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GLOBAL INFORMATION IN STATISTICAL
EXPERIMENTS AND CONSISTENCY
OF LIKELIHOOD–BASED ESTIMATES AND TESTS1

Igor Vajda

In the framework of standard model of asymptotic statistics we introduce a global
information in the statistical experiment about the occurrence of the true parameter in a
given set. Basic properties of this information are established, including relations to the
Kullback and Fisher information. Its applicability in point estimation and testing statistical
hypotheses is demonstrated.

1. INTRODUCTION

We consider the standard conceptual framework of asymptotic statistics, i. e. a sta-
tistical experiment consisting of a sequence of product probability spaces parametri-
zed by θ ∈ Θ ⊂ Rm. Under some regularity the Fisher information Iθ0 characterizes
the amount of information provided by the experiment about the true parameter
value θ0 ∈ Θ. This information is local. As found by Kullback [8], Rao [16] and
some others, Iθ0 measures the local sensitivity of the sample distribution Pθ figuring
in the experiment to small variations of parameter θ in the neighbourhood of θ0. If
I(Pθ0 , Pθ) is the Kullback information (information divergence of Pθ0 and Pθ) then,
asymptotically for θ → θ0,

I(Pθ0 , Pθ) =
1
2

(θ − θ0) Iθ0(θ − θ0)t + o(‖θ − θ0‖2).
If one arbitrarily modifies the distributions Pθ with θ outside an arbitrarily small
neighborhood of θ0 then Iθ0 remains unchanged.

We are interested in the global information contained in the experiment about the
true parameter. The first concept of global information in a statistical experiment
has been proposed by Lindley [11] and developed later by several authors, see Rényi
[17, 18]. This concept was based on the approach of Shannon (see Cover and Thomas
[3]), where the information is the difference between prior and posterior uncertain-
ties. De Groot [4, 5] extended this approach and considered the difference between

1Supported by the Grant Agency of the Academy of Sciences of the Czech Republic under Grant
175 402.
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prior and posterior risks (for further developments and references see Torgersen [21]).
Obviously, all definitions of this kind are restricted to Bayesian experiments.

In this paper we propose a global information applicable to the classical non-
bayesian statistical experiments. It is an asymptotic characteristic of the experi-
ments whose values are changed by an appropriate modification of any distribution
Pθ figuring in the experiment.

We introduce the global information as a real valued function Iθ0(S) defined for
all open or closed sets S ⊂ Θ and all parameter values θ0 ∈ Θ. The real number
Iθ0(S) characterizes an asymptotic likelihood of the event that the true parameter
θ0 belongs to S. We present formulas for evaluation of this information and clarify
its relation to both the information divergence I(Pθ0 , Pθ) of Kullback and to the
local information Iθ0 of Fisher.

We also study the applicability of the global information to the maximum likeli-
hood estimates and generalized likelihood ratio tests. As shown in Vajda [23] and
Liese and Vajda [10], an asymptotically maximum likelihood estimate in a con-
taminated experiment can easily be inconsistent (a new example illustrating this is
presented in Section 3 below). Similar phenomenon can take place for the generalized
likelihood ratio tests. Perlman [13], Pfanzagl [14, 15], Strasser [20], Vajda [23] and
Liese and Vajda [10] considered necessary and sufficient conditions for consistency
of all asymptotically maximum likelihood estimates. In this paper a new necessary
and sufficient condition using the concept of global information is found. Similar
conditions are obtained also for the consistency of generalized likelihood ratio tests.

2. GENERAL RESULTS

We consider a statistical experiment ((Xn,An, Pn
θ : θ ∈ Θ), n = 1, 2 . . .) where

(Xn,An, Pn
θ ) are products of a sample component probability space (X ,A, Pθ) sat-

isfying the identifiability condition Pθ1 6= Pθ2 for θ1 6= θ2. The experiment pro-
vides random samples Xn = (X1, . . . , Xn) defined by sample probability spaces
(Xn,An, Pn

θ0
) where θ0 ∈ Θ is an unknown true parameter. We restrict ourselves to

asymptotic properties of the experiment for n →∞.
We are interested in the amount of information Iθ0(S) which the experiment

provides asymptotically about the occurrence of the unknown parameter θ0 ∈ Θ in
a given parameter set S ⊂ Θ.

The attention is focused on experiments satisfying mild regularity conditions.
The parameter space Θ is assumed to be a subset of the Euclidean space Rm and
the distributions P = {Pθ : θ ∈ Θ} dominated by a σ-finite measure µ, with densities

pθ =
dPθ

dµ

such that the function (θ, x) → pθ(x) is measurable and the random function θ →
pθ(X1) separable and a. s. continuous. Then, for every open or closed S ⊂ Θ,

fn(Xn, S) = inf
θ∈S

− 1
n

n∑

k=1

ln pθ(Xk), ln 0 = −∞, (1)
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may be considered measurable in Xn (cf. Liese and Vajda [10]). We shall work with
the random variables

fn(S) = fn(Xn, S) and fn(θ) = fn({θ}) = − 1
n

n∑

k=1

ln pθ(Xk) (2)

for open sets S, their complements Sc = Θ− S and points θ ∈ Θ.
For every subset S ⊂ Θ, the random sample Xn provides some evidence about

whether the true parameter θ0 belongs to S, i. e. some “likelihood” of the occurrence
of θ0 in S. This likelihood may vary with n. To avoid the dependence on n, we shall
deal with the asymptotic likelihood for n → ∞. Consider for all open or closed
S ⊂ Θ the limits

Hθ0(S) =

{
limn E fn(S) if S 6= ∅
∞ if S = ∅.

(3)

The asymptotic likelihood of the event θ0 ∈ S is proportional to the limits −Hθ0(S)
and Hθ0(S

c). We put
Iθ0(S) = Hθ0(S

c)−Hθ0(S). (4)

Definition. The expression (4) is the global information in the experiment about
the event θ0 ∈ S for open or closed S ⊂ Θ such that the right-hand side is well-
defined in the extended real line by (3).

The following statement follows directly from the definition.

Theorem 1. The global information Iθ0(S) is monotone in the sense that

Iθ0(S1) ≤ Iθ0(S2) (5)

for all S1 ⊂ S2 ⊂ Θ (including S1 = ∅) such that the global information exist, and
skew-symmetric in the sense that

Iθ0(S
c) = −Iθ0(S) (6)

for all S ⊂ Θ (including S = ∅) such that the global information exist.

P r o o f . If S1, S2 satisfy the monotonicity assumed in (5) then (1), (2) imply
E fn(S1) ≥ E fn(S2) and E fn(Sc

1) ≤ E fn(Sc
2) for nonvoid S1 and Sc

2. ThenHθ0(S1) ≥
Hθ0(S2) and Hθ0(S

c
1) ≤ Hθ0(S

c
2) and these inequalities remain true also in the void

case. Thus (5) follows from (4). The relation (6) follows directly from Definition.2

In the next theorem we show that the definition of global information is applicable
to all open or closed sets S under a mild regularity of the experiment. The theorem
is based on the following simple lemma.
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Lemma 1. Let ∅ 6= S ⊂ Θ be open or closed with

−∞ < infn E fn(S) ≤ supn E fn(S) < ∞. (7)

Then (3) holds and the limit Hθ0(S) satisfies the relation

Hθ0(S) = supn E fn(S).

P r o o f . Consider random vectors Y k = (Y1, . . . , Yk) and Zn = (Z1, . . . , Zn)
defined for arbitrary k, n by Xk+n = (Y k, Zn) and a subset S satisfying the as-
sumptions. It follows from (1)

(k + n) fk+n(Xk+n, S) ≥ k fk(Y k, S) + n fn(Zn, S) (8)

and from the i. i. d. property of the components of Xk, Xn and Xk+n

E fk(Y k, S) = E fk(Xk, S) and E fn(Zn, S) = E fn(Xn, S).

Therefore it holds for all k, n ≥ 1

(k + n)E fk+n(S) ≥ k E fk(S) + n E fn(S).

By a well-known lemma of mathematical analysis (cf. e. g. Lemma 2 on p. 112 of
Gallager [6]), every bounded sequence with this property is convergent, i. e. in our
case (3) holds, and the limit Hθ0(S) fulfils the stated relation. 2

Theorem 2. Let −∞ < E f1(Θ) ≤ E f1(θ) < ∞ for all θ ∈ Θ. Then the condition
(7) of Lemma 1 holds for all nonvoid open or closed subsets S ⊂ Θ. Consequently
the global information Iθ0(S) is well-defined by (3) and (4) for all open or closed
subsets S ⊂ Θ. If S1 ⊂ S2 are such subsets and S1 6= ∅, S2 6= Θ then the relation
(5) can be precised as follows

−∞ = Iθ0(∅) < Iθ0(S1) ≤ Iθ0(S2) < Iθ0(Θ) = ∞. (9)

P r o o f . Clear from Lemma 1 and Theorem 1. 2

The next assertion extends the result of Theorem 2.

Theorem 3. Under the assumptions of Theorem 2 it holds for all S considered
there

limn fn(S) = Hθ0(S) a. s. (10)

so that
Iθ0(S) = limn[fn(Sc)− fn(S)] a. s. (11)
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P r o o f . Consider an arbitrary natural r, and define for all n ≥ r and S under
consideration

f (r)
n (S) =

(
n

r

)−1 ∑
κr

inf
θ∈S

−1
r

r∑

j=1

ln pθ(Xkj
)

where the summation extends over all κr = {k1, . . . , kr} ⊂ {1, . . . , n}. According to
Berk [2] and Perlman [13], the sequence (f (r)

n (S) : n = r, r + 1, . . .) forms a reversed
martingale. Since

E f (r)
n (S) = E fr(S)

and the reversed martingale is ergodic, the convergence theorem for reversed mar-
tingales implies f

(r)
n (S) → E fr(S) a. s. Further, for every θ ∈ S it holds fn(θ) =

f
(r)
n (θ) ≥ f

(r)
n (S) so that fn(S) ≥ f

(r)
n (S) and, consequently,

liminfn fn(S) ≥ E fr(S) a. s.

On the other hand, by Lemma 1, the limit relation (3) holds. Taking the limit for
r →∞ we obtain from (3) and from the last relation

liminfn fn(S) ≥ Hθ0(S) a. s. (12)

Since

fn(S) ≥ 1
n

n∑

k=1

f1(Xk, S) ≥ 1
n

n∑

k=1

f1(Xk,Θ)

where Ef1(Xk, Θ) = Ef1(Θ) is assumed to be finite, the sequence fn(S) has an
integrable minorant. Therefore, by the Fatou–Lebesgue theorem (cf. pp. 125 and
162 in Loéve [12]),

E liminfn fn(S) ≤ Hθ0(S).

Consequently, the inequality in (12) cannot be strict with a positive probability, i. e.

liminfn fn(S) = Hθ0(S) a. s. (13)

Finally, if θ∗ ∈ S then fn(S) ≤ fn(θ∗). As the strong law of large numbers implies
fn(θ∗) → Hθ0(θ∗) a. s., it holds

limsupn fn(S) ≤ Hθ0(θ∗) < ∞ a. s.

Therefore all but finitely many terms of the sequence fn(S) are a. s. bounded. By
the same method as used in the proof of Lemma 1, it follows from here and from
(8) that the sequence fn(S) is a. s. convergent. Hence (13) is equivalent to (10). 2

It follows from (11) that the global information Iθ0(S) is the a. s. limit of the
difference TS,n − TSc,n of the generalized likelihood ratio test statistics defined by
the formula

TS,n =
1
n

log
sup
θ∈S

n∏
k=1

pθ(Xk)

sup
θ∈Θ

n∏
k=1

pθ(Xk)
= fn(Θ)− fn(S).
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TS,n or TSc,n is the generalized likelihood ratio test statistic in testing the hypothe-
sis “θ0 ∈ S” against the alternative “θ0 ∈ Sc”, or testing the hypothesis “θ0 ∈ Sc”
against the alternative “θ0 ∈ S”, respectively. This provides an alternative motiva-
tion of our Definition.

In the sequel we consider under the assumptions of Theorem 2 the following
modified asymptotic representation

Iθ0(S) = limn(gn(Sc)− gn(S)) a. s., (14)

where
gn(S) = inf

θ∈S
gn(θ)

for

gn(θ) = gn(Xn, θ) =
1
n

n∑

k=1

ln
pθ0(Xk)
pθ(Xk)

, θ ∈ Θ.

Note that the difference gn(Sc) − gn(S) = TS,n − TSc,n has been used already by
Kullback [8] as an operational characteristics of the generalized likelihood ratio tests.

By the strong law of large numbers, under the assumptions of Theorem 2 it holds
for every θ ∈ Θ

limn gn(θ) = I(θ0; θ) a. s., (15)

where

I(θ0, θ) =
∫

pθ0 ln
pθ0

pθ
dµ (16)

is the Kullback’s I-divergence of models pθ0 and pθ. We shall be interested in
conditions on the family {Pθ : θ ∈ Θ} and open or closed sets S ⊂ Θ under which
one can interchange the lim and inf in (14), i. e. to establish the relations

limn infS gn(θ) = infS limn gn(θ) = infS I(θ0; θ) a. s. (cf. (15)). (17)

Such conditions are important since, by inserting (17) in (14), one obtains the fol-
lowing simple formula for the global information

Iθ0(S) = inf
θ⊂Sc

I(θ0; θ)− inf
θ∈S

I(θ0; θ) (18)

=





inf
θ∈Sc

I(θ0; θ) if θ0 ∈ S

− inf
θ∈S

I(θ0; θ) if θ0 /∈ S.

Our aim is to justify this formula by finding sufficient conditions for (17). The
following two lemmas are obvious.

Lemma 2. If the assumptions of Theorem 2 are satisfied and the convergence in
(15) is uniform on Θ then (18) holds for all open or closed S ⊂ Θ.
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Remark 1. The experiments with the convergence in (15) uniform on Θ are rela-
tively rare. Such experiments can be obtained e. g. from the experiments with the
locally uniform convergence in (15), by restricting the parameter space to bounded
closed subsets Θ∗ ⊂ Θ. As well known, if Θ is open and convex and gn(θ) are a. s.
convex on Θ then (cf. e. g. Theorem 10.8 of Rockafellar [19]), the convergence in
(15) is locally uniform on Θ and I(θ0; θ) is convex in the variable θ ∈ Θ. Typical
(e. g. exponential) statistical experiments fulfil these conditions.

Remark 2. The compact parameter sets Θ∗ figuring in Remark 1 can be employed
also in the framework of general unrestricted models. Namely, let S be an open set
containing the true parameter θ0 and contained in a compact Θ∗ from the interior
of Θ. Then in typical examples of statistical experiments the relative complements

Sc
∗ = Sc ∩Θ∗ = Θ∗ − S (19)

satisfy the relation

limn infSc gn(θ) = limn infSc∗ gn(θ) a. s. (20)

Since the closures S and Sc∗ are compacts contained in the interior of Θ, Remark 1
implies that the convergence in (15) is uniform on S and Sc

∗ in all models with the
convergence in (15) locally uniform on Θ.

Lemma 3. If the assumptions of Theorem 2 hold and the convergence in (15) is
locally uniform on Θ then

Iθ0(S) = inf
θ∈Sc∗

I(θ0; θ) (21)

for all S and Sc
∗ considered in (19) and satisfying (20).

Next we formulate a stronger result for open balls

Sr(θ0) = {θ ∈ Rm : ‖θ − θ0‖ < r} , r > 0,

with surfaces
Sr(θ0) = {θ : ‖θ − θ0‖ = r}.

Theorem 4. If the assumptions of Theorem 2 hold, Θ is open and convex, and
gn(θ) are a. s. convex on Θ, then for every open ball Sr(θ0) with the closure Sr(θ0)
contained in Θ

Iθ0(Sr(θ0)) = inf
θ∈Sr(θ0)

I(θ0; θ). (22)

P r o o f . It suffices to prove that (20) holds for S = Sr(θ0) and Θ∗ = Sr(θ0).
Since Θ is assumed to be open, Sr(θ0) is contained in the interior of Θ. Further, for
S and Θ∗ under consideration

Sc
∗ = Θ∗ − S = Sr(θ0).
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Hence (20) will be proved if for every random sequence θn = θn(Xn) ∈ Rm with
‖θn − θ0‖ ≥ r and for

θ̂n = θ0 +
r(θn − θ0)
‖θn − θ0‖ ∈ Sr(θ0)

we prove the relation

liminfn(gn(θn)− gn(θ̂n)) ≥ 0 a. s. (23)

To this end fix n and consider the segment θ(t) = θ0 + r t(θn − θ0) ∈ Rm for
0 < t < 1/r. The assumed convexity of gn(θ) together with the identity gn(θ0) = 0
implies

gn(θ(t)) ≤ (1− r t) gn(θ0) + r t gn(θn) = r t gn(θn).

The unique point θ(t) of the segment belonging to Sr(θ0) corresponds to tn = 1/‖θn−
θ0‖ ≤ 1/r, i. e. θ(tn) = θ̂n. It follows from here that gn(θ̂n) ≤ r tn gn(θn) ≤ gn(θn),
i. e. gn(θn)− gn(θ̂n) ≥ 0, provided gn(θ̂n) ≥ 0. Thus (23) follows from the relation

liminfn gn(θ̂n) > 0 a. s. (24)

By Remark 1, I(θ0; θ) is continuous on Θ and positive on Θ − {θ0}. Therefore its
infimum on the compact Sr(θ0) is positive. Also the convergence in (15) is locally
uniform on Θ and thus uniform on all compact subsets of Θ. It follows from here

limsupn

∣∣infSr(θ0)gn(θ)− infSr(θ0)I(θ0; θ)
∣∣ ≤ limn supSr(θ0)|gn(θ)−I(θ0; θ)| = 0 a. s.

which implies (24). 2

By means of Theorem 4 one can clarify relation between the global information
Iθ0(S) and the Bahadur exact slopes (see Bahadur [1]). We do not go into details
here. In the sequel we clarify the relation to the local Fisher information Iθ0 men-
tioned in the Introduction. Suppose that θ0 is from the interior of Θ and consider
an experiment for which the gradient

∇ ln pθ0 =
(

∂

∂θ1
ln pθ, . . . ,

∂

∂θm
ln pθ

)

θ=θ0

exists and the Fisher information matrix

Iθ0 =
∫

(∇ ln pθ0)
t (∇ ln pθ0) pθ0 dµ

is positive definite. Let the experiment satisfy also the assumptions of Theorem 4
and the asymptotic relation

I(θ0; θ) =
1
2
(θ − θ0) Iθ0(θ − θ0)t + o(‖θ − θ0‖2)

for θ → θ0.
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Theorem 5. Under the above considered assumptions it holds asymptotically, for
r ↓ 0,

Iθ0(Sr(θ0)) =
1
2
r2ω0 Iθ0ω

t
0 + o(r2), (25)

where ω0 minimizes the quadratic form ωIθ0ω
t on the surface S1 = S1(0)−S1(0) of

the unit sphere centered at 0, i. e. λ(θ0) = ω0Iθ0ω
t
0 is the smallest eigenvalue of Iθ0 .

P r o o f . All spheres S = Sr(θ0) with sufficiently small r > 0 satisfy the assump-
tions of Theorem 4. By Remark 2, I(θ0, θ) is convex and consequently continuous
in the variable θ ∈ Θ. By (22) it holds for all sufficiently small r > 0

Iθ0(Sr(θ0)) = inf
ω∈S1

I(θ0; θ0 + rω) = I(θ0; θ0 + rωr)

where the minimizing ωr ∈ S1 exists. Further, asymptotically for r ↓ 0

I(θ0, θ0 + rω) =
1
2
r2ωIθ0ω

t + o(r2), ω ∈ S1.

Since the last asymptotic formula holds uniformly for all ω from the compact S1,
the points ωr tend to the above defined ω0. Consequently ωrIθ0ω

t
r tends to ω0Iθ0ω

t
0

and (25) follows from the relation

Iθ0(Sr(θ0)) =
1
2
r2ωrIθ0ω

t
r + o(r2). 2

Let us note that Theorem 4 can be extended to arbitrary bounded closed or open
sets S with the closure S contained in Θ. The spherical surface Sr(θ0) figuring
implicitly in (22) is in this case replaced by the boundary S = S − S0 where S0

denotes the interior of S.

3. EXAMPLES

First we illustrate the general theory by experiments with discrete and continuous
sample spaces X .

Example 1 (Bernoulli experiment). Consider the experiment defined by

X = {0, 1} and Pθ({x}) = pθ(x) = θx(1−θ)1−x for x ∈ {0, 1}, θ ∈ Θ = (0, 1).

Here the sample Xn = (X1, . . . , Xn) is i. i. d. by the Bernoulli law B(θ) with θ =
θ0 ∈ (0, 1). It holds

fn(θ) = − 1
n

n∑

k=1

ln θXk(1− θ)1−Xk

= − 1
n

[
n∑

k=1

1{1}(Xk) ln θ +

(
n−

n∑

k=1

1{1}(Xk)

)
ln(1− θ)

]

= θn ln
1
θ

+ (1− θn) ln
1

1− θ
,
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where

θn = θn(Xn) =
1
n

n∑

k=1

1{1}(Xk).

By definition,

fn(S) = inf
θ∈S

[
θn ln

1
θ

+ (1− θn) ln
1

1− θ

]

for every subset S ⊂ (0, 1) and

I(θ0; θ) = θ0 ln
θ0

θ
+ (1− θ0) ln

1− θ0

1− θ

for every θ ∈ (0, 1). Since the functions 1/θ and 1/(1−θ) are logarithmically convex
in the domain θ ∈ (0, 1), the functions fn(θ) and I(θ0; θ) are convex in the same
domain. Further, the Fisher information is given by the formula

Iθ0 =
1

θ0(1− θ0)

and, for r ↓ 0,

I(θ0; θ0 ± r) =
r2

2
Iθ0 + o(r2).

We see that the assumptions of Theorem 2, Remark 1 and Theorem 5 are satisfied.
Therefore, by Theorem 2 the global information Iθ0(S) exists for all subsets S ⊂
(0, 1). By Theorems 1 and 2, this information satisfies the relation (6) and in the
case ∅ 6= S1 ⊂ S2 6= Θ also (9). By Theorem 3, it satisfies the relations

Iθ0(S) = limn [infSc I(θn, θ)− infS I(θn, θ)] a. s.

By Theorem 4 it holds for all 0 < r < min{θ0, 1− θ0}

Iθ0((θ0−r, θ0+r)) = min {I(θ0; θ0 − r), I(θ0; θ0 + r)} =

{
I(θ0, θ0 + r) if θ0 ≤ 1

2

I(θ0, θ0 − r) if θ0 > 1
2

By Theorem 5 it holds for r ↓ 0

Iθ0((θ0 − r, θ0 + r)) =
r2

2θ0(1− θ0)
+ o(r2).

Example 2 (Normal experiment). Let the experiment be defined for some
σ > 0 by

X = R and
dPθ((−∞, x))

dx
= pθ(x) =

1√
2πσ2

e−
(x−θ)2

2σ2 for x ∈ R, θ ∈ Θ ⊂ R.
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Then the sample Xn = (X1, . . . , Xn) is i. i. d. by the normal law N(θ, σ2) with
θ = θ0 ∈ R. It holds

fn(θ) =
ln(2πσ2)

2
+

1
2nσ2

n∑

k=1

(Xk − θ)2

=
ln(2πσ2)

2
+

Yn

2n
+

(Xn − θ)2

2σ2

= fn(θ0) +
(θ0 − θ)2

2σ2
+

(Xn − θ0) (θ0 − θ)
σ2

,

where

Xn =
1
n

n∑

k=1

Xk ∼ N(θ0, σ
2/n) and Yn =

1
σ2

n∑

k=1

(Xk −Xn)2 ∼ χ2
n−1.

Further,

fn(S) =
ln(2πσ2)

2
+

Yn

2n
+

1
2σ2

inf
θ∈S

(Xn − θ)2

for every S ⊂ R and

I(θ0; θ) =
(θ0 − θ)2

2σ2

for every θ ∈ R. Obviously,

fn(S) ≥ ln(2πσ2)
2

> −∞

and the functions fn(θ) and I(θ0; θ) are convex in the domain θ ∈ R. Finally, the
Fisher information is constant,

Iθ0 =
1
σ2

,

and for every r > 0

I(θ0, θ0 ± r) =
r2

2
Iθ0 .

The assumptions of Theorem 2, Remark 2 and Theorem 5 are satisfied. Analo-
gously as in the previous example, we obtain from Theorems 1 and 2 that the global
information Iθ0(S) exists for all open or closed sets S ⊂ R and satisfies the relations
(6) and (9). From Theorem 3 we get in this case

Iθ0(S) =
1
2

(
infSc‖θ0 − θ‖2 − infS‖θ0 − θ‖2)2

and from Theorem 4

Iθ0((θ0 − r, θ0 + r)) =
r2

2σ2
=

r2

2
Iθ0 for all r > 0.

We see that the relation to Fisher’s information is more concrete than in the general
case considered in Theorem 5.

In the next example assumptions of Theorem 2 are not satisfied but, nevertheless,
the global information Iθ0(S) can be evaluated for all bounded neighborhoods S of θ0.



256 I. VAJDA

Example 3 (Contaminated errorless observations). Let us consider the ex-
periment with X = {1, 2, . . .} and

Pθ({x})
µx

= pθ(x) = ε + (1− ε)
1{θ}(x)

µx
for x = 1, 2, . . . ,

where 0 < ε < 1/2, µx > 0, µ1+µ2+ · · · = 1, and θ ∈ Θ = {1, 2, . . .}. As before, the
sample Xn = (X1, . . . , Xn) is i. i. d. by Pn

θ0
. In accordance with the robust statistics

(see e. g. Huber [7]), the sample components can be described by the formula

Xk = (1− εk) θ0 + εk Zk,

where εk are the Bernoulli trials with a fixed parameter ε and the random variables
Zk are mutually and also on ε1, ε2, . . . independent, identically distributed by µ.
Thus this experiment describes an errorless observation of the true parameter θ0

contaminated at the level ε by data from a source distributed by µ. The alternative
data will be called a noise.

It holds

fn(θ) = − 1
n

n∑

k=1

ln
(

ε + (1− ε)
1{θ}(Xk)

µXk

)
.

Let us consider the entropy function

Hθ0(θ) = −
∫

pθ0 ln pθ dµ

= −
∞∑

x=1

(
εµx + (1− ε)1{θ0}(x)

)
ln

(
ε + (1− ε)

1{θ}(x)
µx

)

=





ln 1
ε − εµθ ln

(
1 + 1−ε

εµθ

)
if θ 6= θ0

ln 1
ε − (εµθ0 + 1− ε) ln

(
1 + 1−ε

εµθ0

)
if θ = θ0.

Therefore if θ 6= θ0 then

I(θ0; θ) = Hθ0(θ)−Hθ0(θ0) = εµθ ln
εµθ

εµθ + 1− ε
+ (εµθ0 + 1− ε) ln

εµθ0 + 1− ε

εµθ0

is positive and bounded above by (εµθ0 + 1− ε) (1− ε)/εµθ0 .

We are interested in open neighbourhoods S = Sr(θ0)∩Θ of θ0 or, more generally,
in bounded subsets

S = {j, j + 1, . . . , k} ⊂ Θ, 1 ≤ j ≤ θ0 ≤ k.

For such S

m(S) = minS
1
µθ

> 0 and M(S) = maxS
1
µθ

< ∞.
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The obvious relation

ln(ε + (1− ε)m(S)) ≤ fn(S) ≤ ln(ε + (1− ε)M(S))

implies that E fn(S) is uniformly bounded for all n. Therefore, by Lemma 1,
limn E fn(S) = Hθ(S) exists and is finite. In this situation, by Definition, Iθ0(S) =
−∞ follows from the relation

Hθ0(S
c) = limn E fn(Sc) = −∞. (26)

In the rest of this section we investigate in more detail the statistical experiments
of Example 3. We shall prove (26) for experiments with infinite entropy of noise.
Such a noise is unpleasant as in the resulting statistical experiments all information
Iθ0(S) about bounded parameter sets attain the minimum possible value Iθ0(∅)
(and the information about complements Iθ0(S

c) attain the maximum possible value
Iθ0(Θ)). Thus the noise is not permitting a reasonable localization of the unknown
value θ0 in the given parameter space. We shall see in Section 5 that in such
situations the maximum likelihood estimator is inconsistent.

Let us first notice that (26) follows from the relation

limn E fn(X(n)) = −∞ for X(n) = max{X1, . . . , Xn}. (27)

To this end it suffices to take into account for k = max S the inequality fn(Sc) ≤
fn((k,∞)) and relations

fn((k,∞)) ≤
{

fn(X(n)) if X(n) > k

fn(k + 1) ≤ ln ε if X(n) ≤ k,

and for every k ≥ θ0 the relations

P(X(n) ≤ k) =

(
k∑

x=1

Pθ0(x)

)n

=

(
ε

k∑
x=1

µx + 1− ε

)n

= (εF (k) + 1− ε)n = [1− ε(1− F (k))]n, (28)

where F (k) is the distribution function of noise.
Let for T > 0 there exist k0 = k0(T, n) such that

µx < e−nT µk0 for all x > k0. (29)

Obviously, for all T large enough we obtain k0 > θ0. Further, the assumed inequality
ε < 1− ε implies for every Xn

1
n

n∑

k=1

ln pX(n)
(Xk) =

1
n

n∑

k=1





ln ε if Xk 6= X(n)

ln

(
ε +

1− ε

µX(n)

)
if Xk = X(n)

≥ n− 1
n

ln ε +
1
n

ln

(
ε +

1− ε

µX(n)

)

≥ ln ε− 1
n

ln µX(n)
,
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i. e.,

fn(X(n)) ≤ − ln ε +
1
n

ln µX(n)
.

It follows from here

E fn(X(n)) ≤ − ln ε +
1
n

∞∑
x=1

P(X(n) = x) ln µx

≤ − ln ε +
1
n

∞∑

x=k0+1

P(X(n) = x) ln µx

≤ − ln ε +
1
n

P(X(n) > k0) ln e−nT (cf. (29))

= − ln ε− T P(X(n) > k0).

Lemma 4. If the noise distribution function F (k) satisfies the conditions (29) and

lim
T→∞

lim
n→∞

n[1− F (k0(T, n))] = ∞ (30)

then (27) and, consequently, (26) hold.

P r o o f . By (28),

P(X(n) > k0) = 1− [1− ε(1− F (k0))]n

so that under (30)

lim
n→∞

P(X(n) > k0(T, n)) = 1− e−εϕ(T ),

where limT→∞ ϕ(T ) = ∞. The desired relation (27) follows from here and from the
inequality preceding Lemma 4. 2

The following result indicates that (29) and (30) represent a heavy tail condition
on the noise distribution µ.

Lemma 5. The conditions (29) and (30) hold only if the entropy

H(µ) = −
∞∑

k=1

µk ln µk

is infinite.

P r o o f . It follows from (29)

H(µ) ≥ −
k0∑

k=1

µn ln µn −
∞∑

k=k0+1

µk ln
(
e−n T µk0

)

≥ (1− F (k0)) nT.

Hence (30) implies H(µ) = ∞. 2
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Example 4 (Light tailed noise). Let us consider the geometric noise µx =
(1− β)βx−1 for x = 1, 2, . . . and 0 < β < 1. The entropy

H(µ) = ln
1

1− β
+

β

1− β
ln

1
β

is finite. In this case (29) fails to hold.

Example 5 (Heavy tailed noise). Consider the logarithmic noise distributed
by

F (k) = 1− 1
lnβ(e + k)

, k = 0, 1, 2, . . .

where β > 0. Here

µx = F (x)− F (x− 1) = β

∫ e+x

e+x−1

dy

y ln1+β y
, x = 1, 2, . . . (31)

If β > 1, i. e. if the tails of logarithmic noise are not heavy enough, then H(µ) is
finite so that, by Lemma 5, the conditions of Lemma 4 do not hold. Therefore we
shall restrict ourselves to 0 < β ≤ 1. For these β the assumptions of Lemma 4 hold.
Indeed, the concavity of Φ(t) = −t ln t implies for every x

Φ(µx) = β Φ
(∫ e+x

e+x−1

dy

y ln1+β y

)
+ µx ln

1
β

≥ β

∫ e+x

e+x−1

Φ
(

1
y ln1+β y

)
dy + µx ln

1
β

.

Therefore

H(µ) ≥ β

∫ ∞

0

Φ
(

1
y ln1+β y

)
dy + ln

1
β

.

The integral equals
∫ ∞

e

ln(y ln1+β y)
y ln1+β y

dy =
∫ ∞

e

dy

y lnβ y
+ (1 + β)

∫ ∞

e

ln ln y

y ln1+β y
dy

=
1

1− β

[
ln1−β y

]∞
e

+
1 + β

β2

so that the necessary condition H(µ) = ∞ for (29) and (30) is satisfied. Further,
(31) implies for every x

β

(e + x− 1) ln1+β(e + x− 1)
≤ µx ≤ β

(e + x) ln1+β(e + x)

so that (29) holds for some k0 = k0(T, n) ≤ (eTn − e). It follows from here

1− F (k0(T, n)) ≥ 1− F (eTn − e) =
1

(Tn)β

which implies (30).
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4. CONSISTENCY OF GENERALIZED LIKELIHOOD RATIO TESTS

Throughout this section we consider a statistical experiment of the above consid-
ered type satisfying the assumptions of Theorem 2. A null hypothesis H0 will be
represented by an open or closed subset ∅ 6= S ⊂ Θ. This hypothesis is assumed
to be tested against an alternative H1 represented by an open or closed subset
∅ 6= S∗ ⊂ Sc = Θ− S.

The test is a sequence of measurable mappings τn = τn(Xn) ∈ {0, 1} where
τn = 1 means that H0 is rejected. Every test τn can be characterized by a family of
random sequences

πn(θ0) = P(τn = 1), θ0 ∈ Θ.

Members of the families

(αn(θ) = πn(θ) : θ ∈ S) and (βn(θ) = 1− πn(θ) : θ ∈ S∗)

are called first and second kind errors respectively, and (πn(θ) : θ ∈ S∗) is a power
function. The test is consistent if

limn πn(θ0) = 0 for θ0 ∈ S (32)

and
limn πn(θ0) = 1 for θ0 ∈ S∗. (33)

In the Bayes theory the consistency leads to the asymptotically vanishing average
errors

en =
∫

Θ

[1S(θ)αn(θ) + 1S∗(θ) βn(θ)] dW (θ)

taken with respect to an arbitrary prior distribution W . The Neyman–Pearson
theory is interested in families of asymptotically ε-level tests (τ (ε)

n : 0 < ε < 1), i. e.
in the tests τ

(ε)
n satisfying the condition

limsupn π(ε)
n (θ0) ≤ ε for every θ0 ∈ S and 0 < ε < 1.

Such a family is said to be consistent if (33) holds for all 0 < ε < 1 with πn replaced
by π

(ε)
n .

The consistency of a test in the sense of (32), (33) implies that the family of
identical tests (τ (ε)

n = τn : 0 < ε < 1) satisfies the assumptions of Neyman–Pearson
theory and is consistent in the sense considered there. If, conversely, (τ (ε)

n : 0 < ε <
1) is a consistent Neyman–Pearson family then under mild restrictions there exists
a sequence εn ↓ 0 such that (32) and (33) hold for the test τn = τ

(εn)
n . Thus the

concept of consistency represented by (32) and (33) is relevant in the Bayes as well
as Neyman–Pearson testing theory (cf. Strasser [21] and Lehman [9]).

A generalized likelihood ratio test (GLRT) of H0 ≡ S is described by a sequence
of pairs (Tn, tn) where tn ∈ R and

Tn = Tn(Xn) =
1
n

ln
supS

n∏
i=1

pθ(Xi)

supΘ

n∏
i=1

pθ(Xi)
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or, equivalently,
Tn = fn(Θ)− fn(S).

It is defined by τn = 1(−∞,tn)(Tn), i. e. H0 is rejected if and only if Tn < tn. We see
that the test statistic Tn is fixed so that the test and its universal characteristics

πn(θ0) = P(fn(Θ)− fn(S) < tn) (34)

depend solely on the critical value tn.
The consistency of GLRT’s can be characterized by means of global statistical

information as follows.

Theorem 6. Let the hypothesis S satisfy a. s. the relations limn fn(S) = Hθ0(S)
and limn fn(Sc) = Hθ(Sc). If there exist θ ∈ S and θ∗ ∈ S∗ such that

Iθ(S) < 0 and Iθ∗(S) > 0 (35)

then no GLRT is consistent. If for all θ ∈ S and θ∗ ∈ S∗

Iθ(S) > 0 and Iθ∗(S) < 0

then every GLRT with limn tn = 0 is consistent.

P r o o f . By assumptions,

fn(Θ) = min{fn(S), fn(Sc)} → min{Hθ0(S),Hθ0(S
c)} a. s.

Hence
fn(Θ)− fn(S) → Jθ0(S) a. s.,

where
Jθ(S) = min{0, Hθ(Sc)−Hθ(S)} = min{0, Iθ(S)}.

Therefore (34) implies that lim supn tn ≤ Jθ0(S) is necessary for πn(θ0) → 0 and
lim infn tn ≥ Jθ0(S) is necessary for πn(θ0) → 1. It is clear from here and from
(32), (33) that (35) contradicts the consistency of any GLRT. The sufficiency of the
condition formulated in the theorem follows from the fact that lim supn tn < Jθ0(S)
is sufficient for πn(θ0) → 0 and lim infn tn > Jθ0(S) is sufficient for πn(θ0) → 1. 2

Example 6. In the normal experiment of Example 2 we get for S = (a, b), S∗ =
(−∞, a) ∪ (b,∞) and θ0 ∈ S, θ1 ∈ S∗

Iθ0(S) = Iθ0((θ0 − r0, θ0 + r0)) =
r2
0

2σ2

and

Iθ1(S) = −Iθ1(S
c) = −min{Iθ1((−∞, a)), Iθ1((b,∞))} = − r2

1

2σ2
,

where ri = min{|θi − a|, |θi − b|}, i = 0, 1, are positive. The GLRT τn ≡ (Tn, 0)
rejects H0 if and only if Xn /∈ S (cf. the formula for Tn = fn(Θ) − fn(S) which
follows from Example 2). By Theorem 6, this test is consistent.
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5. CONSISTENCY OF APPROXIMATELY MAXIMUM LIKELIHOOD
ESTIMATES

In the framework of general statistical experiment we consider point estimators θ̂n =
θn(Xn), i. e. sequences of measurable mappings Xn → Θ. An estimator is said to
be strongly consistent if θ̂n → θ0 a. s., i. e.,

limn 1Sr(θ0)(θ̂n) = 1 a. s. for all r > 0. (36)

We may assume without loss of generality that fn(θ) are uniformly bounded on Θ.
Indeed, fn(θ) can be replaced by f̃n(θ) = ϕ ◦ fn(θ) where ϕ(x) = x/(1 + |x|).

We are interested in the maximum likelihood estimators (MLE’s) defined by the
condition fn(θ̂n) = fn(Θ) a. s. or, more generally, in the approximate MLE’s (briefly,
AMLE’s) defined by the condition fn(θ̂n)− fn(Θ) → 0 a. s.

Denote εn = fn(θ̂n)− fn(Θ). We shall need the obvious relations

fn(Sc)− fn(S) > εn ⇒ θ̂n ∈ S

and
fn(Sc)− fn(S) < −εn ⇒ θ̂n /∈ S

for subsets S ⊂ Θ different from ∅ and Θ. If the left-hand side tends a. s. to Iθ0(S)
then Iθ0(Sr(θ0)) > 0 implies that (36) holds and Iθ0(Sr(θ0)) < 0 implies that (36)
fails to hold. The following result follows directly from here.

Theorem 7. Let for all balls S = Sr(θ0) contained in Θ the global information
Iθ0(S) exist and satisfy the relation limn(fn(Sc) − fn(S)) = Iθ0(S). If Iθ0(S) > 0
for all balls with sufficiently small r > 0 then all AMLE’s are strongly consistent. If
Iθ0(S) < 0 for one of these balls then no AMLE is strongly consistent.

This result is an alternative to the results on AMLE’s obtained by the authors
cited at the end of Section 1. The condition of existence of global information
imposes stronger restriction on the model than assumed in their theorems. On the
other hand, in models where the global information exists it provides considerably
simpler characterization of consistency.

Example 7. In the model of errorless observations contaminated by a heavy tailed
noise studied in Example 5 the assumptions of Theorem 7 hold. For the “open
sphere” S1(θ0) = {θ0} it was proved Iθ0({θ0}) = −∞. Therefore Theorem 7 implies
that no AMLE is strongly consistent in this model. In fact, it is easy to see from
the proof of Lemma 4 that no AMLE is in this case consistent, even in the ordinary
(non-strong) sense.

(Received September 12, 1997.)
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