s 6= 1

D1
r(P‖Q) = 1

r−1 log2

(
n∑

i=1

pr
i q

1−r
i

)
, r 6= 1, s = 1

D(P‖Q) = −
n∑

i=1

pi log2
pi

qi
, r = 1, s = 1

(6)
for all r ∈ (0,∞) and s ∈ (−∞,∞). Fs

r (P‖Q) is called unified (r, s)-directed di-
vergence. It includes in particular the measures studied by Sharma and Mittal [17],
Rnyi [14] and Kullback and Leibler [7]. It has many interesting properties (cf. [21]).
In particular, when Q = U , where U =

(
1
n , . . . , 1

n

) ∈ ∆n, then we can write

Fs
r (P‖Q) = ns−1 (Es

r (U)− Es
r (P )) , (7)

where

Es
r (P ) =





Hs
r (P ) =

(
21−s − 1

)−1

{(
n∑

i=1

pr
i

) s−1
r−1

− 1

}
, r 6= 1, s 6= 1

Hs
1(P ) =

(
21−s − 1

)−1 (
2(1−s) H(P ) − 1

)
, r = 1, s 6= 1

H1
r (P ) = 1

r−1 log2

(
n∑

i=1

pr
i

)
, r 6= 1, s = 1

H(P ) = −
n∑

i=1

pi log2 pi, r = 1, s = 1

(8)

and

Es
r (U) =

{ (
21−s − 1

)−1 (
n1−s − 1

)
, s 6= 1

log n, s = 1
(9)

for all r ∈ (0,∞) and s ∈ (−∞,∞). The measure Es
r (P ) is named as unified (r, s)-

entropy.

1.2. M-dimensional unified (r, s)-Jensen difference divergence measures

This section deals with three different generalizations of M -dimensional R-divergence
given by (4). The first generalization is based on the relations (4) and (6), while the
second is obtained directly. The third is based on the inequality (2) and the unified
(r, s)-entropy (8).

1.2.1. First generalization

In (4) replace D by Fs
r , we can write
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1Vs
r (P1, P2, . . . , PM ) =

M∑

j=1

λj Fs
r

(
Pj ‖

M∑

k=1

λkPk

)
, (10)

for all r ∈ (0,∞) and s ∈ (−∞,∞), where Fs
r is as given by (5). More clearly, the

measure (10) stands as follows:

1Vs
r (P1, . . . , PM ) =





1Rs
r(P1, . . . , PM ), r 6= 1, s 6= 1

1Rs
1(P1, . . . , PM ), r = 1, s 6= 1

1R1
r(P1, . . . , PM ), r 6= 1, s = 1

R(P1, . . . , PM ), r = 1, s = 1.

where

1Rs
r(P1, . . . , PM ) =

(
1− 21−s

)−1





M∑
j=1

λj

[
n∑

j=1

pr
ij

(
M∑

k=1

λkpik

)1−r
] s−1

r−1

− 1



 ,

r 6= 1, s 6= 1

1Rs
1(P1, . . . , PM ) =

(
1− 21−s

)−1 {
2(s−1) R(P1,...,PM ) − 1

}
, s 6= 1,

1R1
r(P1, . . . , PM ) = (r − 1)−1

M∑
j=1

λj log2

[
n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r
]

, r 6= 1,

(11)
for all r ∈ (0,∞) and s ∈ (−∞,∞).

1.2.2. Second generalization

In particular, when r = s, we have

1Rs
s(P1, P2, . . . , PM ) =

(
1− 21−s

)−1

(
n∑

i=1

(
M∑

j=1

λjp
s
ij

) (
M∑

k=1

λkpik

)1−s

− 1

)
,

s 6= 1, s > 0.
(12)

We shall use the expression appearing in (12) for defining the second generalization
of M -dimensional R-divergence. It is given as follows

2Vs
r (P1, P2, . . . , PM ) =





2Rs
r(P1, P2, . . . , PM ), r 6= 1, s 6= 1

2Rs
1(P1, P2, . . . , PM ), r = 1, s 6= 1

2R1
r(P1, P2, . . . , PM ), r 6= 1, s = 1

R(P1, P2, . . . , PM ), r = 1, s = 1,

(13)

where

2Rs
r(P1, P2, . . . , PM ) =

(
1− 21−s

)−1





[
n∑

i=1

(
M∑

j=1

λjp
r
ij

) (
M∑

k=1

λkpik

)1−r
] s−1

r−1

− 1



 ,

r 6= 1, s 6= 1

2Rs
1(P1, P2, . . . , PM ) =

(
1− 21−s

)−1 {exp2 [(s− 1)R(P1, . . . , PM )]− 1} , s 6= 1,

2R1
r(P1, P2, . . . , PM ) = (r − 1)−1 log2

{
n∑

j=1

(
M∑
i=1

λjp
r
ij

) (
M∑

k=1

λkpik

)1−r
}

, r 6= 1,

(14)
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for all r ∈ (0,∞) and s ∈ (−∞,∞).
In particular, when r = s, we have

1Vs
s (P1, P2, . . . , PM ) = 2Vs

s (P1, P2, . . . , PM ) , s > 0.

1.2.3. Third generalization

In the inequality (2) if we replace H by Es
r as of expression (8) we get

M∑

j=1

λjEs
r (Pj) ≤ Es

r




M∑

j=1

λjPj


 .

The validity of the above inequality depends upon the concavity of Er
s . This holds,

when (r, s) ∈ Γ (cf. [20]), where

Γ = {(r, s) | s ≥ 2− 1/r, r > 0} .

Thus, the difference

3Vs
r (P1, P2, . . . , PM ) = Es

r




M∑

j=1

λjPj


−

M∑

j=1

λjEs
r (Pj), (15)

for all (r, s) ∈ Γ can be considered a third generalization of Jensen difference diver-
gence measure (3). The particular case of (15), when r = s has been extensively
studied by Burbea and Rao [2, 3], Kapur [6], Sahoo and Wong [15]. And the case,
when s = 1 has been studied by Rao [12]. We see that the nonnegativity of (15) is
restrictive with respect to parameters, while this is not so for the measures (10) and
(13). The measures (10) and (13) are presented for the first time in this paper.

In this paper, our aim is to study properties of the measure αVs
r (P1, P2, . . . , PM )

(α = 1 and 2) such as convexity, Schur-convexity, monotonicity with respect to the
parameters, generalized data processing inequalities etc. Some applications towards
income inequality, deflation factor, generalized mutual information, Markov Chains
etc. are specified.

2. PROPERTIES OF M -DIMENSIONAL UNIFIED (r, s)-JENSEN DIFFER-
ENCEDIVERGENCE MEASURES

The definition of convexity for M -probability distributions is well known in the
literature, while, the Schur-convexity for M -probability distributions is not very
much known. It is defined as follows:

Definition 1. Let Pj = (p1j , . . . , pnj) ∈ ∆n and Qj = (q1j , . . . , qnj) ∈ ∆n,
j = 1, 2, . . . ,M . A function F : ∆n×∆n×· · ·×∆n −→ IR (reals) is Schur-convex on
∆n×∆n×· · ·∆n if (P1, . . . , PM )≺ (Q1, . . . , QM ) implies F (P1, . . . , PM )≤F (Q1, . . . , QM ),
where (P1, . . . , PM ) ≺ (Q1, . . . , QM ) means that there is a doubly stochastic matrix
{ait}, i, t = 1, . . . , n, with

n∑

i=1

ait =
n∑

t=1

ait = 1

such that

pij =
n∑

t=1

aitqtj , ∀ j = 1, 2, . . . ,M ; i = 1, 2, . . . , n.

Now we shall study some relations in the measures appearing in the expressions
(10) and (13).
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We can write

1Rs
r (P1, . . . , PM ) =

M∑

j=1

λjGs

(
D1

r

(
Pj ‖

M∑

k=1

λkPk

))
(16)

2Rs
r (P1, . . . , PM ) = Gs

(
2R1

r (P1, . . . , PM )
)

(17)

1Rs
1 (P1, . . . , PM ) =

M∑

j=1

λj Gs

(
D

(
Pj ‖

M∑

k=1

λkPk

))
(18)

2Rs
1 (P1, . . . , PM ) = Gs (R (P1, . . . , PM )) (19)

where

Gs(x) =

{ (
1− 21−s

)−1 (
2(s−1) x − 1

)
, s 6= 1

x, s = 1.
(20)

The function Gs given by (20) satisfies many interesting properties given in the
following result.

Result 1. For x ≥ 0, −∞ < s < ∞, the followings are true:

(i) Gs(x) ≥ 0 with equality iff x = 0;

(ii) Gs(x) is an increasing function of x;

(iii) Gs(x) is an increasing function of s;

(iv) Gs(x) is a convex function of x for s > 1;

(v) Gs(x) is a concave function of x for s < 1.

We shall now present some interesting properties of the M -dimensional uni-
fied (r, s)-Jensen difference divergence measures given by (10) and (13), i. e., for
αVs

r (P1, P2, . . . , PM )
(α = 1 and 2). From now onwards, it is understood that P1, P2, . . . , PM ∈ ∆n, r ∈
(0,∞) and s ∈ (−∞,∞).

Property 1. We have, αVs
r (P1, P2, . . . , PM ) ≥ 0 (α = 1 and 2), with equality iff

pij =
M∑

j=1

pijλj for all i = 1, . . . , n, j = 1, . . . ,M .

P r o o f . In view of the relations (16) – (19) and the result 1, it is sufficient to
prove the nonnegativity of 2R1

r (P1, P2, . . . , PM ), because the measures D1
r , D and R

are already nonnegative. The nonnegativity of 2R1
r (P1, P2, . . . , PM ) can be proved

by using Jensen’s inequality. 2

Property 2.

1Vs
r (P1, P2, . . . , PM )

{ ≤ 2 Vs
r (P1, . . . , PM ) , s ≤ r

≥ 2 Vs
r (P1, . . . , PM ) , s ≥ r.

P r o o f . In view of the continuity of the measures αVs
r (α = 1 and 2) with

respect to the parameters, it is sufficient to prove the result for αRs
r (α = 1 and

2), r 6= 1, s 6= 1. The result for αRs
r (α = 1 and 2) can be derived using Jensen’s

inequality. 2
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Property 3. αVs
r (P1, P2 . . . , PM ) (α = 1 and 2) are increasing functions of r

(s fixed) and of s (r fixed). In particular, when r = s, the result still holds.

P r o o f . In view of the relations (16) – (19) and the result 1 (iii), the measures
αVs

r (P1, P2, . . . , PM ) (α = 1 and 2) are increasing functions of s (r fixed). Now we
shall prove the increasing character with respect to r. For all P1, P2, . . . , PM ∈ ∆n,
let us consider

Tr

(
Pj ‖

M∑

k=1

λkPk

)
=




n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r



1
r−1

=




n∑

i=1

pij

(
pij∑M

k=1 λkpik

)1−r



1
r−1

, r 6= 1

for each j = 1, 2, . . . , M .
We can write,

Tr (Pj‖Fj) =

[
n∑

i=1

pijf
r−1
ik

] 1
r−1

, j = 1, 2, . . . , M,

where Fj = (f1j , . . . , fnj) with fij = pijPM
k=1 λkpik

for every i = 1, 2, . . . , n, j =
1, 2, . . . , M . For each j, Tr (Pj‖Fj) is an increasing function of r (cf. [1]). Since
log2(·) is an increasing function this gives that

1
r − 1

log2 (Tr(Pj‖Fj) = D1
r

(
Pj ‖

M∑

k=1

λkPk

)

is an increasing function of r for each j = 1, 2, . . . , M . In view of the relation
(16), we conclude that the measure 1Rs

r (P1, . . . , PM ) is increasing in r (s fixed).
Again using the fact that Tr(Pj‖Fj) is increasing in r, for each j, we conclude that∑M

j=1 λjTr(Pj‖Fj) is increasing in r. Since log2(·) is increasing we get that

1
r − 1

log2




M∑

j=1

λjTr(Pj‖Fj)


 = 2R1

r(P1, . . . , PM )

is increasing in r. In view of the relation (17) we conclude that 2Rs
r(P1, . . . , PM ) is

increasing in r (s fixed). Now we shall consider the particular case, i. e., when r = s.
In this case, we have

αRs
s (P1, . . . , PM ) =

(
1− 21−s

)−1




n∑

i=1




M∑

j=1

λjp
s
ij




(
M∑

k=1

λkpik

)1−s

− 1


 =

=
(
1− 21−s

)−1
[
2(s−1) 2R1

s(P1,...,PM ) − 1
]
, s 6= 1, α = 1, 2.

Using the result 1 (iii), we conclude that Rs
s(P1, . . . , PM ) is increasing in s. 2

Property 4. αVs
r (P1, P2, . . . , PM ) (α = 1 and 2) are convex functions of

(P1, P2, . . . , PM ) for all s ≥ r > 0, with P1 ∈ ∆n, i = 1, . . . , n.

P r o o f . In view of continuity of αVs
r (α = 1 and 2) with respect to the parameters

r and s, it is sufficient to show the convexity of αRs
r(P1, P2, . . . , PM ) (α = 1 and 2),

for all s ≥ r > 0, r 6= 1, s 6= 1.
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For α = 1. It can easily be checked that the function given by

Kr(p1j , . . . , pnj) =
n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r

is convex for r > 1 and concave for 0 < r < 1, for each j = 1, 2, . . . ,M . This is
equivalent to say that the following inequalities hold


µ1

n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r

+ µ2

n∑

i=1

qr
ij

(
M∑

k=1

λkqik

)1−r



s−1
r−1





≥
(

n∑
i=1

(µ1pij + µ2qij)
r

[
µ1

(
M∑

k=1

λkpik

)
+ µ2

(
M∑

k=1

λkqik

)]1−r
) s−1

r−1

,

r > 1, s−1
r−1 or 0 < r < 1, s−1

r−1 < 0

≤
(

n∑
i=1

(µ1pij + µ2qij)
r

[
µ1

(
M∑

k=1

λkpik

)
+ µ2

(
M∑

k=1

λkqik

)]1−r
) s−1

r−1

,

0 < r < 1, s−1
r−1 > 0 or r > 1, s−1

r−1 < 0

(21)

for each j = 1, 2, . . . , M ; µ1, µ2 ≥ 0, µ1 + µ2 = 1.
We know that the function f(x) = xt is convex for t > 1 or t < 0 and is concave for
0 < t < 1. Using this, we have

µ1




n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r



s−1
r−1

+ µ2




n∑

i=1

qr
ij

(
M∑

k=1

λkqik

)1−r



s−1
r−1





≥
[
µ1

n∑
i=1

pij

(
M∑

k=1

λkpik

)1−r

+ µ2

n∑
i=1

qr
ij

(
M∑

k=1

λkqik

)1−r
] s−1

r−1

, s−1
r−1 > 1 or s−1

r−1 < 0

≤
[
µ1

n∑
i=1

pij

(
M∑

k=1

λkpik

)1−r

+ µ2

n∑
i=1

qr
ij

(
M∑

k=1

λkqik

)1−r
] s−1

r−1

, 0 < s−1
r−1 < 1.

(22)

for each j = 1, 2, . . . , M ; µ1, µ2 ≥ 0, µ1 + µ2 = 1.
Joining the inequalities (21) and (22) and multiplying the resultant inequality by
λj , adding for all j = 1, 2, . . . , M , subtracting 1 on both sides and multiplying by
(1− 21−s)−1

(s 6= 1), we get the convexity of 1Rs
r (P1, P2, . . . , PM ) for all s > r > 0. In particular

when r = s, the inequalities (21) still hold. This completes the result for α = 1.

For α = 2. To prove the convexity of 1Rs
r (P1, . . . , PM ) we used the functions

Kr(p1j , . . . , pnj) (j = 1, 2, . . . ,M). Instead, using it again, if we use the fact that
the function

M∑

j=1

λjKr (p1j , . . . , pnj) =
M∑

j=1

λj

n∑

i=1

pr
ij

(
M∑

k=1

λkpik

)1−r

(23)

is convex in ∆M
n for r > 1 and is concave in ∆M

n for 0 < r < 1, and proceeding on
the similar lines as before we get the required result. 2
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Property 5. αVs
r (P1, P2, . . . , PM ) (α = 1 and 2) are Schur-convex functions of

(P1, P2, . . . , PM ) ∈ ∆M
n , i. e., (P1, P2, . . . , PM ) ≺ (Q1, Q2, . . . , QM ) implies

αVs
r (P1, P2, . . . , PM ) ≤α Vs

r (Q1, Q2, . . . , QM ) (α = 1 and 2)

P r o o f . By the definition of (P1, P2, . . . , PM ) ≺ (Q1, Q2, . . . , QM ) implies that

pij =
n∑

t=1

ait qtj ∀ j = 1, 2, . . . ,M ; i = 1, 2, . . . , n,

where ait, are as given in Definition 1. This gives,

pr
ij

(
M∑

k=1

λkpik

)1−r

=

(
n∑

t=1

ait qtj

)r (
M∑

k=1

n∑
t=1

ait λk qtk

)1−r

, (24)

for all j = 1, 2, . . . , M ; i = 1, 2, . . . , n.

For α = 1. From Hlder inequality, we have

pr
ij

(
M∑

k=1

λkpik

)1−r





≥
n∑

t=1
ait qr

tj

(
M∑

k=1

λk qtk

)1−r

, 0 < r < 1,

≤
n∑

t=1
ait qr

tj

(
M∑

k=1

λk qtk

)1−r

, r > 1,

for all j = 1, 2, . . . , M and i = 1, 2, . . . , n.

Summing over all i = 1, 2, . . . , n, using the fact that
∑n

i=1 ait = 1 for all t =
1, 2, . . . , n and raising both sides of the resultant inequality by s−1

r−1 , we have




n∑

i=1

pr
ij

(
M∑

k=1

λk pik

)1−r



s−1
r−1





≥
[

n∑
t=1

qr
tj

(
M∑

k=1

λk qtk

)1−r
] s−1

r−1

,

s−1
r−1 > 0, 0 < r < 1, or s−1

r−1 < 0, r > 1

≤
[

n∑
t=1

qr
tj

(
M∑

k=1

λk qtk

)1−r
] s−1

r−1

,

s−1
r−1 < 0, 0 < r < 1 or s−1

r−1 > 0, r > 1

for each j = 1, 2, . . . , M .

Multiplying by λj , summing over all j = 1, 2, . . . , M , subtracting 1 on both sides,
multiplying by (1− 21−s)−1 (s 6= 1) and simplifying, we get

1Rs
r (P1, P2, . . . , PM )) ≤ 1Rs

r (Q1, Q2, . . . , QM ) , r 6= 1, s 6= 1.

For α = 2. From relation (24) proceeding on the similar lines as before we get the
required result. 2

Property 6. If Pj(B) =
(∑M

k=1 pkj b1k, . . . ,
∑M

k=1 pkj bnk

)
∈ ∆n for each

j = 1, 2, . . . , M , where B = {bik}, bik ≥ 0, i = 1, 2, . . . , n; k = 1, 2, . . . , M is a
stochastic matrix with

∑n
i=1 bik = 1 for each k = 1, 2, . . . , M , then

αVs
r (P1(B), . . . , PM (B)) ≤ αVs

r (P1, . . . , PM ) (α = 1 and 2).

P r o o f . Follows on the lines similar to Property 5. 2
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Property 7. If the stochastic matrix B given in Property 6 is such that exists an
i0 for which bi0k ≥ c > 0, ∀ k = 1, 2, . . . , M , then

αVs
r (P1(B), . . . , PM (B)) ≤ (1− c) αVs

r (P1, . . . , PM ) (α = 1 and 2),

for all s ≥ r > 0.

P r o o f . For given B, fix B1 such that

B = (1− c)B1 + cB2,

where
2bik =

{
1, if i = i0,

0, otherwise.

Using convexity property of αVs
r (P1, . . . , PM ) (α = 1 and 2) and the property 6, we

have

αVs
r (P1(B), . . . , PM (B)) ≤ (1− c) αVs

r (P1(B1), . . . , PM (B1)) + αVs
r (P1(B2), . . . , PM (B2))

≤ (1− c) αVs
r (P1, . . . , PM ) (α = 1 and 2)

for all s ≥ r > 0, since αVs
r (P1(B2), . . . , PM (B2)) = 0 (α = 1 and 2).

3. APPLICATIONS

In this section, we shall specify some applications of the unified (r, s)-divergence
measures given in Section 1. The applications are given towards income inequality,
deflation factor, generalized mutual information and Markov chains.

3.1. Generalized measures of income inequality

Following the approach of Nayak and Gastwirth [10], the generalized measures of
income inequality are defined as:

αIs
r (P1, P2, . . . , PM ) =

αVs
r (P1, . . . , PM )

Es
r

(
M∑

j=1

λjPj

) (25)

for all r ∈ (0,∞) and s ∈ (−∞,∞) when α = 1 and 2, and (r, s) ∈ Γ, when α = 3.
Following the approach of Theil [23, 24], the generalized measure of income in-

equality is written as

Is
r (P‖U) =

Es
r (U)− Es

r (P )
Es

r (U)
, (26)

where U is uniform distribution and P ∈ ∆n. Some particular cases of measure (26)
are studied by Kapur [5].

3.2. General mutual information

Let us consider a bidimensional random variable (X,Y ) taking the values (xi, yj),
i = 1, . . . , n; j = 1, 2, . . . , M with joint and marginal probability distributions given
by

PXY = {p(xi, yj)} , PX = {p(xi)} and PY = {p(yj)}
for all i = 1, 2, . . . , n; j = 1, 2, . . . ,M .
The conditional probability distributions are given by

PX|Y =yj
= {p(xi | yj)} and PY |X=xi

= {p(yj |xi)}
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for all i = 1, 2, . . . , n; j = 1, 2, . . . ,M .
Let us also denote

PX × PY = {p(xi)p(yj)} , i = 1, 2, . . . , n; j = 1, 2, . . . , M.

Let us take λj = p(yj) and pij = p(xi | yj), then from (11), we have

1Rs
r (P1, . . . , PM ) =

M∑

j=1

p(yj) Ds
r

(
PX/Y =yj

‖PX

)
.

Hence
1Vs

r (X;Y ) =
M∑

j=1

p(yj)Fs
r

(
PX |Y =yj

‖PX

)
,

for all r ∈ (0,∞) and s ∈ (−∞,∞), where in this particular case
1Vs

r (X; Y ) = 1Vs
r (P1, . . . , PM ), and Fs

r is as given in (6).
Similarly, we can write

2Vs
r (X; Y ) = Fs

r (PXY ‖ PX × PY )

for all r ∈ (0,∞) and s ∈ (−∞,∞).
Again making the same substitutions as above, we have

3Rs
r (P1, . . . , PM ) =

=
(
21−s − 1

)−1








n∑

i=1




M∑

j=1

p(yj) p(xi | yj)




r


s−1
r−1

− 1





= Hs
r (X)−Hs

r (X|Y ).

Hence
3Vs

r (X;Y ) = Es
r (X)− Es

r (X|Y ), (27)

for all (r, s) ∈ Γ.
In particular, when r = s = 1, we have

1V1
1 (X; Y ) = 2V1

1 (X; Y ) = 3V1
1 (X; Y ) = R(X; Y ) =

M∑

j=1

p(yj)D
(
PX|Y =yj

∥∥ PX

)

= D (PXY ‖ PX × PY ) = H(X)−H(X|Y ),

where H(X) and H(X|Y ) are the Shannon’s entropy and Shannon’s conditional
entropy respectively.

The measure R(X; Y ) is famous in the literature on Information Theory as mu-
tual information between the random variables X and Y . We call the measures
αVs

r (X;Y ) (α = 1, 2 and 3), the unified (r, s)-mutual information.
For the three discrete random variables X, Y and W , let us define the expressions

αVs
r (α = 1, 2 and 3) as follows:

αVs
r (X; Y |W ) =

t∑

l=1

p(wl) αVs
r (X; Y |W = wl),

where for each value wl of W , we have

1Vs
r (X; Y |W = wl) =

M∑

j=1

p(yj |wl)Fs
r

(
PX |Y =yj ,W=wl

,
∥∥ PX|W=wl

)
,

2Vs
r (X; Y |W = wl) = Fs

r

(
PXY |W=wl

∥∥ PX |W=wl
× PX |W=wl

)
,
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and

3Vs
r (X; Y |W = wl) = Es

r (X |W = wl)− Es
r (X |Y, W = wl) ,

with

Es
r (X |Y, W = wl) =

M∑

j=1

p (yj |wl) Es
r

(
PX|Y =yj ,W=wl

)

for all r ∈ (0,∞) and s ∈ (−∞,∞) when α = 1 and 2, and (r, s) ∈ Γ when α = 3.
The expressions 2Vs

r and 3Vs
r can be also understood as follows :

2Vs
r (X; Y |W ) = Fs

r

(
PXY |W

∥∥ PX|W × PY |W
)

and

3Vs
r (X; Y |W ) = Es

r (X |W )− Es
r (X |Y,W ).

The following proposition holds.

Proposition 1.

(i) For all r ∈ (0,∞) and s ∈ (−∞,∞), we have
(a) αVs

r (X; Y ) ≥ 0 (α = 1 and 2) with equality iff X and Y are independent;
(b) αVs

r (X; Y |W ) ≥ 0 (α = 1 and 2) with equality iff X and Y are independent
given W .

(ii) For all (r, s) ∈ Γ, we have
(a) αVs

r (X; Y ) ≥ 0 with equality iff X and Y are independent;
(b) αVs

r (X;Y |W ) ≥ 0 with equality iff X and Y are independent given W .

P r o o f . Part (i) (a) and (b) follows from the Property 1. In order to prove
part (ii) (a) and (b) it is sufficient to prove (b) part, i. e., equivalent to prove the
following:

Es
r (X |Y,W ) ≤ Es

r (X |Y )

with equality iff X and Y are independent given W. It can be proved by using
concavity of Es

r for (r, s) ∈ Γ (cf. [20]).

3.3. Markov chain

We shall now apply the concept of unified (r, s)-mutual information discussed above
to Markov Chains.

Definition (Markov chain). A sequence of random variables X1, X2, . . . forms
a Markov chain denoted by X1 ªX2 ª . . . if for every i, the random variable Xi+1

is conditionally independent of (X1, X2, . . . , Xi−1) given Xi.

Proposition 2. The random variables X, Y and W form a Markov chain, i. e.,
X ª Y ªW iff αVs

r (X; W |Y ) = 0 (α = 1, 2 and 3).

The proof is obvious from the definitions and Proposition 1.
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Proposition 3. If X ª Y ªW , then

(a) αVs
r (X; W ) ≤

{
αVs

r (X; Y )
αVs

r (X; W )

for all r ∈ (0,∞), and s ∈ (−∞,∞) when α = 1 and 2, and (r, s) ∈ Γ, when
α = 3.

(b) Es
r (X |Y ) ≤ Es

r (X |W ), for all (r, s) ∈ Γ.

P r o o f . (a) For α = 1 and 2 the result follows from Property 6. For α = 3, we
have the following identity :

3Vs
r (X; W ) + 3Vs

r (X;Y |W ) = 3Vs
r (X; Y ) + 3Vs

r (X; W |Y ).

Since X, Y and W form a Markov chain, then by Proposition 2, 3Vs
r (X; W |Y ) = 0.

Also, 3Vs
r (X;Y |W ) ≥ 0. Thus, the required result follows immediately from the

above identity.
(b) From Proposition 2, we have

3Vs
r (X; W |Y ) = 0

for (r, s) ∈ Γ. This implies that

Es
r (X |Y ) = Es

r (X |Y, W ) ≤ Es
r (X |W ), (from Prop. 1 (b))

for all (r, s) ∈ Γ, whenever X, Y and W forms a Markov chain. 2

Proposition 4. If X ª Y ªW ª T , then
αVs

r (X;T ) ≤ αVs
r (Y ; W )

for all r ∈ (0,∞), s ∈ (−∞,∞) when α = 1 and (r, s) ∈ Γ, when α = 3.

P r o o f . Since X, Y, W and T forms a Markov chain, then X, Y and T and
Y, W and T also form Markov chains. Applying Proposition 3 (a) over these two
sub-Markov chains, we get the required result. 2

3.4. Deflation factor

Nayak [9], considered the following decomposition for the entropy of degree s

Es
s (X,Y ) = Es

s (X) +
n∑

i=1

p(xi) ws
s(p(xi)) Es

s (Y |X = xi), s > 0 (28)

where ws
s (p(xi)) is the “deflation factor” (cf. [11]) given by

ws
s(p(xi)) = p(xi)s−1.

The expression (28) given in [9] is for one parameter. This can be generalized for
two parameter family of measures in the following way:

Es
r (X,Y )





≤ Es
r (X) +

n∑
i=1

p(xi)ws
r(p(xi)) Es

r (Y |X = xi) r ≥ s ≥ 2− 1/r ≥ 1

≥ Es
r (X) +

n∑
i=1

p(xi)ws
r(p(xi)) Es

r (Y |X = xi) 1 ≥ r ≥ s ≥ 2− 1/r

(29)
where

ws
s(p(xi)) = p(xi)r s−1

r−1−1, r 6= 1.

As specified in [9], here also the above expression (29) does not applies in the case
of Rnyi’s entropy of order r. In particular, when r = s, the expression (29) reduces
to (28). For the proof of inequalities (29) refer to [13].
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