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OPTIMALITY OF THE LEAST WEIGHTED
SQUARES ESTIMATOR1

Libor Maš́ıček

The present paper deals with least weighted squares estimator which is a robust esti-
mator and it generalizes classical least trimmed squares. We will prove

√
n-consistency

and asymptotic normality for any sequence of roots of normal equation for location model.
The influence function for general case is calculated. Finally optimality of this estimator
is discussed and formula for most B-robust and most V-robust weights is derived.

Keywords: robust regression, least trimmed squares, least weighted squares, influence func-
tion,

√
n-consistency, asymptotic normality, B-robustness, V-robustness

AMS Subject Classification: 62F35, 62J05

1. INTRODUCTION

Let us consider the following regression model

Yi = XT
i β0 + Zi for i = 1, . . . , n (1)

whereXi = (Xi1, . . . , Xip)T is the p×1 column vector of explanatory variables, which
are random, β0 is the p× 1 column vector of unknown regression coefficients and Zi

are random fluctuations with continuous distribution and EZi = 0. Moreover, the
sequence of random vectors X1, . . . , Xn is independent and identically distributed
(IID), the sequence of random variables Z1, . . . , Zn is IID and the sequences are
mutually independent. For the choice p = 1 and Xi1 ≡ 1 we obtain

Yi = β0 + Zi for i = 1, . . . , n, (2)

where β0 ∈ R is an unknown parameter. This is known as location model.
In general regression model denote for any β ∈ Rp the ith residuum as

ri(β) := Yi −XT
i β = Zi −XT

i (β − β0) (3)

and the hth order statistics of squared residuals by r2(h)(β), i. e.

0 ≤ r2(1)(β) ≤ r2(2)(β) ≤ · · · ≤ r2(n)(β). (4)

1Some results from this paper were presented on 24th European Meeting of Statisticians.
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For any β ∈ Rp denote order statistics of absolute value of residuals as r|h|(β) :=√
r2(h)(β) (i. e. also square root of the hth order statistics of squared residuals).

Now we can define least weighted squares estimator (LWS) as

β̂n = β̂LWS
n,w := arg min

β∈Rp

n∑

h=1

w

(
h− 1
n

)
r2(h)(β) (5)

where w : [0, 1] → [0,∞) is a given weight function. Typically we suppose, that w is
nonincreasing (i. e. observations with larger residuals have smaller weight). Without
loss of generality we suppose w(1) = 0.

This estimator was developed by Vı́̌sek (see [7] and [8]) and it generalizes classical
least trimmed squares (LTS) proposed by Rousseeuw (see [6]) which we get for the
choice w(x) = I {x < α} where I {. . . } is an indicator function and α ∈ (0, 1). The
main reason for developing this estimator was to improve applicability. In the LTS
estimator one can adjust just one constant but in the LWS estimator we can choose
the entire weight function. This gives a chance to increase efficiency or decrease
gross error sensitivity.

This estimator has some nice properties. First of all the breakdown point comes
immediately from the weight function. If w(α) > 0 for α < α and w(α) = 0 for α > α
then the LWS estimator has breakdown point equal to min {1− α, α}. This means
that we have the breakdown point under control and we can choose it arbitrary up
to 0.5.

The most important property of this estimator is regression and scale equivari-
ance. This is an advantage w.r.t. M-estimators which are regression equivariant
but not scale equivariant hence some studentisation of residuals by some robust
estimator of scale is needed.

Finally we can multiply the weight function by an arbitrary positive constant and
our estimator remains unchanged.

But there are some open questions about the LWS estimator. Under what condi-
tions is this estimator consistent or

√
n-consistent? What is its asymptotic variance?

What is its influence function? And presumably the most important question: What
is the optimal choice of weights? We will answer some of these questions in this pa-
per.

In the next section we deduce the normal equations for the LWS estimator and
we rewrite them as statistical functional (i. e. as function of empirical distribution
function). In Section 3 we restrict ourselves to the case of location model and
we provide conditions for

√
n-consistency and asymptotic normality of the LWS

estimator for location model. In Section 4 we expresses the influence function of
the LWS estimator for general regression. Section 5 combines results of Sections 3
and 4 and the most B-robust and V-robust LWS estimators for location model are
expressed. Section 6 provides detailed proofs.
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2. NORMAL EQUATIONS

Denote the function that is minimized in (5) by

MFn(β) :=
n∑

h=1

w

(
h− 1
n

)
r2(h)(β) (6)

for β ∈ Rp. Now we define random variables π0(i, β) for i = 1, . . . , n and β ∈
Rp in such a way that r2i (β) = r2(π0(i,β))(β), i. e. for any β ∈ Rp is π0(β) =
{π0(1, β), . . . , π0(n, β)} the random permutation on {1, . . . , n} which converts the
ranks of the observations ordered by the squared residuals. Hence we can reorder
the summation in (6) and rewrite it as

MFn(β) =
n∑

i=1

w

(
π0(i, β)− 1

n

)
r2i (β). (7)

We see that the MFn is the same as the minimized function of classical least squares
with weights (i. e. weighted least squares, WLS) but in this case weights in (7)
are not fixed since they depend on π0(i, β) and hence on the observations. We can
suppose the LWS estimator should satisfy the normal equations of WLS estimator
with corresponding weights as follows.

Lemma 1. Let us denote

NRn(β) :=
n∑

i=1

w

(
π0(i, β)− 1

n

) (
XT

i β − Yi

)
Xi (8)

for any β ∈ Rp. Hence the LWS estimator is solution of equations NRn(β) = 0, i. e.

NRn(β̂LWS
n,w ) = 0. (9)

P r o o f of Lemma 1. Because the weight function w is nonincreasing we can
rewrite MFn in (7) as

MFn(β) = min
π

n∑

i=1

w

(
π(i)− 1

n

)
r2i (β) (10)

where minimization is taken over all permutations π on the set {1, . . . , n} (solv-
ing minimization in (10) leads (7), i. e. to give smaller weights to larger squared
residuals). Suppose NRn(β̂LWS

n,w ) 6= 0 and denote

β̂W
n,w := arg min

β∈Rp

n∑

i=1

w

(
π0(i, β̂LWS

n,w )− 1
n

)
r2i (β), (11)
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i. e. β̂W
n,w is equal to WLS with weights given by β̂LWS

n,w . Notice NRn(β̂LWS
n,w ) 6= 0

implies β̂LWS
n,w does not satisfy normal equations of WLS with weights given by (11).

Hence β̂LWS
n,w is not solution of minimization (11) and we obtain

MFn(β̂W
n,w) ≤

n∑

i=1

w

(
π0(i, β̂LWS

n,w )− 1
n

)
r2i (β̂W

n,w)

<

n∑

i=1

w

(
π0(i, β̂LWS

n,w )− 1
n

)
r2i (β̂LWS

n,w ) = MFn(β̂LWS
n,w ) (12)

where the first inequality comes from (10) and the second one from definition of β̂W
n,w.

Hence we have MFn(β̂W
n,w) < MFn(β̂LWS

n,w ) which is in contradiction with definition
of β̂LWS

n,w and thus NRn(β̂LWS
n,w ) = 0. 2

Denote by F (x, z) the distribution function (d.f.) of (p + 1)-dimensional vector
(Xi, Zi) = (Xi1, . . . , Xip, Zi) and Fn(x, z) the corresponding empirical distribution
function (e.d.f.) obtained from random vectors (X1, Z1), . . . , (Xn, Zn). In this paper
we suppose distribution functions to be left continuous. Now we rewrite the LWS
estimator in the form of statistical functional, i. e. as a function of e.d.f..

Denote by Ft(y) the d.f. of random variable |ri(β0 + t)| = |XT
i t − Zi| and cor-

responding e.d.f. as Fn,t(y). We see that Fn,t(|XT
i t − Zi|) = (π0(i, β0 + t) − 1)/n.

Hence we can rewrite the function NRn(β) (see (8)) as follows

1
n

NRn(β) =
1
n

n∑

i=1

w

(
π0(i, β)− 1

n

) (
XT

i β − Yi

)
Xi

=
1
n

n∑

i=1

w
(
Fn,t

(|XT
i t− Zi|

))
(XT

i t− Zi)Xi (13)

where t := β−β0. Clearly the last term in (13) can be rewritten as an integral with
respect to e.d.f. Fn. So we define for an arbitrary (p + 1)-dimensional d.f. G(x, z)
(where x ∈ Rp and z ∈ R) the following statistical functional

NR(β0 + t, G) :=
∫
w

(
Gt

(|xT t− z|)) (xT t− z)x dG(x, z) (14)

where Gt is d.f. of random variable |XT
Gt − ZG| and vector (XG, ZG) has d.f. G.

Note that NR(β0 + t, G) is p-dimensional vector.
It is easily seen that for G := Fn the integral in (14) is equal to (13) and then

1
n

NRn(β) = NR(β, Fn). (15)

Another very useful way how to rewrite NRn(β) is the following. We can reorder
the summation in the second term in (13)

1
n

NRn(β) =
1
n

n∑

h=1

w

(
h− 1
n

) n∑

i=1

(
XT

i β − Yi

)
Xi I

{∣∣Yi −XT
i β

∣∣ = r|h|(β)
}

(16)



Optimality of the Least Weighted Squares Estimator 719

and hence rewrite it

1
n

NRn(β) =
n∑

h=1

wh,n

[
1
n

n∑

i=1

(
XT

i t− Zi

)
Xi I

{∣∣Zi −XT
i t

∣∣ ≤ r|h|(β0 + t)
}
]

(17)

where t := β − β0 and

wh,n = w

(
h− 1
n

)
− w

(
h

n

)
(18)

(recall that w(1) = 0). Since we are working with continuous random errors (see
(1)) we need not take into account the case r|h|(β) = r|l|(β) for h 6= l.

Now in the same way as in the previous situation we define for any d.f. G(x, z)
(where x ∈ Rp and z ∈ R) the following statistical functional

NR∗α(β0 + t, G) :=
∫

(xT t− z)x I
{|z − xT t| ≤ G−1

t (α)
}

dG(x, z) (19)

where Gt is defined as before. If we choose G equal to e.d.f. Fn we get G−1
t (α) =

F−1
n,t (α) = r|h|(β0 + t) for α ∈ (

h−1
n , h

n

]
and then

NR∗α(β0 + t, Fn) =
1
n

n∑

i=1

(
XT

i t− Zi

)
XiI

{∣∣Zi −XT
i t

∣∣ ≤ r|h|(β0 + t)
}

(20)

for α ∈ (
h−1

n , h
n

]
, which is the term in the brackets in (17). Define for any d.f.

G(x, z) (where x ∈ Rp and z ∈ R)

NR(β,G) :=
∫ 1

0

NR∗α(β,G) dw∗(α) (21)

where w∗(α) := w(0) − w(α). Hence for G := Fn (21) is equal to (17). This is
because NR∗α(β, Fn) is piecewise constant with respect to α and therefore

NR(β, Fn) =
n∑

h=1

wh,nNR∗h/n(β, Fn) (22)

which is equal to (17) (see (20)).
Finally define the statistical functional T (G) as a solution of normal equations

NR(β,G) = 0, i. e. it holds NR(T (G), G) = 0 for any d.f. G(x, z) (where x ∈ Rp and
z ∈ R). Functional T is not explicitly defined and generally there are more solutions
to the normal equations. But we can choose T in such a way, that

T (Fn) = β̂LWS
n , (23)

i. e. the statistical functional T represents the LWS estimator.

3. ASYMPTOTIC PROPERTIES OF LWS FOR LOCATION MODEL

Let us restrict ourselves to the location model (2) in this section. The following
assumptions will be needed throughout the paper.
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A1: The weight function w is nonincreasing and bounded with derivative existing
almost everywhere. Moreover, it is positive on some neighbourhood of zero, w(α) = 0
for α ∈ (α, 1) where 0 < α < 1 and

∫ 1

0
w(α) dα > 0.

A2: Random errors Z1, . . . , Zn are IID and have continuous distribution with dis-
tribution function FZ and density fZ . This density is bounded, symmetric, strictly
decreasing on (0,∞) and fZ(x) > 0 for x ∈ R. Random errors have finite second
moments and f ′Z exists everywhere.

The substantial condition is A2. Symmetric and unimodal density is a very
important condition for consistency. The counter example is obvious. Suppose just
one dimensional data with symmetric density of observations which have two sharp
peaks – one around −1 and one around 1. I. e. approximately one half of data is
around −1 and one half around 1. Hence the LTS with α = 0.5 estimates value close
to −1 or 1 because the LTS tries to fit 50% of data. But we expect the value around
zero, which is the expectation value of observations. Classical least squares will be
consistent – it estimates value close to zero.

Under the proposed conditions we will prove not only
√
n-consistency of the LWS

estimator for the location model but also
√
n-consistency of any sequence of solutions

of normal equation. We will prove asymptotic normality under stronger conditions.

Theorem 1. Let β̂∗n be an arbitrary sequence of solutions of normal equations for
the location model (i. e. NRn(β̂∗n) = 0). Then under A1 and A2 this sequence is a√
n-consistent estimator of β0.
Moreover, if the weight function is piecewise constant, i. e.

w(α) =
J∑

j=1

λjI {α ≤ αj} (24)

for some J ∈ {1, 2, . . . }, λj > 0 and αj ∈ (0, 1) then

√
n

(
β̂∗n − β0

)
→D N(0, V 2

∞) (25)

where the asymptotic variance is

V 2
∞ =

∫
x2w2

(
F|Z|(|x|)

)
fZ(x) dx

(∫
xw

(
F|Z|(|x|)

)
f ′Z(x) dx

)2 (26)

and F|Z| is the distribution function of |Zi|.

The p r o o f of Theorem 1 is provided in Section 6. Theorem 1 obviously implies√
n-consistency and asymptotic normality of LWS for the location model.
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4. INFLUENCE FUNCTION FOR GENERAL REGRESSION

In this section we derive the influence function of the LWS estimator for a general
regression model (1). Recall that the influence function is defined as the directional
derivative of statistical functional T (F ) at F in the direction of one-point distribution
function ∆x0,z0 (i. e. the Dirac measure at point (x0, z0))

IF(x0, z0;T, F ) = lim
ε→0+

T ((1− ε)F + ε∆x0,z0)− T (F )
ε

. (27)

Influence function describes the effect of a contamination at the point (x0, z0) on
the estimate, standardized by the mass of the contamination.

Theorem 2. Let conditions A1 and A2 be satisfied. Moreover, suppose p × p
matrix EX1X

T
1 is positive definite. Then the influence function of LWS estimator

defined in (27) is

IF(x0, z0;T, F ) =
[
EX1X

T
1

]−1 · x0 ·
z0 · w

(
F|Z|(|z0|)

)

− ∫ [
z · w (

F|Z|(|z|)
) · f ′Z(z)

]
dz

(28)

where x0 ∈ Rp and z0 ∈ R.

The p r o o f of Theorem 2 is provided in Section 6. It immediately follows that
under conditions of Theorem 2 the right hand side of (28) is well defined and that
similarly as for M-estimators the influence function of the LWS estimator can be
bounded with respect to z0 but it can not be bounded with respect to x0.

5. OPTIMALITY FOR THE LOCATION MODEL

In this section we want to answer the question: How shall we choose weights? The-
orems 1 and 2 indicate a close relation between LWS estimator and M-estimators
for location model (2). This is because LWS for the location model has the same
asymptotic variance V 2

∞ and similarly the influence function as M-estimator for the
location model with score function (i. e. the function which generates the normal
equation of M-estimator)

ψ(x) = x · w (
F|Z|(|x|)

)
. (29)

Both estimators are, of course, different, they have, however, just the same asymp-
totic variance and influence function. In some cases we can also find an inverse
formula to (29), i. e. we can calculate weight function w from a given ψ. If ψ is an
antisymmetric function then the weight function w which satisfies equation (29) is

w(α) =
ψ

(
F−1
|Z| (α)

)

F−1
|Z| (α)

. (30)
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This relation together with results for optimality of redescending M-estimators
helps us in expressing the optimal weight functions. Recall that the score function of
redescending M-estimators satisfies ψ(x) = 0 for |x| > r where r is a given constant.
Noticing (30) we obtain w(α) = 0 for α > α where α = F|Z|(r), i. e. we have
relation between LWS estimators with a given breakdown point (i. e. given α) and
redescending M-estimators with a given r.

Now under conditions A1 and A2 we can easily express the most B-robust es-
timator. Recall that the most B-robust estimator minimizes gross error sensitivity
which is supremum of absolute value of the influence function. The most B-robust
redescending M-estimator with given r > 0 is skipped median (see Lemma A2)

ψmed(r)(x) := sign(x) · I {|x| < r} . (31)

Noticing (30) we realize that the most B-robust LWS estimator in the set of all LWS
estimators with given α (recall w(α) = 0 for α ≥ α) has weight function

w1(α) :=
1

F−1
|Z| (α)

· I {α < α} , (32)

where min{α, 1−α} represents the breakdown point. This is because LWS estimator
with weight function w1 and M-estimator with score function ψmed(r) have the same
influence function and hence the same gross error sensitivity. For any other weight
function w with given α the LWS estimator has the gross error sensitivity the same
as redescending M-estimator with ψ given by (29) which is larger than the gross
error sensitivity of M-estimator with ψmed(r). Hence for the weight function w1 the
LWS estimator has minimal gross error sensitivity.

Unfortunately, the function w1 is unbounded and hence for this type of weight
function consistency can not be proven by our method (A1 is not satisfied). But we
can take min{w1(α),K} where K is any given positive constant. For large K we get
an estimator which has the gross error sensitivity very close to the minimal value.

The next problem is that w1 depends on the distribution of random errors, which
is of course typically unknown. But on the other hand it does not change if we
multiply random errors by some positive constant. Hence for normally distributed
errors it does not depend on variance (if we change variance we only multiply w1

by some positive constant). Figure 1 (left figure) shows w1 for normally distributed
errors and α = 1. For α < 1 we just cut the weight function at an appropriate point,
i. e. we multiply it by I {α < α} (see (32)).

Next we will minimize asymptotic variance under conditions A1 and A2. The
redescending M-estimator (with given r ∈ R) which minimizes asymptotic variance
has ψ-function (see Lemma A2)

ψr(x) := −f
′
Z(x)
fZ(x)

· I {|x| < r} . (33)

For r = ∞ we get the maximum likelihood estimator. Using (30) we obtain the
weight function of the corresponding LWS estimator (with given α) which minimizes
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Fig. 1. Weight function w1 for α = 1 (left) and w3 for α = 0.5 (right).

the asymptotic variance

w2

(
F|Z|(x)

)
:= − f ′Z(x)

x · fZ(x)
· I {x < r} (34)

where r > 0. This follows by the same method as for the most B-robust LWS
estimator.

For normally distributed errors is f ′Z(x)/fZ(x) = −x and we obtain w2(α) =
I {α < α}, i. e. the weight function of the LTS estimator. Hence the LTS estimator
minimizes asymptotic variance in the group of LWS estimators with given breakdown
point for normally distributed errors.

The last case is the most V-robust LWS estimator, i. e. we minimize the maximum
of change of variance function divided by asymptotic variance. Recall that the change
of variance function is the directional derivative of asymptotic variance V 2

∞ at F in
the direction of one-point distribution function (i. e. it is an analogue of influence
function in case of the asymptotic variance). For detailed definition of the change of
variance function see [1], Section 2.5. The most V-robust redescending M-estimator
(with given r ∈ R) has the score function (see Lemma A2)

ψtanh(r)(x) := (κr − 1)
1
2 tanh

[
1
2
(κr − 1)

1
2Br(r − |x|)

]
sign(x) · I {|x| < r} (35)

where κr and Br are appropriate constants (see Lemma A2). Using (30) we get the
weight function of the most V-robust LWS estimator

w3(α) :=
tanh

[
Cα

(
F−1
|Z| (α)− F−1

|Z| (α)
)]

F−1
|Z| (α)

· I {α < α} (36)

where Cα is an appropriate constant. Some values of Cα for normally distributed
errors are in Table 1. Estimator generated by w3 has continuous weight function.
For this type of weight function we have not proved asymptotic normality, but we
can take piecewise constant weight function which is close to w3. For normally
distributed errors and α = 0.5 is w3 shown in Figure 1 (right figure).
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Table 1. Values of Cα for normally distributed errors.

α 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Cα 0.507 0.500 0.496 0.494 0.493 0.491 0.489 0.486 0.482 0.475

Let us now compare three types of optimal weight functions. We will examine
them from three points of view: breakdown point, asymptotic efficiency and gross
error sensitivity. We denote the limit of variance of least squares estimator divided
by variance of corresponding estimator as asymptotic efficiency.

In Tables 2 and 3 asymptotic efficiency and gross error sensitivity depending on α
for the LWS estimator with weight functions w1, w2 and w3 and normally distributed
errors are given. In the last column there are limit values for α→ 1.

Table 2. Asymptotic efficiency [ % ].

α 0.50 0.60 0.70 0.80 0.90 1
w1 5.3 9.4 15.7 25.0 38.9 63.7
w2 7.1 12.9 21.7 35.0 56.1 100.0
w3 1.8 3.4 6.0 10.2 17.9 63.7

Table 3. Gross error sensitivity.

α 0.50 0.60 0.70 0.80 0.90 1
w1 6.2 4.2 3.0 2.2 1.7 1.3
w2 9.5 6.5 4.8 3.7 2.9 ∞
w3 19.0 11.4 7.7 5.3 3.6 1.3

We see that for weight functions w1 and w2 asymptotic efficiency and gross error
sensitivity are similar. Estimator with w1 is of course better with respect to the
gross error sensitivity and with w2 in the asymptotic efficiency.

We can also use a combination of these weight functions. For example for

w(x) = min{w1(x),K} (37)

we get an estimator which has the gross error sensitivity and asymptotic efficiency
between values for w1 and w2. For large K the weight function is close to w1, for
small K it is constant on (0, α) and hence equal to w2.

Finally, recall that these three types of weight functions give possibilities which
are optimal from different points of view. In real life situation we should use one of
them or a combination of them (for example (37)) depending on the dataset.

6. PROOFS

This section contains proofs of Theorems 1 and 2. First we prove Theorem 2.
Particularly we derive the influence function for general regression. In the next
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part we restrict ourselves to the location model and we prove Theorem 1 (i. e.
√
n-

consistency and asymptotic normality).

P r o o f of Theorem 2. The proof follows the line of that one for M-estimator (see
[1]). Namely, we plug into the normal equations (14) instead of G the contaminated
distribution F ε := (1 − ε)F + ε∆x0,z0 where ε > 0, x0 ∈ Rp, z0 ∈ R and denote by
∆x0,z0 the d.f. of Dirac measure at point (x0, z0). Now we differentiate the equation
with respect to ε in ε = 0+ and calculate the influence function. Let us do this
process step by step.

The normal equations for contaminated distribution F ε are (see (14))

0 = (1− ε)
∫
w

(
F ε

T

(|z − xTT |)) (xTT − z)xdF (x, z)

+ εw
(
F ε

T

(|z0 − xT
0 T |

))
(xT

0 T − z0)x0 (38)

where 0 ∈ Rp and T = T (F ε) is the solution of normal equations. Notice that
symmetry of random errors implies T (F ε) = T (F ) = 0 for ε = 0. The F ε

T can be
rewritten as follows (see (14), definition of Gt)

F ε
T (u) =

∫
I
{|xT

1 T − z| < u
}

dF ε(x1, z)

= (1− ε)
∫ [

FZ(xT
1 T + u)− FZ(xT

1 T − u)
]

dFX(x1)

+ ε · I {|xT
0 T − z0| < u

}
(39)

for u > 0 where FZ and FX are marginal d.f. from F . For ε = 0 is F ε
T = F|Z|.

Let us now differentiate (38) with respect to ε and then put ε = 0+ and recall
that the definition of influence function implies

IF(x0, z0;T, F ) :=
[
∂

∂ε
T (F ε)

]

ε=0+

. (40)

Finally we obtain

0 =
∫
w

(
F|Z|(|z|)

) · x · xT · IF(x0, z0;T, F ) dF (x, z)

−
∫
w′

(
F|Z|(|z|)

) · z · x ·
[
∂

∂ε
F ε

T (|xTT − z|)
]

ε=0+

dF (x, z)

− w
(
F|Z|(|z0|)

)
z0x0. (41)

To finish our proof we should calculate corresponding derivative in the second term
on the right hand side of (41). This we get by differentiating (39) for u := |xTT − z|
and putting ε = 0. Finally we obtain

[
∂

∂ε
F ε

T (|xTT − z|)
]

ε=0+

= −2 sign(z)fZ(|z|)xT IF(x0, z0;T, F )

− F|Z|(|z|) + I {|z0| < |z|} . (42)
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Substituting (42) into (41) the second and third term in (42) vanish because they
are symmetric functions with respect to z. Hence we obtain

w
(
F|Z|(|z0|)

)
z0x0 =

∫ [
w

(
F|Z|(|z|)

) · z]′ · xxT · IF(x0, z0;T, F ) dF (x, z) (43)

because
[
w

(
F|Z|(|z|)

) · z]′ = w
(
F|Z|(|z|)

)
+ w′

(
F|Z|(|z|)

)
2 sign(z)fZ(|z|)z. (44)

Using independency of random errors and regressors together with integration by
parts implies

w
(
F|Z|(|z0|)

)
z0x0 =

[
EX1X

T
1

]
IF(x0, z0;T, F )

∫
w

(
F|Z|(|z|)

)
zf ′Z(x) dz. (45)

Now we can easily express IF(x0, z0;T, F ) and finish the proof. 2

Next we prove Theorem 1, first
√
n-consistency, next asymptotic normality. To

prove
√
n-consistency we approximate the function NR(β, Fn) by NR(β, F ). If we

knew that the only solution of NR(β, F ) = 0 is β = β0 and NR(β, Fn) is close to
NR(β, F ) for large n, then we would get that solution of NR(β, Fn) = 0 is close to
β0. The following lemma shows that NR(β, F ) = 0 has the only solution for β = β0

and that NR(β, F ) is increasing at least linearly in some neighbourhood of β0.

Lemma 2. Under conditions A1 and A2 for any K > 0 there exist δ1 > 0 and
δ2 > 0 such that

|NR(β0 + t, F )| ≥ min{δ1|t|, δ2} for t ∈ [−K,K]. (46)

P r o o f of Lemma 2. For simplicity denote the distribution function and density
of random variables Zi by F and f . By symmetry of density of random errors Zi

we get NR(β0, F ) = 0 immediately. To finish the proof it suffices to show
[
∂

∂t
NR(β0 + t, F )

]

t=0

> 0 (47)

and
NR(β0 + t, F ) 6= 0 for t 6= 0. (48)

Since NR(β0, F ) = 0 (47) implies existence of constants ε > 0 and δ1 > 0 such that

|NR(β0 + t, F )| ≥ δ1|t| for |t| ≤ ε. (49)

Because the set M := [−K,−ε]∪ [ε,K] is a compact subset of R and NR(β0 + t, F )
is continuous with respect to t (moreover, it is differentiable) then |NR(β0 + t, F )|
(restricted to M) attains minimum at some point t0 ∈M .
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Define δ2 := |NR(β0 + t0, F )|. Because t0 6= 0 we get from (48) that δ2 > 0.
Hence

|NR(β0 + t, F )| ≥ |NR(β0 + t0, F )| = δ2 > 0 for ε ≤ |t| ≤ K. (50)

Inequality (49) together with (50) imply (46).
Let us now prove (47) and (48). Noticing (14) and using substitution z := t− y

we realize (47) follows from
[
∂

∂t
NR(β0 + t, F )

]

t=0

=
[∫ ∞

−∞
w(Ft(|t− z|))(t− z) dF (z)

]

t=0

=
[∫ ∞

−∞
w(Ft(|y|)) yf(t− y) dy

]

t=0

=
∫ ∞

−∞
w(FZ(|y|))(−yf ′(y)) dy > 0. (51)

Finally, we prove (48). Suppose t > 0. Equation (14) and the same substitution
yields

NR(β0 + t, F ) =
∫ ∞

−∞
w(Ft(|t− z|))(t− z) dF (z)

=
∫ ∞

−∞
w(Ft(|y|)) yf(t− y) dy =

∫ ∞

0

w(Ft(y)) y [f(t− y)− f(t+ y)] dy. (52)

Notice [f(t− y)− f(t+ y)] > 0 for t > 0 and y > 0. This is because |t−y| < |t+y| for
t > 0 and y > 0 and because density f is symmetric and decreasing on (0,∞). The
weight function is nonnegative and on some neighbourhood of zero positive hence
the integrand in (52) is nonnegative and on some interval positive which implies
NR(β0 + t, F ) > 0 for t > 0. In the same way we can prove NR(β0 + t, F ) < 0 for
t < 0 and so we omit it here. 2

Now we can make the first step in proving Theorem 1, i. e.
√
n-consistency. Proof

of n
1
4 -consistency of LWS for location model was shown in [5]. We will use the same

method but instead of working with function MF (which is statistical functional
based on MFn defined in analogical way like NR) we will use function NR. Function
MF is for the theoretical distribution F quadratic in the neighbourhood of β0. Hence
proving

sup{|MF(β, Fn)−MF(β, F )|, |β| ≤ K} = Op(n−
1
2 ) (53)

gives just n
1
4 -consistency. Because the function NR is for the theoretical distribution

linear in a neighbourhood of β0, analogous approximation for normal equation gives
the

√
n-consistency.

P r o o f of Theorem 1 –
√
n-consistency. For simplicity let us denote the dis-

tribution function and density of random variables Zi as F and f . We denote the
empirical distribution function based on Z1, . . . , Zn by Fn.

To prove consistency we will use the following invariance principle result
√
n‖Fn − F‖∞ = Op(1) (54)



728 L. MAŠÍČEK

where ‖.‖∞ is the supremum norm (for details see [3], Section 2.5.13).
Fix ε > 0 and a probability space (Ω,A, P ). Equality (54) together with the

weak law of large numbers gives the following. There exist positive constants K1,
K2 and n1 (depending on ε) such that for any n > n1 is

P (Bn) > 1− ε (55)

where

Bn =

[
1
n

n∑

i=1

|Zi| ≤ K1 and |Fn(z)− F (z)| ≤ n−
1
2K2 for z ∈ R

]
⊂ Ω. (56)

Now we find constants K3 and n0 such that for any sequence β̂∗n which satisfies
NRn(β̂∗n) = 0 inequality |β̂∗n − β0| ≤ n−

1
2K3 holds on Bn for n ≥ n0. This implies

the
√
n-consistency of sequence β̂∗n. Let us do so and find K3.

First we find constants K4 and n2 such that for any t ∈ R, |t| > K4 and n > n2

is NR(β0 + t, Fn) 6= 0 on Bn. I. e. it holds for any ω ∈ Bn and large n that all
solutions t of normal equation NR(β0 + t, Fn) = 0 are in the interval [−K4,K4].

Combining definition (8) and equality (15) gives

NR(β0 + t, Fn) =
1
n

NRn(β0 + t) =
1
n

n∑

i=1

w

(
π0(i, β)− 1

n

)
(t− Zi) (57)

and hence

NR(β0 + t, Fn) = t
1
n

n∑

h=1

w

(
h− 1
n

)
− 1
n

n∑

i=1

w

(
π0(i, β)− 1

n

)
Zi. (58)

We find upper bound for the absolute value of the second summand of (58) and
lower bound for the absolute value of the first one. Because the weight function is
nonincreasing we can write

1
n

∣∣∣∣∣
n∑

i=1

w

(
π0(i, β)− 1

n

)
Zi

∣∣∣∣∣ ≤ w(0)
1
n

n∑

i=1

|Zi| ≤ w(0)K1 (59)

where the last inequality holds on Bn. By condition A1

1
n

n∑

h=1

w

(
h− 1
n

)
→

∫ 1

0

w(α) dα = K5 > 0 (60)

therefore there exists n2 such that

1
n

n∑

h=1

w

(
h− 1
n

)
≥ 1

2
K5 (61)

for any n > n2. Combining (58), (59) and (61) we have that for n > n2 and
|t| > 2w(0)K1/K5

|NR(β0 + t, Fn)| ≥ 1
2
|t|K5 − w(0)K1 > 0 (62)
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on Bn. So the desired constant is K4 := 2w(0)K1/K5.
Now we will look at the behaviour of the function NR(β0+t, Fn) for t ∈ [−K4,K4].

Suppose that there exists a constant K6 such that on Bn for NR∗α (see (19)) holds
inequality

|NR∗α(β0 + t, Fn)−NR∗α(β0 + t, F )| ≤ n−
1
2K6 (63)

for |t| ≤ K4 and α ∈ (0, α). Formula (21) implies

|NR(β0 + t, Fn)−NR(β0 + t, F )| ≤ n−
1
2K6w(0) (64)

(notice NR does not depend on NR∗α for α ≥ α because w(α) = 0 for α ≥ α). By
Lemma 2 (for K := K4) there exist δ1 > 0 and δ2 > 0 such that

|NR(β0 + t, F )| ≥ min{δ1|t|, δ2} (65)

for |t| ≤ K4. Combining (64) with (65) yields

|NR(β0 + t, Fn)| ≥ |NR(β0 + t, F )| − |NR(β0 + t, Fn)−NR(β0 + t, F )|
≥ min{δ1|t|, δ2} − n−

1
2K6w(0) (66)

where the last inequality holds on Bn for |t| ≤ K4. Let us define K7 := w(0)K6/δ1
and n3 := (w(0)K6/δ2)2. We see that

min{δ1|t|, δ2} − n−
1
2K6w(0) > 0 (67)

for |t| > n−
1
2K7 and n > n3. Now (66) together with (67) imply that on Bn

there is no solution of normal equation NR(β0 + t, Fn) = 0 for which it would hold
n−

1
2K7 < |t| ≤ K4.
Putting together the results for |t| > K4 and for t ∈ [−K4,K4] we obtain

NR(β0 + t, Fn) 6= 0 (68)

on Bn for |t| > n−
1
2K7 and n > n0 := max{n1, n2, n3}. Hence we see that any

solution of normal equation is close to β0 on Bn and the desired constant isK3 := K7.
To finish the proof we have to find a constant K6 such that (63) holds. The rest

of the proof follows the line of that in [5]. Since |t| ≤ K4 and on Bn the empirical
distribution is approximated by theoretical one, we have existence of constant K8

such that
|F−1

n,t (α)| ≤ K8, |F−1
t (α)| ≤ K8 (69)

for α ≤ α and n > n4 and existence of K9 such that

|F−1
n,t (α)− F−1

t (α)| ≤ n−
1
2K9 (70)

for α ≤ α and n > n5. Since the theoretical d.f. F and the e.d.f. Fn are close,
the theoretical d.f. F is strictly increasing (density f is positive) and t is bounded
(|t| ≤ K4). Hence the quantiles in (70) are close for α ∈ (0, α). That is because α is
not close to 1 (α ≤ α < 1).
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Denote for simplicity un := F−1
n,t (α) and u := F−1

t (α) and rewrite the definition
(19) of NR∗α for α ≤ α

NR∗α(t, Fn)−NR∗α(t, F ) =
∫ t+un

t−un

(t− z) dFn(z)−
∫ t+u

t−u

(t− z) dF (z)

=
∫ t−u

t−un

(t− z) dF (z) +
∫ t+un

t+u

(t− z) dF (z) +
∫ t+un

t−un

(t− z) d(Fn − F )(z). (71)

Now we find an upper bound for each of the three terms in (71). Using (69) and
(70) the first term can be bounded as

∣∣∣∣
∫ t−u

t−un

(t− z) dF (z)
∣∣∣∣ ≤

∫ t−u

t−un

|t− z|f(z) dz

≤ |un − u|max{un, u}Mf ≤ n−
1
2K9K8Mf (72)

where Mf := sup{f(x), x ∈ R} < ∞. The same upper bound can be used for the
second term.

Finally, we find an upper bound for the third term in (71). We use the following
general formula which holds for any d.f. G and a, b ∈ R

∫ b

a

z dG(z) =
∫ b

a

∫ z

a

1 dy dG(z) + a(G(b)−G(a))

=
∫ b

a

(G(b)−G(y)) dy + a(G(b)−G(a)) = bG(b)− aG(a)−
∫ b

a

G(y) dy. (73)

Taking difference of equation (73) for G := G1 and G := G2 implies
∣∣∣∣∣
∫ b

a

z d(G1 −G2)(z)

∣∣∣∣∣ ≤ 2(|b|+ |a|) sup{|G1(x)−G2(x)| : x ∈ R}. (74)

Using (74) for G1 := Fn and G2 := F in the third term in (71) implies (remind
|t| ≤ K4, u ≤ K8, un ≤ K8 and ‖F − Fn‖∞ ≤ n−

1
2K2)

∣∣∣∣
∫ t+un

t−un

(t− z) d(Fn − F )(z)
∣∣∣∣

≤
∣∣∣∣t

∫ t+un

t−un

1 d(Fn − F )(z)
∣∣∣∣ +

∣∣∣∣
∫ t+un

t−un

z d(Fn − F )(z)
∣∣∣∣

≤ 2|t| ‖F − Fn‖∞ + 2(|t+ un|+ |t− un|)‖F − Fn‖∞
≤ (6K4 + 4K8)n−

1
2K2 (75)

on Bn. Now we put together the upper bounds of all three terms in (71) (see (72)
and (75)) and obtain

|NR∗α(t, Fn)−NR∗α(t, F )| ≤ n−
1
2 (2K9K8Mf +K2(6K4 + 4K8)). (76)
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Hence we can take K6 := 2K9K8Mf + K2(6K4 + 4K8) in (63) which finishes the
proof. 2

To prove asymptotic normality we will use the same method as was used for M-
estimators in [2]. We will use asymptotic linearity which was provided in [5] (see
Lemma A1). Asymptotic linearity together with

√
n-consistency gives us asymptotic

normality.

P r o o f of Theorem 1 – asymptotic normality. Fix ε > 0. Because the sequence
β̂∗n is

√
n-consistent there exist constants K1 and n1 such that

P
(√

n
(
β̂∗n − β0

)
≥ K1

)
≤ ε (77)

for n > n1. By Lemma A1 for M := K1 there exist constants K2 and n2 such that

P

(
n−

1
4 sup
|t|<K1

∣∣∣nNR
(
β0 + n−

1
2 t, Fn

)
− nNR(β0, Fn)− n

1
2 tRw

∣∣∣ > K2

)
≤ ε (78)

for n > n2. Now we choose

t := tn =
√
n

(
β̂∗n − β0

)
. (79)

Combining (77), (78), (79) and NR(β̂∗n, Fn) = 0 gives

P
(
n−

1
4

∣∣∣nNR(β0, Fn) + n
(
β̂∗n − β0

)
Rw

∣∣∣ > K2

)
≤ 2ε (80)

for n > n0 := max{n1, n2}.
Because ε > 0 was arbitrary we obtain

nNR(β0, Fn) + n
(
β̂∗n − β0

)
Rw = Op

(
n

1
4

)
. (81)

The last equation can be rewritten as

√
n

(
β̂∗n − β0

)
= −R−1

w

√
nNR(β0, Fn) +Op

(
n−

1
4

)
. (82)

Hence asymptotic behaviour of the left hand side of (82) depends only on behaviour
of random variable

√
nNR(β0, Fn).

Denote Z|h| := r|h|(β0) for h = 1, . . . , n (i. e. the order statistics of |Z1|, . . . , |Zn|)
and Si := sign(Zi) for i = 1, . . . , n. Notice that random variables Si and |Zi| are
independent because distribution of Zi is symmetric. Hence by (15) and (17) we
have

√
nNR(β0, Fn) = − 1√

n

n∑

h=1

n∑

i=1

wh,nSi |Zi| I
{|Zi| ≤ Z|h|

}
. (83)
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Because sequences S1, . . . , Sn and |Z1|, . . . , |Zn| are independent we can order ran-
dom variables |Zi| in the inner summation (i. e. replace |Zi| by Z|i|) and the distri-
bution of the right hand side of (83) remains unchanged. Finally we obtain (see also
(18), denote =D equation of distributions)

√
nNR(β0, Fn) =D − 1√

n

n∑

h=1

n∑

i=1

wh,nSi Z|i| I
{
Z|i| ≤ Z|h|

}

= − 1√
n

n∑

i=1

n∑

h=i

wh,nSi Z|i| = − 1√
n

n∑

i=1

w

(
i− 1
n

)
Si Z|i|. (84)

Define a σ-algebra AZ := σ{|Zi|, i = 1, 2, . . . }. Notice summands in (84) are condi-
tionally independent therefore we can use central limit theorem

[ √
n

Vn,w
NR(β0, Fn)

∣∣∣AZ

]
→ N (0, 1) (85)

where

V 2
n,w := var

(√
nNR(β0, Fn)

∣∣∣AZ

)
=

1
n

n∑

i=1

w2

(
i− 1
n

)
Z2
|i|. (86)

Using the same method as in the proof of
√
n-consistency (i. e. (54) and consecutive

steps) we obtain

V 2
n,w =

∫
x2w2

(
F |Z|n (x)

)
dFn(x) →P V 2

w :=
∫
x2w2

(
F|Z|(x)

)
dF (x) (87)

where F |Z|n is e.d.f. based on random variables |Z1|, . . . , |Zn| and →P denotes con-
vergence in probability.

Because the limit distribution in (85) does not depend on AZ the convergence
(85) together with (87) imply

√
nNR(β0, Fn) → N (0, V 2

w). (88)

The last convergence together with (82) finish the proof and give us the formula for
the asymptotic variance V 2

∞ = R−2
w · V 2

w (see (26)). 2

7. APPENDIX

Lemma A1. Under conditions A1 and A2 for piecewise constant weight function
the normal equation of LWS estimator for the location model is asymptotically linear
in the following sense: for any M ∈ (0,∞) is

n−
1
4 sup
|t|<M

∣∣∣nNR
(
β0 + n−

1
2 t, Fn

)
− nNR(β0, Fn)− n

1
2 tRw

∣∣∣ = Op(1) (89)
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where

Rw =
∫ 1

0

[
α− 2F−1

|Z| (α) · fZ

(
F−1
|Z| (α)

)]
dw∗(α)

= −
∫ ∞

−∞
xw

(
F|Z|(|x|)

)
f ′Z(x) dx (90)

and w∗(α) = w(0)− w(α).

P r o o f of Lemma A1 is based on the following principle. We split the main term
in (89) into several parts that can be written as stochastical processes in t. For each
part the convergence in distribution is proved. The result was presented in [5] and
detailed proof is in [4].

Lemma A2. a) The most B-robust (i. e. minimizing gross error sensitivity) re-
descending M-estimator is

ψmed(r)(x) := sign(x) · I {|x| < r} . (91)

b) The redescending M-estimator which minimizes asymptotic variance is

ψr(x) := −f
′
Z(x)
fZ(x)

· I {|x| < r} . (92)

c) The most V-robust (i. e. minimizes maximum of change of variance function
divided by asymptotic variance) redescending M-estimator is

ψtanh(r)(x) := (κr − 1)
1
2 tanh

[
1
2
(κr − 1)

1
2Br(r − |x|)

]
sign(x) · I {|x| < r} (93)

where κr and Br are given constants such that
∫
ψ2

tanh(r)(x) dF (x) = 1,
∫
ψ′tanh(r)(x) dF (x) = Br. (94)

For proof of Lemma A2 see [1], Section 2.6.
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[8] J. Á. Vı́̌sek: A new paradigm of point estimation. In: Data Analysis 2000 – Mod-
ern Statistical Methods – Modelling, Regression, Classification and Data Mining
(K. Kupka, ed.), TRILOBYTE Software 2001, pp. 195–230.
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