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KOLMOGOROV COMPLEXITY
AND PROBABILITY MEASURES

Jan Šindelář and Pavel Boček

Classes of strings (infinite sequences resp.) with a specific flow of Kolmogorov com-
plexity are introduced. Namely, lower bounds of Kolmogorov complexity are prescribed to
strings (initial segments of infinite sequences resp.) of specified lengths. Dependence of
probabilities of the classes on lower bounds of Kolmogorov complexity is the main theme of
the paper. Conditions are found under which the probabilities of the classes of the strings
are close to one. Similarly, conditions are derived under which the probabilities of the
classes of the sequences equal one.

It is shown that there are lower bounds of Kolmogorov complexity such that the studied
classes of the strings are of probability close to one, classes of the sequences are of probability
one, both with respect to almost all probability measures used in practice.

A variant of theorem on infinite oscillations is derived.

1. INTRODUCTION

The presented paper starts a series of papers dealing with applications of Kolmogorov
complexity, mainly in probability theory and statistics. The results of the paper will
be applied in the next papers of the series.

The papers will be devoted to distinguishing of probability measures by means of
Kolmogorov complexity, controlling of the flow of Kolmogorov complexity of infinite
sequences, pseudorandom generators and Monte–Carlo methods, statistical models
testing, the law of the iterated logarithm.

Infinite sequences with a specific flow of Kolmogorov complexity are considered
in the paper. Namely, a sequence is of this type if the Kolmogorov complexities
of its initial segments of specified lengths are bounded from below by given lower
bounds. Here is the difference from classical approach. Classical results prescribe
lower bounds of Kolmogorov complexity for all lengths of initial segments of infinite
sequences under consideration [1, 9, 10]. Classical approach deals with all the lengths
of initial segments, we deal with specified lengths.

Dependence of probability of our classes on the lower bounds of Kolmogorov
complexity is the main theme of the paper. Classical approach usually deals with
the lower bounds close to the lengths of strings under consideration (with some
exceptions like Theorem 4.1 in [1] is). Our lower bounds may increase slowly (like
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in Example 1), or they may be close to the lengths of strings under consideration,
or they may vary somewhere between the above two types of bounds.

Our approach was motivated by theorems on infinite oscillations. They deal
with upper bounds of Kolmogorov complexity of some initial segments of infinite
sequences. If we choose lower bounds of Kolmogorov complexity for the initial
segments of the same lengths and ascribe no lower bounds for the other ones, then
we grasp the resulting class of infinite sequences in a way more adequate for further
applications. Moreover, including of the other lower bounds may affect the classes
in an inappropriate way. Our approach enables us to control the flow of Kolmogorov
complexity of infinite sequences in a paper of our series.

Specific classes of infinite sequences were introduced in [8]. Each of the classes
depends on a sequence of real numbers. This sequence determines lower bounds of
Kolmogorov complexity of sequences from the class. Namely, an infinite sequence is
places into the class iff the Kolmogorov complexity of almost all of its initial segments
equals or exceeds the corresponding lower bounds. Here “almost all” means “up to
a finite number of cases”.

Kolmogorov complexity theory was originated by Kolmogorov in [5]. A similar
approach to the program size complexity was initiated independently by Solomonoff
[13] and Chaitin [2]. Exposition of the theory can be found e. g. in [1], Chapter 4,
for detailed explanation with a wide range of applications see [9].

The paper is organized as follows.
The concept of Kolmogorov complexity is outlined in Section 1. Classes of strings

(sequences resp.) with a specific flow of Kolmogorov complexity are defined in
Section 2.

Probabilities of the classes introduced in Section 2 are considered in Section 3.
Dependence of the probabilities on the lower bounds of Kolmogorov complexity is
analyzed. It is shown that the classes are of probability close to one (equal one
resp.) for almost all probability measures used in practice. The special case of the
Lebesgue measure is treated in Section 4.

A mild generalization of famous Martin–Löf’s result on infinite oscillations [11]
is derived in Section 5.

Basic results of the paper concern a relationship between Kolmogorov complexity
and probability measures (Sections 3 and 4) and infinite oscillations (Section 5).

NOTATION

The following notation is used in the paper.
The set {0, 1, 2, 3, . . .} of natural numbers is denoted by N . The symbols n, t

denote natural numbers.
The symbol Σ denotes a finite alphabet of cardinality c ≥ 2. The symbol Σ∗

denotes the set of all strings over Σ, l(x) denotes the length of a string x. The
symbol Σn denotes the set of all strings over Σ having the length n.

We interpret strings as natural numbers too. Namely, we arrange strings into a
lexicographical order, say x0, x1, x2, . . ., and interpret each string xn as the natural
number n.
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The set of all (infinite) sequences over Σ is denoted by Σ∞. The symbol Sn

denotes the initial segment of a sequence S having the length n. Consider a set X of
sequences. The symbol SX denotes the set of all initial segments of the sequences
form X , i. e. SX = {Sn|S ∈ X & n ∈ N}.

The symbol Ψ denotes a universal Kolmogorov algorithm (see [1], p. 309) with
inputs from the set Σ∗×N and with outputs in the set Σ∗ (this universal Kolmogorov
algorithm can be replaced by a partial recursive function computed by a universal
Turing machine in the present paper).

We consider the σ-field of subsets of Σ∞ generated by the set of cylinders. The
symbol P denotes a probability measure on Σ∞, while Pn denotes the corresponding
marginal probability measure on Σn. Hence

Pn{x} = P{S ∈ Σ∞ |Sn = x}

holds for each string x ∈ Σn. If P is the Lebesgue measure and x ∈ Σn, then we
have Pn{x} = c−n.

In addition to conventional notation we introduce the following operation. As-
sume that A ⊆ Σ∗ is a set of strings. We define

A ∗ Σ∞/n := (A ∗ Σ∞) ∩ Σn

= the set of all initial segments of sequences from A ∗ Σ∞

having the length n.

Here ∗ denotes the operation of concatenation. We assume that the operations ∪
(set union) and ∗ . . . /n are of the same priority.

2. KOLMOGOROV COMPLEXITY

A concept of (conditional) Kolmogorov complexity is briefly outlined in the sec-
tion. A simple lemma is stated characterizing the number of strings of bounded
Kolmogorov complexity.

Let us start with a definition of (conditional) Kolmogorov complexity.

Definition 1.1. Let φ be a partial mapping from Σ∗ ×Σ∗ to Σ∗. For each x, w ∈
Σ∗, the Kolmogorov complexity is defined by

Kφ(x|w) = inf{l(p) | p ∈ Σ∗ & φ(p, w) = x}.

The string w represents our prior information about the string x. We do not
assume that the mapping φ is computable at this moment. The reason is to distin-
guish the results based on computability assumptions from the more general ones.

The number of strings of bounded Kolmogorov complexity is estimated in
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Lemma 1.1. Let φ be a partial mapping from Σ∗ × Σ∗ to Σ∗. Assume that w is
a string, f is a nonnegative real number. Then we have

card {x ∈ Σ∗ | Kφ(x|w) < f} ≤ cf+1 − 1
c− 1

.

P r o o f . The set {x ∈ Σ∗|Kφ(x|w) < f} is the union of the sets Xn := {x ∈
Σ∗|Kφ(x|w) = n} over all 0 ≤ n < f . It suffices to show that each set Xn contains
at most cn members. Assume that Xn contains j members, say x1, x2, . . . , xj .

We want to show that j ≤ cn. If x ∈ Σn satisfies Kφ(x|w) = n, then there is
at least one p(x) ∈ Σn such that φ(p(x), w) = x is true, as follows from Defini-
tion 1.1. Clearly, all p(x1), p(x2), . . . , p(xj) are different members of Σn. Hence
j ≤ cardΣn = cn. 2

3. STRINGS AND SEQUENCES WITH A SPECIFIC FLOW
OF KOLMOGOROV COMPLEXITY

Classes of strings and sequences with a specific flow of Kolmogorov complexity are
introduced in the section. Their properties are derived in the foregoing sections.

Our considerations will be parameterized by the following entities.

i. A partial mapping φ from Σ∗ × Σ∗ to Σ∗.

ii. A sequence w = 〈w0, w1, w2, . . .〉 of strings from Σ∗.

iii. A sequence f = 〈f0, f1, f2, . . .〉 of nonnegative real numbers.

iv. A sequence N = 〈n0, n1, n2, . . .〉 of different naturals.

Any number ni represents the length of a string or strings under consideration. Let
x be a string of the length ni. Then the string wi represents our prior information
about x, the number fi represents a lower bound of the corresponding Kolmogorov
complexity.

We fix the partial mapping φ, our prior information w and the lengths N of
the strings under consideration. We shall vary the lover bounds f of Kolmogorov
complexity.

Namely, we consider strings satisfying the following two conditions. The length
of our string is specified in the sequence n0, n1, n2, . . .. The Kolmogorov complexity
of the string is bounded from below by the corresponding lower bound. Classes of
such strings are introduced in

Definition 2.1. Consider a string x ∈ Σ∗. The string is called (φ, w, f ,N )-
complex iff there is some i ∈ N such that we have l(x) = ni and

Kφ(x|wi) ≥ fi.
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The set of all (φ, w, f ,N )-complex strings is denoted by

Cstr φ, w
f ,N .

Clearly, the class of all (φ, w, f ,N )-complex strings having the length ni equals

Cstr φ, w
f ,N ∩ Σni .

We investigate probabilities of such classes below.

Classes of sequences with a specific flow of Kolmogorov complexity were studied
e. g. in [7] and [8]. Loosely speaking, a sequence is of this nature if the Kolmogorov
complexities of its long initial segments are bounded from below by prescribed lower
bounds. We consider a slightly more general type of sequences. Namely, the Kol-
mogorov complexities of (sufficiently long) initial segments of specified lengths are
bounded from below by prescribed lower bounds. The sequences are introduced in

Definition 2.2. Consider a sequence S ∈ Σ∞. The sequence is called
(φ, w, f ,N )-complex iff

∃ t ∀ i ≥ t : Kφ(Sni
|wi) ≥ fi.

The class of all (φ, w, f ,N )-complex sequences is denoted by

Cseq φ, w
f ,N .

Let S be an (φ, w, f ,N )-complex sequence. If i is sufficiently large, then the Kol-
mogorov complexity Kφ(Sni |wi) of the initial segment Sni is bounded from below
by fi.

The class of all (φ, w, f ,N )-complex sequences is the union of the classes intro-
duced in

Definition 2.3. Consider a sequence S ∈ Σ∞. The sequence is called
(φ, w, f ,N , t)-complex iff

∀ i ≥ t : Kφ(Sni |wi) ≥ fi.

The class of all (φ, w, f ,N , t)-complex sequences is denoted by

Cseq φ, w
f ,N , t.

Clearly, the sets Cseq φ, w
f ,N , t constitute a nondecreasing sequence of sets. Their

union equals Cseq φ, w
f ,N , hence we have

Cseq φ, w
f ,N , t ↗t Cseq φ, w

f ,N . (1)
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Assume that i ≥ t. Then the initial segments of the (φ, w, f ,N , t)-complex se-
quences having the length ni are (φ, w, f ,N )-complex strings. Therefore, we have

x ∈ SCseq φ, w
f ,N , t ∩ (∪∞i=0Σ

ni) =⇒ x ∈ Cstr φ, w
f ,N a. s. (2)

“Almost surely” means “up to a finite number of cases”. Clearly, if i < t, then
Kolmogorov complexity of the initial segments of the length ni may be “too low”.
The number of such strings is finite. Here the “almost surely” in (2) arises.

4. KOLMOGOROV COMPLEXITY AND PROBABILITY MEASURES

We investigate probabilities of the classes introduced in the previous section. A
dependence of the probabilities on the sequence f of the lower bounds of Kolmogorov
complexity is the main theme of the section.

Before going ahead, we introduce a notation and prove a lemma.
Let P be a probability measure on Σ∞. For each n, f we define

Πnf (P ) := max
{

Pn(X) | X ⊆ Σn & card (X) ≤ cf+1 − 1
c− 1

}
. (3)

Here f denotes a nonnegative real number.
Consider the strings of bounded Kolmogorov complexity, i. e. the strings x satis-

fying Kφ(x|w) < f . The probability of such strings having the length n is bounded
from above by Πnf (P ), as is shown in

Lemma 3.1. Let P be a probability measure on Σ∞. Assume that w is a string,
f is a nonnegative real.

Then we have
Pn{x ∈ Σn | Kφ(x|w) < f} ≤ Πnf (P ).

P r o o f . We have card {x ∈ Σn |Kφ(x|w) < f} ≤ cf+1−1
c−1 according to Lemma 1.1,

which together with (3) proves our lemma. 2

Probability of the class of (φ, w, f ,N )-complex strings having the length ni is
considered now. A lower bound of such probabilities is derived in the following
proposition. A simple condition is given under which the probabilities converge to
one.

Proposition 3.1. Let P be a probability measure on Σ∞.
a) For each i natural we have

Pni(Cstr φ, w
f ,N ∩ Σni) ≥ 1−Πnifi(P ). (4)

b) If limi→∞Πnifi(P ) = 0, then

lim
i→∞

Pni(Cstr φ, w
f ,N ∩ Σni) = 1. (5)
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P r o o f . We have

Pni

(
Cstr φ, w

f ,N ∩ Σni

)
= 1− Pni

(
Σni \ Cstr φ, w

f ,N
)

= 1− Pni
(x ∈ Σni |Kφ(x|wi) < fi) (6)

according to the definition of the set Cstr φ, w
f ,N . At the same time, Lemma 3.1 gives

Pni
(x ∈ Σni |Kφ(x|wi) < fi) ≤ Πnifi

(P ),

which, together with (6) gives (4).

Part b) of our proposition immediately follows from its part a). 2

Probability of the set of (φ, w, f ,N , t)-complex sequences is considered in the
following proposition. A lower bound of the probability is found. A simple condition
is stated under which the probability of the class of (φ, w, f ,N )-complex sequences
equals one.

Proposition 3.2. Let P be a probability measure on Σ∞.

a) For each t natural we have

P (Cseq φ, w
f ,N , t) ≥ 1− Σ∞i=tΠnifi(P ). (7)

b) If
Σ∞i=0Πnifi(P ) < ∞, (8)

then we have
P (Cseq φ, w

f ,N ) = 1. (9)

P r o o f . a) It suffices to prove that the set

Xt := Σ∞ \ Cseq φ, w
f ,N , t

is measurable and
P (Xt) ≤ Σ∞i=t Πnifi(P ) (10)

takes place. Clearly, we have

Xt = ∪∞i=t {S ∈ Σ∞ |Kφ(Sni |wi) < fi}. (11)

The sets {S ∈ Σ∞ |Kφ(Sn|w) < f} are cylinders, hence they are measurable, i. e.
the set Xt is measurable too.

It holds
P (Xt) ≤ Σ∞i=t P{S ∈ Σ∞ |Kφ(Sni |wi) < fi}, (12)
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as follows from (11). Moreover, for each n we have

P{S ∈ Σ∞ |Kφ(Sn|w) < f} = Pn{Sn |S ∈ Σ∞&Kφ(Sn|w) < f}
= Pn{x ∈ Σn |Kφ(x|w) < f}.

Applying the last result to (12) we obtain the inequality

P (Xt) ≤ Σ∞i=t Pni
{x ∈ Σni |Kφ(x|wi) < fi},

which, together with Lemma 3.1 proves (10).

b) The set Cseq φ, w
f ,N equals Σ∞ \ ∪∞t=0Xt, hence it is measurable. We have (1), so

that it suffices to prove that limt→∞ P (Cseq φ, w
f ,N , t) = 1 is true. The last written

equality follows from (8) and (7). 2

Before going on, we introduce a notation and prove a simple lemma.
Assume that P is a probability measure on Σ∞. We define

πn(P ) := max
x∈Σn

Pn{x}. (13)

Clearly, πn(P ) is the probability of a most probable string of the length n (recall
that there may be several most probable strings).

Lemma 3.2. Let P be a probability measure on Σ∞, f and g be nonnegative reals.
If πn(P ) ≤ g, then we have Πnf (P ) < 2 · g · cf .

P r o o f . We have Πnf (P ) ≤ πn(P ) · cf+1−1
c−1 by (3) and (13). Moreover 2 ≤ c,

hence cf+1−1
c−1 < 2 · cf is true. Therefore, we always have

Πnf (P ) < 2 · πn(P ) · cf . (14)

If πn(P ) ≤ g, then we have Πnf (P ) < 2 · g · cf . 2

Estimates of the probabilities of interest, i. e. of the probabilities Pni(Cstr φ, w
f ,N ∩Σni)

and P (Cseq φ, w
f ,N , t) can be obtained from the lemma by means of the relations (4)

and (7). Consider a sequence g0, g1, g2 , . . . of positive reals. Then we have

πni(P ) ≤ gi =⇒ Pni(Cstr φ, w
f ,N ∩ Σni) > 1− 2 · gi · cfi , (15)

∀ i ≥ t : πni(P ) ≤ gi =⇒ P (Cseq φ, w
f ,N , t) > 1− 2 · Σ∞i=t · gi · cfi . (16)

There is a natural question which classes of probability measures are covered by
the results obtained in Propositions 3.1 and 3.2. More precisely, we search for classes
of probability measures such that each probability measure in the class satisfies our
basic relations limi→∞ Pni(Cstr φ, w

f ,N ∩ Σni) = 1 and P (Cseq φ, w
f ,N ) = 1, i. e. (5) and

(9).
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Theorem 3.1. Assume that P is a class of probability measures on Σ∞,
g0, g1, g2 , . . . are positive reals.

Suppose that the relation πni
(P ) ≤ gi holds almost surely for each probability

measure P ∈ P.

a) If limi→∞ gi = 0 is true, then there is a sequence f of lower bounds such that
limi→∞ fi = ∞ takes place and limi→∞ Pni

(Cstr φ, w
f ,N ∩ Σni) = 1 is true for each

probability measure P ∈ P.

b) If Σ∞i=0gi < ∞ is true, then there is a sequence f of lower bounds such that
limi→∞ fi = ∞ takes place and P (Cseq φ, w

f ,N ) = 1 is true for each probability measure
P ∈ P.

P r o o f . Let P be a class of probability measures over Σ∞, P ∈ P.

a) Put fi = − 1
2 · logc gi if gi ≤ 1, fi = 0 otherwise. Clearly, limi→∞ fi = ∞.

Moreover, 2 · gi · cfi = 2 · √gi holds almost surely. Hence 2 · gi · cfi →i 0 is true and
(5) follows form (15).

b) Put i0 = 0. There are 0 < i1 < i2 < i3 < . . . natural such that Σ∞i=ik
gi ≤ c−2k

takes place for all k = 1, 2, 3, . . .. Put fi = k for each i = ik, . . . , ik+1 − 1 and
for any k = 0, 1, 2, . . .. Clearly, limi→∞ fi = ∞. Moreover, there is an index
k0 ∈ N \ {0} such that πni(P ) ≤ gi is true for all i ≥ ik0 . It suffices to prove that

Σ∞i=ik0
2 · gi · cfi < ∞

holds, as follows from (16). We have

Σ∞i=ik0
2 · gi · cfi = 2 · Σ∞k=k0

Σik+1−1
i=ik

gi · cfi .

Further on, we have

Σik+1−1
i=ik

gi · cfi = ck · Σik+1−1
i=ik

gi

< ck · c−2k,

as both fi = k is true for i = ik, . . . , ik+1 − 1 and Σ∞i=ik
gi ≤ c−2k takes place.

Therefore, we have Σ∞i=ik0
2 · gi · cfi < 2 · Σ∞k=k0

c−k < ∞ which finishes the proof. 2

If a single probability measure P is considered, then our basic relations
limi→∞ Pni(Cstr φ, w

f ,N ∩Σni) = 1 and P (Cseq φ, w
f ,N ) = 1 are satisfied under simple and

mild conditions, as is shown in

Corollary 3.1. Let P be a probability measure on Σ∞.

a) If limi→∞ πni(P ) = 0 is true, then there is a sequence f of lower bounds such that
both limi→∞ fi = ∞ and limi→∞ Pni(Cstr φ, w

f ,N ∩ Σni) = 1 are true.

b) If Σ∞i=0πni(P ) < ∞ is true, then there is a sequence f of lower bounds such that
both limi→∞ fi = ∞ and P (Cseq φ, w

f ,N ) = 1 are true.
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P r o o f . Put gi = πni
(P ) for each i natural. Apply Theorem 3.1. 2

We slightly reformulate Theorem 3.1 to the form appropriate for practical appli-
cations.

Corollary 3.2. Assume that P is a class of probability measures on Σ∞,
h0, h1, h2 , . . . are positive reals.

Suppose that πni(P ) is of O(hi) type1 for each probability measure P ∈ P.

a) If limi→∞ hi = 0 is true, then there is a sequence f of lower bounds such that
limi→∞ fi = ∞ takes place and limi→∞ Pni

(Cstr φ, w
f ,N ∩ Σni) = 1 is true for each

probability measure P ∈ P.

b) If Σ∞i=0hi < ∞ is true, then there is a sequence f of lower bounds such that
limi→∞ fi = ∞ takes place and P (Cseq φ, w

f ,N ) = 1 is true for each probability measure
P ∈ P.

P r o o f . a) It suffices to find a sequence g0, g1, g2 , . . . of positive reals such that
we have both gi →i 0 and gi/hi →i ∞. Then C(P ) ≤ gi/hi holds almost surely,
hence πni

(P ) ≤ C(P ) ·hi ≤ gi holds almost surely too and the proof follows directly
from Theorem 3.1a. The desirable gi’s can be found easily; we can take gi =

√
hi

for each i natural.
b) It suffices to find a sequence g0, g1, g2 , . . . of positive reals such that we have
both Σ∞i=0gi < ∞ and gi/hi →i ∞. Then πni(P ) ≤ gi holds almost surely and the
proof follows directly from Theorem 3.1b.

Put i0 = 0. There are 0 < i1 < i2 < i3 < . . . natural such that Σ∞i=ik
hi ≤ c−2k

takes place for all k = 1, 2, 3, . . .. Put gi = c−k for each i = ik, . . . , ik+1 − 1 and
for any k = 0, 1, 2, . . .. We have gi/hi ≥ 2k for any i = ik, . . . , ik+1− 1 and for any
k ≥ 1 natural, hence gi/hi →i ∞. We have Σ∞i=0gi = Σi0−1

i=0 gi+Σ∞k=1Σ
ik+1−1
i=ik

hi ·gi/hi,
so that Σ∞i=0gi ≤ i1 + Σ∞k=1c

−2k · ck < ∞. 2

The following example shows that the results of this section cover almost all
probability measures used in practice. Corollary 3.2 is used as a tool.

Example 1. The aim of the example is to show that our basic relations

lim
i→∞

Pni(Cstr φ, w
f ,N ∩ Σni) = 1,

P (Cseq φ, w
f ,N ) = 1

are true for almost all probability measure used in practice. Moreover, there is a
single sequence f of lower bounds with

lim
i→∞

fi = ∞
1Hence πni (P ) ≤ C(P ) · hi is true almost surely, where C(P ) is a constant depending on P .
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such that our basic relations are valid for all the probability measures just mentioned.
It is worth mentioning that strings represent members of a product sample space

here.
Consider a probability measure P . Recall that πn(P ) is the probability of a most

probable string of the length n. As a rule, πn(P ) converges to zero exponentially
with the length of the strings. This is true for ergodic measures. The opinion of the
authors is that πn(P ) is of O(n−2) type for almost all probability measures used in
statistical practice.

Consider a class of probability measures, say P.
a) For the sake of safety assume, that πn(P ) is of O(1/ ln ln n) type for each probabil-
ity measure P from our class. Then there is a single sequence f of lower bounds satis-
fying limi→∞ fi = ∞ and such that our basic relation limi→∞ Pni(Cstr φ, w

f ,N ∩Σni) =
1 is true, as follows from Corollary 3.2a. For instance, we can take

fn = logc ln ln ln n ∀n ≥ 3814280 , (17)

as can be proved easily by means of (15). At the same time, almost all probability
measures used in practice lie in our class P.
b) For the sake of safety assume, that πn(P ) is of O(n−1 ln−3/2 n) type for each
probability measure P from our class. Then there is a single sequence f of lower
bounds satisfying limi→∞ fi = ∞ and such that our basic relation P (Cseq φ, w

f ,N ) = 1
is true, as follows from Corollary 3.2b. Of course, limi→∞ Pni(Cstr φ, w

f ,N ∩ Σni) = 1
holds too. For instance, we can take

fn = logc(ln
1/3 n) ∀n ≥ 3, (18)

as can be proved easily by means of (16). Once more, almost all probability measures
used in practice lie in our class P.

c) Let us turn to nondegenerated ergodic measures. If a single ergodic measure P is
considered, then our basic relations are fulfilled through

fn = ε · n ∀ n, (19)

where 0 < ε < 1 depends on our ergodic measure. If P is the class of all nondegen-
erated ergodic measures, then our basic relations are fulfilled through

fn = n/ ln ln n ∀ n ≥ 2, (20)

as ε · n ≤ n/ ln ln n holds almost surely for any 0 < ε < 1.

To cover a wide class of probability measures by the results of this section, the
sequence f of lower bounds should tend to infinity slowly, e. g. like the sequences
(17) and (18) do.

For narrower classes of probability measures, like for ergodic measures, the se-
quence f of lower bounds is usually of the form n/“something slowly nondecreasing”,
e. g. like the sequences (19) and (20) are.
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5. KOLMOGOROV COMPLEXITY AND THE LEBESGUE MEASURE

The Lebesgue measure, denoted by P in the section, plays a significant role in prob-
ability theory and statistics. We derive conditions under which our basic relations
limi→∞ Pni(Cstr φ, w

f ,N ∩ Σni) = 1 and P (Cseq φ, w
f ,N ) = 1 are true for the case of the

Lebesgue measure.
The probabilities of the classes of (φ, w, f ,N )-complex strings having the length

ni converge to one under a simple and general conditions, as is shown in

Proposition 4.1. Let P be the Lebesgue measure on Σ∞.

a) For each i natural we have

Pni
(Cstr φ, w

f ,N ∩ Σni) ≥ 1− 2 · cfi−ni .

b) If limi→∞ ni − fi = ∞ takes place, then we have

lim
i→∞

Pni(Cstr φ, w
f ,N ∩ Σni) = 1.

P r o o f . a) Clearly, Pn{x} = c−n is true for each string x of the length n, as P is
the Lebesgue measure. So that we have πni(P ) = c−ni for each i natural. We take
gi := πni(P ) = c−ni in (15) and obtain the desirable result.
Part b) of our proposition immediately follows from its part a). 2

A simple condition under which the probability of the class of (φ, w, f ,N )-
complex sequences equals one is stated in

Proposition 4.2. Let P be the Lebesgue measure on Σ∞.

a) For each t natural we have

P (Cseq φ, w
f ,N , t) > 1− 2 · Σ∞i=tc

fi−ni .

b) If Σ∞i=0c
fi−ni < ∞, then we have

P (Cseq φ, w
f ,N ) = 1.

P r o o f . a) We take gi := πni(P ) = c−ni , like in the proof of the previous propo-
sition, and apply it to (16).
Part b) follows from the part a). 2

Proposition 4.2b was proved by Martin–Löf for the special case when all the
lengths of initial segments of infinite sequences are considered, i. e. for the case
when ni = i holds for all i natural (see [11]).
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6. ON INFINITE OSCILLATIONS

The aim of this section is to state and prove a result on infinite oscillations closely
related to the original and well known result of Martin–Löf [11].

The classes of (Ψ, N , f ,N )-complex sequences are considered in the foregoing
text. In other words, Kolmogorov complexity is defined by means of a universal
Kolmogorov algorithm Ψ, i. e. φ = Ψ takes place. Our prior information about a
string equals the length of the string, i. e. w = N holds.

Let us recall a result on infinite oscillations due to Martin–Löf [11] and Katseff
[4]. It reads (in our notation):

Assume that ni = i holds for each i natural. Moreover, let h0, h1 h2, . . . be a
recursive sequence of naturals such that hi ≤ fi ≤ i takes place for each i. If

Σ∞i=0c
hi−i = ∞,

then

KΨ(Si|i) < fi (21)

is true for infinitely many i ∈ N , i. e. the class Cseq Ψ,N
f ,N is empty.

We need an information on indexes i satisfying (21) for purposes of the next papers
in our series. For this reason we prove a result resembling the Martin–Löf’s theorem.
The core of our construction is closely related to both Calude’s [1], pp. 361–367 and
Katseff’s [4] ones.

We start with

Lemma 5.1. Let ni ≤ n and let Ai ⊆ Σni hold for each i = 1, 2, . . . , p, where p
is a natural number.

If A1 ∗Σ∞/n, A2 ∗Σ∞/n, . . . , Ap ∗Σ∞/n are pairwise disjoint sets, then we have

Σp
i=1 c−ni card Ai ≤ 1. (22)

Moreover, equality takes place in (22) if and only if

∪p
i=1 Ai ∗ Σ∞/n = Σn. (23)

P r o o f . Clearly,

card (Ai ∗ Σ∞/n) = cn−ni · card Ai (24)

holds for each i = 1, 2, . . . , p. Further on, we have

1 = c−ncard Σn

≥ c−ncard (∪p
i=1 Ai ∗ Σ∞/n). (25)
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The sets A1 ∗ Σ∞/n, . . . , Ap ∗ Σ∞/n are pairwise disjoint, hence

c−ncard (∪p
i=1 Ai ∗ Σ∞/n) = c−nΣp

i=1c
n−nicard Ai

= Σp
i=1c

−nicard Ai (26)

takes place, as follows from (24). Using (25) and (26) we find that (22) is true.
Finally, the equality takes place in (22) iff the equality is valid in (25), i. e. iff (23)
holds. 2

Let us proceed to the main topic of the section, a theorem on infinite oscillations.

Theorem 5.1. Assume that both sequences N and f are recursive sequences of
naturals. Moreover, let fi ≤ ni hold for each i ∈ N . Finally, let q0, q1, q2, . . . be a
recursive and increasing sequence of naturals.

Then there is a constant C such that for each U ∈ Σ∞ and m ∈ N the following
holds: if

Σqm+1−1
i=qm

cfi−ni ≥ 1 (27)

takes place, then there is i ∈ {qm, qm + 1, . . . , qm+1 − 1} such that we have

KΨ(Uni |ni) < fi + C. (28)

P r o o f . Let us describe the core of our proof. We find a recursive sequence
A0, A1, A2, . . . of finite sets of strings such that:

i. The cardinality of each set Ai does not exceed the prescribed value cfi .

ii. The set ∪qm+1−1
i=qm

Ai contains an initial segment of any string in some Σn. Here
m ∈ N .

Hence if U is a sequence from Σ∞, then at least one of its initial segments lies in
some of the sets Aqm , Aqm+1, . . . , Aqm+1−1. This gives us the desired upper bound
of Kolmogorov complexity of the segment.

1. First of all, we construct a recursive sequence A0, A1, A2, . . . of sets such that:

a) Both Ai ⊆ Σni and card Ai ≤ cfi hold for each i ∈ N .

b) If m∈N is fixed, then the sets Aqm ∗Σ∞/n, Aqm+1 ∗Σ∞/n, . . . , Aqm+1−1 ∗
Σ∞/n are pairwise disjoint, where n=max{ni|i=qm, qm+1, . . . , qm+1−1}.

2. Let m be fixed in the rest of the proof. We denote

r := qm,

s := qm+1 − 1,

n := max{ni | i = r, r + 1, . . . , s}.
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Suppose that r ≤ i ≤ s and that the sets Ar, Ar+1, . . . , Ai−1 have been
constructed. We put

Ei := {x ∈ Σni | ∪i−1
k=r Ak ∗ Σ∞/n ∩ {x} ∗ Σ∞/n = ∅ }.

Hence Ei contains all the strings from Σni which are not the initial segments
of strings from the set ∪i−1

k=r Ak ∗ Σ∞/n.

We consider two cases. If card Ei < cfi , we put Ai = Ei; then card Ai < cfi

holds. If card Ei ≥ cfi , then Ai contains the first cfi sequences from Ei (first
with respect to a specified lexicographical order); hence card Ai = cfi holds.
Therefore, a) and b) are true in both cases.

We started with i = r, i. e. with the empty sequence Ar, . . . , Ar−1. Thus
∪r−1

k=rAk = ∅ and Er = Σnr are true, so that card Er ≥ cfr holds. Therefore,
we have card Ar = cfr .

3. We prove that a), b) and Σs
i=rc

fi−ni ≥ 1 (i. e. (27)) imply

∪s
k=r Ak ∗ Σ∞/n = Σn. (29)

It means that any sequence from Σ∞ has an initial segment in some of the sets
Ar, Ar+1, . . . , As. We distinguish two cases.

First, let card Ai = cfi hold for each i = r, r + 1, . . . , s. Then

ρ := Σs
i=r c−nicard Ai = Σs

i=r cfi−ni ≥ 1

is true, as follows from (27). The inequality ρ ≤ 1 follows from a), b) and
Lemma 5.1. Hence we have ρ = 1 and (29) follows from Lemma 5.1.

Second, let i ∈ {r + 1, r + 2, . . . , s} be such that cardAi < cfi is true (recall
that we have card Ar = cfr ). Then

(∪i−1
k=rAk ∗ Σ∞/n ) ∪ (Ei ∗ Σ∞/n) = Σn

and Ai = Ei are true, so that (29) holds.

4. The sequence A0, A1, A2, . . . is obviously recursive, hence there is a constant
C such that the inequality

KΨ(x|ni) < logc(card Ai) + C

holds for each i ∈ N and x ∈ Ai. Moreover, logc(cardAi) ≤ fi is true by a).
So that

KΨ(x|ni) < fi + C (30)

takes place for each i ∈ N and x ∈ Ai.

5. Let U ∈ Σ∞. Then Un ∈ Σn, so that there is i ∈ {r, r + 1, . . . , s} such that
Un ∈ Ai ∗ Σ∞/n, hence we have Uni ∈ Ai. Therefore, (28) follows from (30)
with x = Uni . 2

The Martin–Löf’s result on infinite oscillations stated above is a special case of
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Corollary 5.1. Assume that both sequences N and h = 〈h0, h1, h2, . . .〉 are re-
cursive sequences of naturals. Moreover, let hi ≤ fi ≤ ni hold for each i ∈ N .

If
Σ∞i=0 chi−ni = ∞, (31)

then the class Cseq Ψ,N
f ,N is empty.

P r o o f . We can find a recursive sequence f ′0, f ′1, f ′2, . . . of naturals such that
f ′i ≤ hi holds for each i natural,

lim
i→∞

hi − f ′i = ∞

takes place and
Σ∞i=0 cf ′i−ni = ∞

is valid.
Then we find a recursive and increasing sequence q0, q1, q2, . . . of naturals such

that
Σqm+1−1

i=qm
cf ′i−ni ≥ 1

is true for each m natural.
Let U ∈ Σ∞. Applying Theorem 5.1 we find that

KΨ(Uni |ni) < f ′i + C

holds for infinitely many i’s, where C is a constant. Hence KΨ(Uni |ni) < fi is valid
for infinitely many i’s, which finishes the proof. 2
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