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ON EXACT NULL CONTROLLABILITY
OF BLACK–SCHOLES EQUATION

Kumarasamy Sakthivel, Krishnan Balachandran,

Rangarajan Sowrirajan and Jeong-Hoon Kim

In this paper we discuss the exact null controllability of linear as well as nonlinear
Black–Scholes equation when both the stock volatility and risk-free interest rate influence
the stock price but they are not known with certainty while the control is distributed
over a subdomain. The proof of the linear problem relies on a Carleman estimate and
observability inequality for its own dual problem and that of the nonlinear one relies on
the infinite dimensional Kakutani fixed point theorem with L2 topology.

Keywords: Black–Scholes equation, volatility, controllability, observability, Carleman esti-
mates
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1. INTRODUCTION

1.1. Black–Scholes model

The partial differential equation derived by Black and Scholes [7] in their renowned
work of 1973 to analyze the European option on a stock market that does not pay
a dividend during the life of the option has been of enormous interest to financiers
and mathematicians alike. They limited their analysis to conditions which made the
problem simpler mathematically. The development of more sophisticated options
and pricing models has resulted in many diverse mathematical and computational
techniques being employed in the field.

A call option is the right to buy a security at a specified price (called the exercise
or strike price) during a specified period of time. European options can only be
exercised on the day of expiration of the option. American options can be exercised
at any time up to and including the day of expiration of the option. With the
following assumptions we shall give some outline of the derivation of Black–Scholes
equation. The underlying stock pays no dividends during the life of the option. The
price of the stock one period ahead has a log-normal distribution with mean µ and
volatility σ, which are both constants over the life of the option. There exists a
risk-free interest rate r which is constant over the life of the option. Individuals can
borrow as well as lend at the risk-free interest rate.
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The value of a European call option on a non dividend paying stock could depend
upon a number of factors; the current price of the stock s, the exercise price x, the
time until expiration t, the risk-free interest rate r, the volatility of the stock price σ
and the expected rate of return µ on the stock. Let v be the price of the call option.
The functional dependence can then be expressed as:

v = v(s, x, t, r, σ, µ).

The analysis will reveal that the last variable µ plays no role in determining the
option value for this case. We assume that the change in the underlying typical
stock price ds follows a geometric Brownian motion

ds = µsdt + σsdw

where dw is Brownian. The value of the option matures is known. To determine its
value at an earlier time we need to know how the value evolves as we go backward
in time. By Ito’s lemma for two variables we have

dv =
(
vt + µsvs +

1
2
σ2s2vss

)
dt + σsvsdw.

Now consider a portfolio containing one return call whose value is v and h shares of
the underlying stock. The value C of this portfolio is given as

C = hs − v.

The composition of this portfolio will vary from time-step to time-step. The change
in value is then dC = hds − dv. If h is equal to vs then

dC = vsds − dv.

This means that the change in the value of the portfolio dC over the interval dt is

dC = −
(
vt +

1
2
σ2s2vss

)
dt.

Note that when the terms ds,dv are combined we find that those involving dw and
µ cancel out. Thus C is independent of the random variable dw. That is, it is a
risk free portfolio. Also the value dC is independent of the expected rate of return
µ, which is also the expected rate of growth of the stock price s. Since the value of
the portfolio is independent of the random variable it should increase in value at
the same rate as the risk free interest rate r. Therefore dC = rCdt = r(vss − v)dt.
For this to hold for all dt requires the following Black–Scholes partial differential
equation

vt +
1
2
σ2s2vss + rsvs − rv = 0.

This is the law of evolution of the value of the option. With the assumptions we
made above, this equation holds whenever v has two derivatives with respect to s
and one with respect to t.
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Before entering into the discussion on controllability, we briefly describe some
of the results available in the literature regarding the existence and uniqueness of
a solution to this model based on different techniques. Amster et al. [3] studied
a nonlinear partial differential equation by generalizing the Black–Scholes formula
for an option pricing model with stochastic volatility by topological methods. Also
they proved the existence of at least a solution of this stationary Dirichlet problem
applying an upper and lower solutions method. Further, Amster et al. [4] proved
the existence of a solution by generating a Black–Scholes formula with the initial-
Dirichlet conditions namely

vt + bσ2s3(vss)2 +
1
2
σ̃2s2vss + r(svs − v) = 0,

v(s, T ) = f(s), ∀ s ∈ (c, d),
v(c, t) = f(c), v(d, t) = f(d),

for some f ∈ C([c, d]), and σ̃ depending on σ, t with the help of same upper and
lower solutions method. Kangro and Nicolaides [19] used the partial differential
equations approach for valuing European-style options. They solved the equations
numerically by introducing an artificial boundary in order to make the computational
domain bounded and also derived point wise bounds for the error caused by various
boundary conditions imposed on the artificial boundary. Jodar et al. [18] solved the
Black–Scholes equation

vt + σ2s2vss + r(svs − v) = 0, 0 < s < ∞, 0 ≤ t < T,

v(s, T ) = f(s),

where T is the maturity date and σ, r are positive constants, by using the Mellin
transform. Widdicks et al. [23] applied the singular perturbation technique to price
European and American barrier options which leads to a significant simplification
of the problem by reducing the number of parameters.

However, this Black–Scholes model can not be used in modelling the real world
problem exactly. If the Black–Scholes holds, then the implied volatility of an option
on a particular stock would be constant, even as the strike and maturity vary and
roughly equal to the historic volatility. In practice, the volatility surface for a two
dimensional graph of implied volatility against strike and maturity is not flat. In
fact, in a typical market, the graph of strike against volatility for a mixed maturity
is typically smile shaped. In addition to this, the volatility is a troublesome input.
Whether a single numerical value or a deterministic function implied by market data
or a stochastic probability (with an attendant change in the above Black–Scholes
equation) should be chosen remains an open question and subject of intense debate
and research. The risk-free interest rate is somewhat easier to pin down since it is
closely linked to the spot rate, but for long-term options a term structure for r is
appropriate which is also not known with certainty.

Regarding some generalization of the Black–Scholes equation, Ingber and Wilson
[17] generalized the functional form of the diffusion of these systems and also con-
sidered multi factor models including stochastic volatility and they modelled these
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issues using a previous development of statistical mechanics of financial markets. In
fact they considered a slight generalization of the above Black–Scholes equation in
terms of the other variables using methods given in the standard text [24].

Nowadays the study of inverse problem in option pricing is used to caliberate the
volatility or other unknown parameters with known price in order to increase the
efficiency of the model. For example, the authors [8, 9] studied the inverse problem
of determining the volatility by using Schauder type estimates and gave some nu-
merical interpretations. In [12] the authors discussed the stability and convergence
analysis of the inverse problem of identifying local volatility using Tikhonov regular-
ization method. Moreover the stability of the multidimensional Black–Scholes model
is studied in [22] recently using Carleman estimates. As the problem of identifica-
tion of a suitable control parameter is closely related with the inverse problems, in
this paper, we discuss the controllability and observability properties of the general
Black–Scholes model defined by the equation (1).

1.2. Mathematical formulation

The price v(s, t) of a financial option for buying or selling an asset of value s is
generally found from the following generalized Black–Scholes equation with initial-
Dirichlet boundary conditions

Lv = 1ωu(s, t) + f(s, t) in Q = I × (0, T )

v(a, t) = v(b, t) = 0 on Σ = ∂I × (0, T )

v(s, 0) = v0(s) in I,

 (1)

where the operator L is defined by

L =
∂

∂t
− 1

2
σ2(s, t)s2 ∂2

∂s2
− r(s, t)s

∂

∂s
+ r(s, t),

and I = (a, b) is a bounded interval in R+. Also since 0 ≤ t < T, where t is the time
to expiry, T is the time of expiry and v(s, t) is the value of the option at time t if the
price of the underlying stock at time t is s. The value of the option at the time that
the option matures is known and if s0 is the current price of the underlying stock,
then the value 0 < s0 ≤ s is known.

In the generalized Black–Scholes equation occur two functions, the stock volatility
σ(s, t) ∈ C2,1(Q̄), of the evolution of the price s of the underlying asset with time
t, and the risk-free interest rate r(s, t) ∈ C1(Q̄). Both the quantities influence the
price v(s, t) but they are not known with certainty. Though the choice for σ and r
may be controversial, upper and lower bounds on the volatility and interest during
the life of the option can often be imposed with reasonable certainty and suppose
that we have the upper and lower bounds as follows:

σ0(s, t) ≤ σ(s, t) ≤ σ1(s, t) with σ0(s, t) ≥ c > 0, (2)

and
r0(s, t) ≤ r(s, t) ≤ r1(s, t) with r0(s, t) ≥ c > 0. (3)
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Let f(s, t) represents the nonnegative cash flow that is received to compensate
the loss, if any, that happens due to exercising the option along with a control input
u(s, t), to control the option value v(s, t), associated with equation (1), to be within
the barrier limits.

Clearly, the functions f ∈ L2(Q) is given, while u ∈ L2(Q) is a control input
and let v0 ∈ H1

0 (I) be arbitrary but fixed initial data. Moreover, 1ω is the usual
characteristic function

1ω =

{
1 for s ∈ ω

0 for s ∈ I\ω,

where ω is the suitable open subset of I. We note here that for the observability
problem the subdomain ω represents the region where measurements are made.

Definition. In the Black–Scholes model (1), an initial data v0 ∈ H1
0 (I) is exactly

null controllable in time T if there is a control u ∈ L2(Q) so that its solution v
satisfies v ∈ C(0, T ;L2(I)) ∩ L2(0, T ;H1

0 (I) ∩ H2(I)) and v(s, T ) ≡ 0.
Global exact null controllability at time T for (1) holds if any initial data v0 ∈

H1
0 (I) is exact null controllable in time T.

In general, null controllability is a stronger property of control to the trajectories,
which guarantees that every state which is the value of the final time of a solution
of the uncontrlled equation is reachable from any initial datum by means of suitable
control. Note that the null controllability of a system is a very useful property from
the applications point of view. Indeed, it permits us to reach in a finite amount
of time a state that is more “natural” for the system. Thus for the model (1),
establishing the null controllability result ensures that the efficiency and reliability
of the model can be maintained.

In order to study the controllability of (1) we use the duality arguments [13, 15]
and exactly it would be stated as “The exact controllability of the linear system can
be reduced to the observability estimate of its own dual problem”. This is achieved
by deriving a Carleman estimate corresponding to the linearized system. A basic
Carleman inequality for elliptic operators can be found in [14]. Therefore the dual
problem associated with (1) is given by

L∗y = l(s, t) in Q

y(a, t) = y(b, t) = 0 on Σ

y(s, T ) = yT (s) in I,

 (4)

where l ∈ L2(Q) and the operator L∗ is the formal adjoint of the operator L and is
given by

L∗ =
∂

∂t
+

1
2

∂2

∂s2
(σ2(s, t)s2) − ∂

∂s
(r(s, t)s) − r(s, t).

Also, throughout this study, we use the following standard notations for the
Sobolev spaces Hm(I),Hm

0 (I) and the Lp spaces on I and Q, 1 ≤ p ≤ ∞, with the
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norm denoted ‖ · ‖ and we use 〈·〉 for the inner product of L2(I), | · | to denote the
usual norm in R+.

W p
m(I) =

{
w(x) : ‖w‖W p

m
=

( ∑
|α|≤m

∫
I

|Dαw|p dx
) 1

p

< ∞
}

;

when p = 2, instead of W 2
m we shall write Hm(I).

|w|2 =
( ∫

I

|w(s)|2 ds
) 1

2
,

H1(0, T ; L2(I)) =
{

w ∈ L2(0, T ;L2(I)) :
dw

dt
∈ L2(0, T ; L2(I))

}
,

C2,1(Q̄) =
{

w(s, t) | w,
∂w

∂t
,
∂w

∂s
,
∂2w

∂s2
∈ C(Q̄)

}
,

where Dαw, dw/dt is taken in the sense of distributions. For more detailed defini-
tions on these function spaces one can refer [1].

The rest of the paper is organized as follows: The main result of this paper
is stated in Section 3.2 and then is proved via the Kakutani fixed point theorem
and L2 estimates for the control u obtained in Section 3.1. In fact estimate for this
control is obtained by a Carleman-type estimate stated in Section 2 and observability
inequality for the backward adjoint linear problem given in (4) and the corresponding
controllability of the system (1) is proved in Section 3.1 with the help of Pontryagin’s
maximum principle. The technique we used to extend the exact controllability of the
linearized system to the general nonlinear system is rather general (see, for example,
[2, 5, 6, 11, 20]).

2. CARLEMAN ESTIMATES FOR BLACK–SCHOLES EQUATION

In order to obtain the global controllability for the linearized system, we need ob-
servability inequality for the backward adjoint system. We establish this inequality
by deriving a Carleman-type estimate for the adjoint Black–Scholes equation of (1)
and so much of this work will consist of deriving such an estimate. Though in the
proof of this estimate we use some of the techniques adopted for general parabolic
problem in [10, 16], one has to do some careful estimations for the more general form
(4) with the coefficients stock volatility σ, interest rate r and stock price s.

Essentially, a Carleman estimate for the solutions of (4) is an a priori estimate
which contains only the restriction of solution on Qω = ω × (0, T ) in the right
hand side, instead of the solution taken on the entire domain Q. But to get such an
estimate, it is necessary to multiply the solution by some suitable weight functions.

In this way we need to introduce the following auxiliary functions to express the
inequality in the desired form. Let ω0 b ω, where ω0 is the suitable subdomain of ω
and since I is bounded and connected, one may have the following lemma:
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Lemma. Let ω0 b ω be a suitable subdomain. Then there exists a function
ψ ∈ C2(Ī) such that

ψ(s) > 0 ∀ s ∈ I, ψ|∂I = 0, |ψs(s)| > 0 ∀ s ∈ I\ω0.

The lemma has been proven by the simple arguments in [13]. Next we introduce
functions φ, α : Q → R by the formulae

φ(s, t) =
eλψ(s)

γ(t)
, α(s, t) =

eλψ(s) − e2λΨ

γ(t)
, (5)

where
γ(t) = t(T − t), and Ψ = ‖ψ(s)‖C(Ī),

where the parameter λ > 1 and the function ψ is defined in Lemma.
We note that φ(s, t) ≥ c > 0 for all (s, t) ∈ Q and eκαφm ≤ c < ∞ for all

κ > 0, m ∈ R. Also we see that α < 0 for the arbitrary parameter λ > 0. Therefore,
α approaches −∞ at t = 0 and t = T. This helps us to get the desired observability
estimate.

Now we are ready to prove the Carleman estimate for the problem (4).

Theorem 1. Let ω be the open subset of I, the functions φ and α be defined
as in (5) and let the assumptions on σ ∈ C2,1(Q̄), r ∈ C1(Q̄) defined in (2),(3) be
fulfilled. Then there exists λ0 ≥ 1 such that, for an arbitrary λ > λ0, there exists
δ ≥ δ0(λ) > 0 satisfying the following inequality:∫

Q

[
δ−1φ−1(y2

t (s, t) + s4y2
ss(s, t)) + δφs4y2

s(s, t) + s4δ3φ3y2(s, t)
]
e2δα(s,t) dsdt

≤ c(λ, δ)
( ∫

Q

e2δα(s,t)l2(s, t) dsdt +
∫

Qω

e2δα(s,t)φ3s4y2(s, t) dsdt
)
, (6)

where y is the solution of the problem (4) with the Dirichlet boundary conditions,
Qω = ω × (0, T ) and the constant c(λ, δ) > 0 is independent of y and l.

P r o o f . We shall start the proof by writing the problem (4) in the form

yt +
1
2
σ2s2yss = −1

2
(σ2s2)ssy − (σ2s2)sys + (rs)sy + r(sys + y) + l. (7)

Let us change the unknown variable by a simple transformation y = e−δαz; then the
above problem can be written as

zt +
1
2
σ2s2(zss − (λ2ψ2

s(δφ − δ2φ2) − δλφψss)z) − σ2s2δλφψszs − δαtz

= −1
2
(σ2s2)ssz − (σ2s2)s(zs − δλφψsz) + rs(zs − δλφψsz)

+ ((rs)s + r)z + eδαl in Q,

z(a, t) = z(b, t) = 0 on Σ,

z(s, 0) = z(s, T ) = 0.
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We rewrite this problem in the operator form as

zt − B(t)z + X(t)z = R(t)z + eδαl, (8)

where

B(t)z = −1
2
σ2s2(zss + (δφ + δ2φ2)λ2ψ2

sz) + δαtz, (9)

X(t)z = −σ2s2δφ(λψszs + λ2ψ2
sz), (10)

R(t)z =
1
2
σ2s2δλφψssz − 1

2
(σ2s2)ssz − (σ2s2)s(zs − δλφψsz)

+ ((rs)s + r(1 − sδλφψs))z + rszs. (11)

Consider

d
dt

∫
I

(B(t)z)z ds =
∫

I

(B(t)z)zt ds +
∫

I

(B(t)zt)z ds +
∫

I

(Bt(t)z)z ds

= 2
∫

I

(B(t)z)(eδαl + R(t)z − X(t)z + B(t)z) ds +
∫

I

(Bt(t)z)z ds

and integrating it on (0, T ) and using the boundary conditions, we get

2
∫

Q

(B(t)z)2 dsdt + 2W (t) = −2
∫

Q

(B(t)z)(eδαl + R(t)z) dsdt

−
∫

Q

(Bt(t)z)z dsdt, (12)

where

W (t) = −
∫

Q

B(t)zX(t)z dsdt = −
∫

Q

[1
2
σ2s2(zss + (δ2φ2 + δφ)ψ2

sλ2z) − δαtz
]

×
[
σ2s2δφ(λψszs + λ2ψ2

sz)
]
dsdt. (13)

Next we need to evaluate the terms in (12) one by one. From the definition of B(t),
we have∫

Q

(Bt(t)z)z dsdt =
∫

Q

(s2(σsσt + σσst) + 2σσts)zsz dsdt +
∫

Q

s2σσtz
2
s dsdt

−
∫

Q

[
σσt(δ2φ2 + δφ) +

1
2
σ2(δ2φ2 + δφ)t

]
s2λ2ψ2

sz2 dsdt +
∫

Q

δαttz
2 dsdt.

If we set η(λ) = e2λΨ, then for any λ ≥ 1, δ ≥ η(λ) and s ≥ s0, we have∣∣∣ ∫
Q

(Bt(t)z)z dsdt
∣∣∣ ≤ c

( ∫
Q

s2δφλz2
s dsdt +

∫
Q

s2δ3φ3λ3z2 dsdt
)
, (14)

since we used (here after we also use) the fact |φt| ≤ cφ2, |αtt| ≤ cη(λ)φ3, φ−1 ≤
(T

2 )2 where the constant c is independent of (s, t) ∈ Q, the parameters δ and λ
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are bounded from below by constants, ψ is bounded from above (ψ is a continuous
function with compact support in I) and the stock price s ≥ s0 > 0. Also recall
that the volatility and the interest rate have upper and lower bounds. Further,
throughout this proof, the generic constant c will vary step by step but it may
depend on any one of the constant defined above.
For simplicity, let us introduce the notation

D(s, λ, δ, z) =
∫

Q

s2δλφz2
s dsdt +

∫
Q

s2δ3λ3φ3z2 dsdt.

Next we shall estimate∣∣∣ ∫
Q

2B(t)z(eδαl + R(t)z) dsdt
∣∣∣ ≤ 2‖B(t)z‖2

L2(Q) + ‖eδαl‖2
L2(Q) + ‖R(t)z‖2

L2(Q).

Here we note that

‖R(t)z‖2
L2(Q) ≤ 8

(1
4
‖σ2s2δλφψssz‖2

L2(Q) +
1
4
‖(σ2s2)ssz‖2

L2(Q)

+
1
4
‖(σ2s2)szs‖2

L2(Q) + ‖(σ2s2)sδλφψsz‖2
L2(Q) + ‖(rs)sz‖2

L2(Q)

+ ‖rsδλφψsz‖2
L2(Q) + ‖rz‖2

L2(Q) + ‖rszs‖2
L2(Q)

)
.

Since one can easily justify that the each term on the right hand side of the above
inequality is bounded by cD(s2, λ, δ, z) for any λ ≥ 1, δ ≥ η(λ) and s ≥ s0. Therefore,∣∣∣ ∫

Q

2B(t)z(eδαl + R(t)z) dsdt
∣∣∣ ≤ 2

∫
Q

(B(t)z)2 dsdt +
∫

Q

e2δαl2 dsdt (15)

+ cD(s2, λ, δ, z).

Making use of the estimations (14),(15), we estimate (12) as

2W (t) ≤
∫

Q

e2δαl2 dsdt + cD(s2, λ, δ, z) (16)

for λ ≥ 1, δ ≥ η(λ) and s ≥ s0. Next we need to obtain the lower bound for W (t)
and so we shall estimate the L2 integrals of (13) one by one. We observe by the
calculation involving Green’s theorem

−
∫

Q

1
2
σ4s4δλ2φψ2

szssz dsdt

=
1
2

∫
Q

(σ4s4δλ2φψ2
s)szsz dsdt +

1
2

∫
Q

σ4s4δλ2φψ2
sz2

s dsdt; (17)

but elementary computation shows that

1
2

∫
Q

(σ4s4δλ2φψ2
s)szsz dsdt ≥ −1

4

∫
Q

σ4s4δλ2φψ2
sz2

s dsdt − c
(
D(s2, λ, δ, z)

+
∫

Q

s4δ2λ4φ3z2 dsdt
)

(18)
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and also note that

−
∫

Q

1
2
σ4s4δλφψszsszs dsdt

=
1
4

∫
Q

(σ4s4δλφψs)sz
2
s dsdt − 1

4

∫
Σ

σ4s4δλφ
dψ

dν
z2
sdΣ

≥ −c D(s2, λ, δ, z), (19)

since we recall that ψ = 0 on ∂I and ψ > 0 in I, we have dψ
dν ≤ 0 and therefore

−1
4

∫
Σ

σ4s4δλφ
dψ

dν
z2
sdΣ ≥ 0,

where ν is the outward unit normal to ∂I. Moreover,

−
∫

Q

1
2
σ4s4λ3(δ3φ3 + δ2φ2)ψ3

szzs dsdt

≥
∫

Q

1
4
σ4s4λ4ψ4

s(3δ3φ3 + 2δ2φ2)z2 dsdt − c D(s2, λ, δ, z). (20)

Immediately one can see that the addition of the terms

−1
2

∫
Q

σ4s4λ4(δ3φ3 + δ2φ2)ψ4
sz2 dsdt

of W (t) to both sides of the inequality (20) further reduces its lower bounds.
Furthermore, for any λ ≥ 1, δ ≥ η(λ), we obtain∣∣∣ ∫

Q

σ2s2δ2λ2φψ2
sαtz

2 dsdt
∣∣∣ ≤ c D(s, λ, δ, z) (21)

and ∣∣∣ ∫
Q

σ2s2δ2λφψsα(ln γ−1(t))tzsz dsdt
∣∣∣

=
1
2

∣∣∣ ∫
Q

(σ2s2δ2λφψsα)s(ln γ−1(t))tz
2 dsdt

∣∣∣
≤ c D(s, λ, δ, z); (22)

here we note that |αt| ≤ cη(λ)φ2 and αt = α(ln γ−1(t))t. Thus using the equations
(17) – (22), we obtain

W (t) ≥ 1
4

∫
Q

σ4s4δλ2φψ2
sz2

s dsdt +
1
4

∫
Q

σ4s4δ3λ4φ3ψ4
sz2 dsdt

− c
( ∫

Q

s4δ2λ4φ3z2 dsdt + D(s2, λ, δ, z)
)
, (23)
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for any λ ≥ 1, δ ≥ η(λ) and s ≥ s0. Hence the inequalities (16) and (23) imply the
following key inequality∫

Q

σ4s4δλ2φψ2
sz2

s dsdt +
∫

Q

σ4s4δ3λ4φ3ψ4
sz2 dsdt

≤ c
( ∫

Q

s4δ2λ4φ2z2 dsdt +
∫

Q

e2δαl2 dsdt + D(s2, λ, δ, z)
)
. (24)

Now we are in the position of expressing two integrals involving z2
s , z2 on the

right hand side of the above inequality over the domain Qω0 . To do this we use
the lower bound of σ and the fact that ψs > 0 ∀ s ∈ I\ω0 and ψ|∂I = 0 so
that ψs also has a lower bound θ on I\ω0 and hence on Q\Qω0 (since ψ does
not depend on t). Next choose the parameter λ such that λ > λ0 = c + 1 to
have θ4λ > c + 1 and θ2λ > c + 1, where c is the constant defined in (24). In
order to manage the other integral (with λ4 on the right hand side) we choose
δ ≥ δ0(λ) = max

(
cλ

θ4λ−c , η(λ)
)

to obtain λ(θ4 − c) ≥ c + 1. After this substitution
we add the integrals

∫
Qω0

s4δ3λ3φ3z2 dsdt and
∫

Qω0
s4δλφz2

s dsdt on both sides of
the inequality (24) to arrive at (also see [21])∫

Q

s4δλφz2
s dsdt +

∫
Q

s4δ3λ3φ3z2 dsdt

≤ c(λ)
( ∫

Qω0

s4δ3φ3z2 dsdt +
∫

Qω0

s4δφz2
s dsdt

)
+ c

∫
Q

e2δαl2 dsdt, (25)

for δ ≥ δ0(λ), λ > λ0, s ≥ s0. Coming back to the original variable y by substituting
z = eδαy, we have∫

Q

e2δαs4δλφy2
s dsdt +

∫
Q

e2δαs4δ3λ3φ3y2 dsdt

≤ c(λ)
( ∫

Qω0

e2δαs4δ3φ3y2 dsdt +
∫

Qω0

e2δαs4δφy2
s dsdt +

∫
Q

e2δαl2 dsdt
)
(26)

for δ ≥ δ0(λ), λ > λ0, s ≥ s0. Next we shall express the integral δφy2
s over Qω0 in

a somehow larger domain Qω (since we remember that ω0 b ω). To this end, we
choose χ ∈ C∞

0 (I) such that χ ≡ 1 in ω̄0 and χ ≡ 0 in I\ω. Multiplying the equation
(7) by e2δαχδφy and integrating over Q, we obtain after integration by parts

1
2

∫
Q

e2δασ2s2χδφy2
s dsdt =

1
2

∫
Q

(e2δαδχφ(σ2s2)ss − (e2δαχδφ)t)y2 dsdt

+
∫

Q

((σ2s2)s − rs)e2δαδχφyys dsdt − 1
2

∫
Q

(e2δασ2s2χδφ)syys dsdt

−
∫

Q

e2δα(r + (rs)s)χδφy2 dsdt −
∫

Q

e2δαχδφly dsdt.

After some computation involving Cauchy’s inequality (ab ≤ εa2

2 + b2

2ε , a, b > 0)
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with ε > 0, we obtain∫
Q

e2δασ2s2χδφy2
s dsdt ≤ c(λ)

( ∫
Q

e2δαl2 dsdt +
∫

Qω

e2δαδ3φ3s2y2 dsdt
)
.

Therefore, the inequality (26) can be rewritten as∫
Q

e2δαs4δφy2
s dsdt +

∫
Q

e2δαs4δ3φ3y2 dsdt

≤ c(λ)
( ∫

Q

e2δαl2 dsdt +
∫

Qω

e2δαδ3φ3s4y2 dsdt
)
, (27)

for δ ≥ δ0(λ), λ > λ0, s ≥ s0. In order to complete this theorem we need to evaluate
the integral

∫
Q

e2δα(δφ)−1(y2
t + s4y2

ss) dsdt. Squaring the equation (7) on both sides
and multiplying it with e2δαδ−1φ−1, we obtain∫

Q

e2δα(δφ)−1
(
yt +

1
2
σ2s2yss

)2

dsdt

≤ c(λ)
( ∫

Q

e2δαl2 dsdt +
∫

Q

e2δαδφs4y2
s dsdt +

∫
Q

e2δαδ3s4φ3y2 dsdt
)
; (28)

here we used the fact that eκαφmδβ ≤ c < ∞ for all κ > 0, m ∈ R, β < 0. At the
same time we should note∫

Q

e2δα(δφ)−1ytσ
2s2yss dsdt =

1
2

∫
Q

(e2δαδ−1φ−1σ2s2)ty
2
s dsdt

−
∫

Q

(e2δαδ−1φ−1σ2s2)sysyt dsdt,

and consequently, by the estimations |φt| ≤ cφ2, |αt| ≤ cη(λ)φ2 and the Cauchy’s
inequality, we arrive at

1
2

∫
Q

(e2δαδ−1φ−1σ2s2)ty
2
s dsdt ≥ −c(λ)

∫
Q

e2δαs2φy2
s dsdt

and

−
∫

Q

(e2δαδ−1φ−1σ2s2)sysyt dsdt

≥ −1
2

∫
Q

e2δαδ−1φ−1y2
t dsdt − c

∫
Q

e2δαs4δλ2φy2
s dsdt.

Evidently, one can rewrite the inequality (28) with the help of the lower bound of σ
as ∫

Q

e2δα(δφ)−1(y2
t + s4y2

ss) dsdt ≤ c(λ)
( ∫

Q

e2δαl2 dsdt

+
∫

Q

e2δαδφs4y2
s dsdt+

∫
Q

e2δαδ3s4φ3y2 dsdt
)
+c

∫
Q

e2δαλ2δφs4y2
s dsdt, (29)

for δ ≥ δ0(λ), λ > λ0, s ≥ s0. Coupling the inequalities (27) and (29), we get the
desired inequality (6). ¤
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3. CONTROLLABILITY RESULTS

3.1. Controllability of linear Black–Scholes equation

In this section we study the global exact null controllability of the linear Black–
Scholes equation

Lv = 1ωu(s, t) + f(s, t) in Q

v(a, t) = v(b, t) = 0 on Σ

v(s, 0) = v0(s) in I,

 (30)

where the operator L is defined in (1). In the following theorem we shall use the
notation for some weighted L2 spaces as the space L2(Q, e−2δαφ−3) of all equivalence
classes of measurable functions f : Q → R for which e−δαφ− 3

2 f ∈ L2(Q), that is, it
satisfies ∫

Q

e−2δαφ−3f2 dsdt < ∞.

Theorem 2. Let I and ω be as in the statement of Theorem 1 and let the
conditions (2),(3) on σ ∈ C2,1(Q̄), r ∈ C1(Q̄) be fulfilled. Then there are δ ≥
δ0(λ), λ > λ0 such that for any f ∈ L2(Q, e−2δαs−4φ−3), v0 ∈ H1

0 (I) there ex-
ists (u, v) ∈ L2(Q) × L2(0, T ; H1

0 (I) ∩ H2(I)) ∩ H1(0, T ; L2(I)) which satisfies the
equation (30) and the final condition

v(s, T ) ≡ 0, a. e. s ∈ I

and which has the following decay at t = T :

u ∈ L2(Q, e−2δαs−4φ−3). (31)

Before going into the proof of this theorem we shall obtain an a priori estimate
of unique solution v ∈ L2(0, T ; H1

0 (I) ∩ H2(I)) ∩ H1(0, T ; L2(I)) of (30) for a given
v0 ∈ H1

0 (I) in the usual way. First multiplying (30) by v and integrating over
Qt = I × (0, t), for some t ∈ (0, T ), we arrive, after some calculation involving
Green’s theorem at

1
2

d
dt

|v(t)|2L2(I) +
1
2

∫
I

σ2s2v2
s ds +

1
2

∫
I

rv2 ds

≤ 1
2

∫
I

(1 − (rs)s)v2 ds +
∫

I

(1ωu2 + f2) ds −
∫

I

1
2
(σ2s2)svvs ds.

Since one could easily see that∣∣∣1
2

∫
I

(σ2s2)svvs ds
∣∣∣ ≤ 1

4η

∫
I

(σσss + σ2)2v2 ds + η

∫
I

s2v2
s ds.



698 K. SAKTHIVEL ET AL.

The differential version of Gronwall’s inequality gives

|v(t)|2L2(I) +
∫

Qt

s2v2
s dsdτ +

∫
Qt

v2 dsdτ

≤ c
(
|v0(s)|2L2(I) +

∫
Qt

(1ωu2 + f2) dsdτ
)
. (32)

Here we recall that σ ≥ σ0 > 0, r ≥ r0 > 0 and s ≥ s0 and we have chosen the
parameter η such that η ≤ inf(s,t)∈Q σ0. Further, multiplying (30) by vt − vss and
integrating on I × (0, t), we get∫

Qt

v2
t dsdτ +

1
2

∫
Qt

σ2s2v2
ss dsdτ + c

∫ t

0

d
dt

∫
I

v2
s dsdτ

≤
∫

Qt

(
rs(vsvt − vsvss) + r(vvss − vvt)

)
dsdτ +

1
4

∫
Qt

v2
t dsdτ

+η

∫
Qt

s2v2
ss dsdτ −

∫
Qt

(σ2s2)svtvs dsdτ + c(η)
∫

Qt

(1ωu2 + f2) dsdτ.

Using Green’s theorem, we further obtain that∫
Qt

rs(vsvt − vsvss) dsdτ +
∫

Qt

r(vvss − vvt) dsdτ

≤ c
( ∫

Qt

s2v2
s dsdτ +

∫
Qt

v2 dsdτ
)

+
1
4

∫
Qt

v2
t dsdτ.

Making use of the preceding estimate and (32), we have (for any η as above)

‖v(t)‖2
H1

0 (I) +
∫

Q

v2
t dsdτ +

∫
Q

s2v2
ss dsdτ

≤ c
(
|v0(s)|2L2(I) + ‖v0(s)‖2

H1
0 (I) +

∫
Q

1ωu2 dsdτ +
∫

Q

f2 dsdτ
)
. (33)

Now we are ready prove Theorem 2.

P r o o f o f T h e o r em 2. Let us start with the optimal control problem asso-
ciated with (30)

J(u, v) =
∫

Q

e−2δαs−4φ−3u2 dsdt +
1
ε

∫
I

v2(s, T ) ds −→ inf

for over all u ∈ L2(Q) and v satisfying (30). Here δ and λ are chosen as in Theo-
rem 1. Then by Pontryagin’s maximum principle, this problem has a unique solution
(uε, vε). We shall show that (uε, vε) really converges (as a subsequence of {ε}) in a
certain topology as ε → 0. Then, the limit (u, v) will be proved to be a solution of
the control problem (30). To attain this end, we need to obtain suitable estimate
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for (uε, vε). The maximum principle also states that (uε, vε) satisfies the following
necessary conditions for optimality:

uε = 1ωe2δαφ3s4yε a. e. in Q, (34)

where yε is the solution of the following adjoint system

(yε)t + 1
2

(
σ2s2yε

)
ss

− (rs)syε − ryε = 0 in Q

yε(a, t) = yε(b, t) = 0 on Σ

yε(s, T ) = −1
ε vε(s, T ) in I.

 (35)

Multiplying (35) by vε and (30) by yε (after replacing (u, v) by (uε, vε)) and adding
the two resulting equations together and integrating on Q we get∫

Qω

s4e2δαφ3y2
ε(s, t) dsdt +

1
ε

∫
I

v2
ε(s, T ) ds

= −
∫

I

v0(s)yε(s, 0) ds −
∫

Q

fyε(s, t) dsdt. (36)

Here we need to estimate the term
∫

I
y2

ε(s, 0) ds so-called observability estimate
for the adjoint problem (4), that is, an estimate for the initial state on I by means of
the states taken on ω at all the subsequent moments. For this, we scalarly multiply
(35) by yε and integrate on I (for notation simplicity we use y instead of yε) to get

−1
2

d
dt

∫
I

y2 ds +
1
2

∫
I

σ2s2y2
s ds =

1
2

∫
I

(2rs − (σ2s2)s)yys ds −
∫

I

ry2 ds.

Notice that∫
I

(2rs − (σ2s2)s)yys ds ≤ 1
η

∫
I

(r2 + (σ2 + σσss)2)y2 ds + η

∫
I

s2y2
s ds,

and so we choose η ≤ inf(s,t)∈Q σ0 to have

− d
dt

|y|2L2(I) ≤ c|y|2L2(I) a. e. t ∈ (0, T ),

whence it follows that∫
I

y2(s, 0) ds ≤ ecT

∫
I

y2 ds for t ∈ (0, T ).

Now we fix t1 and t2 such that 0 < t1 < t2 < T and α̃(t) = maxs∈Ī{−α(s, t)}.
Integrating the above inequality in (t1, t2) and taking φ−3 ≤ (T

2 )6 into account, we
obtain ∫ t2

t1

∫
I

e−2δeα(t)y2(s, 0) dsdt ≤ c

∫ t2

t1

∫
I

e2δαφ3y2 dsdt.



700 K. SAKTHIVEL ET AL.

Noting inft∈(t1,t2){e−2δeα(t)} ≥ c̆ > 0, we obtain that∫
I

y2(s, 0) ds ≤ c

∫
Q

e2δαφ3y2 dsdt. (37)

Next, by the simple application of Hölder’s inequality and Theorem 1, we arrive at,
for every ε > 0,∣∣∣ ∫

Q

fyε dsdt
∣∣∣ ≤ ∫

Q

|fyε|dsdt

≤
( ∫

Q

e2δαs4φ3y2
ε dsdt

) 1
2
( ∫

Q

e−2δαs−4φ−3f2 dsdt
) 1

2

≤ c(λ, δ)
( ∫

Qω

e2δαs4φ3y2
ε dsdt+

1
ε

∫
I

v2
ε(s, T ) ds

) 1
2 ‖e−δαs−2φ− 3

2 f‖L2(Q). (38)

Also, by the observability inequality (37) and Theorem 1, we eventually obtain∣∣∣ ∫
I

v0(s)yε(s, 0) ds
∣∣∣ ≤ ( ∫

I

y2
ε(s, 0) ds

) 1
2
( ∫

I

v2
0(s) ds

) 1
2

≤ c(λ, δ)
( ∫

Qω

e2δαs4φ3y2
ε dsdt +

1
ε

∫
I

v2
ε(s, T ) ds

) 1
2 |v0(s)|L2(I). (39)

Consequently, through the inequalities (38),(39) for every ε > 0, we have∫
Qω

e2δαs4φ3y2
ε dsdt +

1
ε

∫
I

v2
ε(s, T ) ds

≤ c(λ, δ)
( ∫

Qω

e2δαs4φ3y2
ε dsdt +

1
ε

∫
I

v2
ε(s, T ) ds

) 1
2

×
(
|v0(s)|L2(I) + ‖e−δαs−2φ− 3

2 f‖L2(Q)

)
and so by the definition of the control uε we get the desired estimate∫

Q

e−2δαs−4φ−3u2
ε dsdt +

1
ε

∫
I

v2
ε(s, T ) ds

≤ c(λ, δ)
(
|v0(s)|2L2(I) +

∫
Q

e−2δαs−4φ−3f2 dsdt
)
, (40)

where the constant c(λ, δ) > 0 is independent of ε > 0 and which is somehow greater
than the constant defined in Theorem 1 and the preceding inequality. The inequality
(40), clearly gives ∫

I

v2
ε(s, T ) ds ≤ c ε (41)

for some positive constant c independent of ε. By the estimates (32), (33) together
with (40) there exists a pair (uε, vε)∈L2(Q)×L2(0, T ; H1

0 (I)∩H2(I))∩H1(0, T ; L2(I))
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such that, on a subsequence of {ε} ( also denoted by same {ε}) we have the following
convergences:

uε → u weakly in L2(Q),
vε → v weakly in L2(0, T ; H1

0 (I) ∩ H2(I)) ∩ H1(0, T ; L2(I)).

So letting ε → 0 in (30) where (u, v) are replaced by (uε, vε), we obtain that (u, v)
satisfies (30). Moreover by (41) and Fatou’s lemma, we have∫

I

v2(s, T ) ds ≤ lim
ε→0

inf
∫

I

v2
ε(s, T ) ds = 0

and so v(s, T ) ≡ 0 a. e. s ∈ I. Passing to the limit ε → 0 in (40), we obtain∫
Q

e−2δαs−4φ−3u2 dsdt ≤ lim
ε→0

inf
∫

I

e−2δαs−4φ−3u2
ε dsdt

≤ lim
ε→0

inf c(λ, δ)
(
|v0(s)|2L2(I) +

∫
Q

e−2δαs−4φ−3f2 dsdt
)
≤ c, (42)

where c is a positive constant independent of ε. This convergence clearly shows that
u ∈ L2(Q, e−2δαs−4φ−3) and this completes the proof of the Theorem 2. ¤

3.2. Controllability of nonlinear Black–Scholes equation

Consider the problem of exact controllability of general nonlinear Black–Scholes
equation

Lv + g(s, t, v) = 1ωu(s, t) + f(s, t) in Q

v(a, t) = v(b, t) = 0 on Σ

v(s, 0) = v0(s) in I,

 (43)

where the operator L is defined in (1). We impose the following assumptions on the
function g : I × (0, T ) × R → R. It satisfies g(s, t, 0) = 0 ∀ (s, t) ∈ Q and global
Lipschitz condition, that is, there exists a constant M > 0 such that

|g(s, t, ζ1) − g(s, t, ζ2)| ≤ M |ζ1 − ζ2| ∀ (s, t, ζ) ∈ Q × R. (44)

Now we are ready to state the main theorem of this section.

Theorem 3. Assume that σ ∈ C2,1(Q̄), r ∈ C1(Q̄), which satisfy (2),(3) and g
satisfies g(t, s, 0) = 0 and (44) a. e. (s, t) ∈ Q, ζ ∈ R. Then for each v0 ∈ H1

0 (I)
there are u ∈ L2(Q) and v ∈ L2(0, T ; H1

0 (I) ∩ H2(I)) ∩ H1(0, T ; L2(I)) satisfying
(43) such that v(s, T ) ≡ 0 a. e. in I.

P r o o f . The argument is standard and will be frequently used in the sequel.
Consider the following family of problems of exact controllability

Lv + gε(s, t, v) − gε(s, t, 0) = 1ωu(s, t) + f(s, t) in Q

v(a, t) = v(b, t) = 0 on Σ

v(s, 0) = v0(s) in I,

 (45)
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where the averaging factor of gε for ε > 0 is defined by

gε(s, t, v) =
1
ε

∫
R

ρ
( |τ − v|

ε

)
g(s, t, τ) dτ,

since ρ is a smooth function with compact support in the unit ball, that is, ρ(z) ≥ 0
∀ z ∈ R, ρ(z) = ρ(|z|) satisfies supp(ρ) ⊂ {z : |z| ≤ 1} and

∫
R ρdz ≡ 1. Here one can

see that

(gε(s, t, ζ) − gε(s, t, 0))|ζ=0 = 0 ∀ (s, t) ∈ Q. (46)

Furthermore, by the Lipschitz continuity of g, we have

|gε(s, t, ζ1) − gε(s, t, ζ2)| ≤
M

ε

∫
R

ρ
( |τ |

ε

)
dτ |ζ1 − ζ2| ∀ (s, t) ∈ Q. (47)

At the same time we infer, by the equations (46) and (47), that

gε(s, t, ζ) − gε(s, t, 0) = ĝε(s, t, ζ)ζ

and |ĝε(s, t, ζ)ζ| ≤ M |ζ| ∀ (s, t, ζ) ∈ Q × R. Now we consider the set

K = {ζ ∈ L2(Q) : ‖ζ‖L2(Q) ≤ η},

the linear system

Lv + ĝε(s, t, ζ)v = 1εu(s, t) + f(s, t) in Q

v(a, t) = v(b, t) = 0 on Σ

v(s, 0) = v0(s) in I,

 (48)

and the set valued mapping Φ : K → 2K such that

Φ(ζ) =
{
v : v ∈ L2(0, T ; H1

0 (I) ∩ H2(I)) ∩ H1(0, T ; L2(I)), v(s, T ) ≡ 0,

and ∃ u ∈ L2(Q) satisfying (42) such that (u, v) satisfies (30)
}
.

Clearly, by Theorem 2, Φ(ζ) is closed and Φ(ζ) 6= 0 for each ζ ∈ K and has
convex values in L2(Q). Now we are ready to apply Kakutani’s fixed point theorem
to show that Φ has a fixed point in K with respect to L2(Q) topology. Since from
the estimates (33) and (42) we note that

‖v(t)‖2
H1

0 (I) +
∫

Q

v2
t dsdt +

∫
Q

v2
ss dsdt

≤ c(λ, δ)
(
|v0(s)|2L2(I) + ‖v0(s)‖2

H1
0 (I) +

∫
Q

e−2δαs−4φ−3f2 dsdt
)

and by the Sobolev imbeddings

R.H.S. ≤ c(λ, δ)
(
‖v0(s)‖2

H1
0 (I) + ‖e−δαs−2φ− 3

2 f‖2
L2(Q)

)
. (49)
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Therefore Φ(K) ⊂ K and by the preceding estimate, it follows via Aubin’s com-
pactness theorem that Φ(K) is relatively compact subset of L2(Q).

In addition to this for upper semi continuity of Φ, let ζε ∈ K, ζε → ζ in L2(Q)
and vε → v in L2(Q), where vε ∈ Φ(ζε) and let uε be the corresponding controls.
Hence by (42) and (49), it follows that on a subsequence

uε → u weakly in L2(Q)
vε → v weakly in L2(0, T ;H1

0 (I) ∩ H2(I)) ∩ H1(0, T ;L2(I)),
strongly in C(0, T ;L2(I)).

Moreover, (ĝε(s, t, ζε)vε − ĝ(s, t, ζ)v) → 0 weakly in L2(Q) and hence there is v ∈ K
such that v ∈ Φ(v). Consequently by replacing (u, v) by (uε, vε) in (48) and passing
to the limit we get the optimal pair (u, v) satisfying v(s, T ) ≡ 0 as claimed. This
concludes the proof. ¤
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