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Managing Editors:

Karel Sladký
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EXACT AND APPROXIMATE DISTRIBUTIONS
FOR THE PRODUCT OF DIRICHLET COMPONENTS

Saralees Nadarajah and Samuel Kotz

It is well known that X/(X + Y ) has the beta distribution when X and Y follow
the Dirichlet distribution. Linear combinations of the form αX + βY have also been
studied in Provost and Cheong [24]. In this paper, we derive the exact distribution of the
product P = XY (involving the Gauss hypergeometric function) and the corresponding
moment properties. We also propose an approximation and show evidence to prove its
robustness. This approximation will be useful especially to the practitioners of the Dirichlet
distribution.

Keywords: approximation, Dirichlet distribution, Gauss hypergeometric function

AMS Subject Classification: 33C90, 62E17, 62E99

1. INTRODUCTION

Since the 1930s, the statistics literature has seen many developments in the theory
and applications of linear combinations and ratios of random variables. Some of
these include:

— Ratios of normal random variables appear as sampling distributions in single
equation models, in simultaneous equations models, as posterior distributions
for parameters of regression models and as modeling distributions, especially
in economics when demand models involve the indirect utility function (details
in [32]).

— Weighted sums of uniform random variables – in addition to the well known ap-
plication to the generation of random variables – have applications in stochas-
tic processes which in many cases can be modeled by these weighted sums. In
computer vision algorithms these weighted sums play a pivotal role ([10]). An
earlier application of the linear combinations of uniform random variables is
given in connection with the distribution of errors in nth tabular differences
∆n ([15]).

— Ratio of linear combinations of chi-squared random variables are part of von
Neumann’s [31] test statistics (mean square successive difference divided by
the variance). These ratios appear in various two-stage tests ([30]). They are
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also used in tests on structural coefficients of a multivariate linear functional
relationship model (details in [2, 25]).

— Sums of independent gamma random variables have applications in queuing
theory problems such as determination of the total waiting time and in civil
engineering problems such as determination of the total excess water flow into a
dam. They also appear in test statistics used to determine the confidence limits
for the coefficient of variation of fiber diameters ([8, 14]) and in connection with
the inference about the mean of the two-parameter gamma distribution ([6]).

— Linear combinations of inverted gamma random variables are used for testing
hypotheses and interval estimation based on generalized p-values, specifically
for the Behrens–Fisher problem and variance components in balanced mixed
linear models ([32]).

— As to the Beta distributions their linear combinations occur in calculations of
the power of a number of tests in ANOVA ([18]) among other applications.
More generally, the linear combinations are used for detecting changes in the
location of the distribution of a sequence of observations in quality control
problems ([13]). [20] – [23] and [19] provided applications of sums and ratios
to availability, Bayesian quality control and reliability.

— Linear combinations of the form T = a1tf1 + a2tf2 , where tf denotes the Stu-
dent t random variable based on f degrees of freedom, represents the Behrens–
Fisher statistic and – as early as the middle of the twentieth century – Stein [29]
and Chapman [1] developed a two-stage sampling procedure involving the T
to test whether the ratio of two normal random variables is equal to a specified
constant.

— Weighted sums of the Poisson parameters are used in medical applications for
directly standardized mortality rates ([3]).

In this paper, we consider the distribution of P = XY when X and Y are distributed
according to the joint pdf

f (x, y) =
Γ(a + b + c)xa−1yb−1(1− x− y)c−1

Γ(a)Γ(b)Γ(c)
(1)

for x > 0, y > 0, x + y < 1, a > 0, b > 0 and c > 0. This is known as the Dirichlet
distribution (see, for example, [12]). It has received applications in many areas,
including Bayesian statistics, contingency tables, correspondence analysis, environ-
mental sciences, forensic science, geochemistry, image analysis, life testing, misclas-
sification, molecular biology, neural networks, non-parametric statistics, PERT, and
statistical decision theory (see, for example, [7]) for illustrations of some of these
application areas).

The paper is organized as follows. In Sections 2 and 3, we derive exact expressions
for the pdf and moments of P = XY , involving the Gauss hypergeometric function
defined by

2F1 (α, β; γ;x) =
∞∑

k=0

(α)k (β)k

(γ)k

xk

k!
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(where (c)k = c(c + 1) · · · (c + k− 1) denotes the ascending factorial), the properties
of which can be found in [26] and [5]. In Section 4, we propose an approximation
for the distribution of P and show evidence to prove that the it is quite robust.
This approximation will be useful especially to the practitioners of the Dirichlet
distribution.

2. PDFS

Theorem 1 derives the pdf of P = XY when X and Y are distributed according to
(1).

Theorem 1. If X and Y are jointly distributed according to (1) then

fP (p) =
Γ(a + b + c)Γ(c)

2a−b−cΓ(a)Γ(b)Γ(2c)
pb−1(1− 4p)c−1/2

(
1−

√
1− 4p

)a−b−c

× 2F1

(
c, b + c− a; 2c; 2− 1 +

√
1− 4p

2p

)
(2)

for 0 < p < 1/4.

P r o o f . From (1), the joint pdf of (X, P ) = (X,XY ) becomes

f(x, p) =
Γ(a + b + c)
Γ(a)Γ(b)Γ(c)

xa−2
( p

x

)b−1 (
1− x− p

x

)c−1

=
Γ(a + b + c)
Γ(a)Γ(b)Γ(c)

pb−1xa−b−c (x− p1)
c−1 (p2 − x)c−1

,

where p1 = (1 −√1− 4p)/2 and p2 = (1 +
√

1− 4p)/2. Thus, the pdf of P can be
written as

fP (p) =
Γ(a + b + c)
Γ(a)Γ(b)Γ(c)

pb−1

∫ p2

p1

xa−b−c (x− p1)
c−1 (p2 − x)c−1 dx. (3)

By equation (2.2.6.1) in Prudnikov [26, Vol. 1], the integral in (3) can be calculated
as

∫ p2

p1

xa−b−c (x− p1)
c−1 (p2 − x)c−1 dx

= B(c, c)pa−b−c
1 (p2 − p1)

2c−1
2F1

(
c, b + c− a; 2c; 1− p2

p1

)
. (4)

The result in (2) follows by combining (3) and (4). 2

The following corollary notes two special cases where (2) reduces to elementary
forms.
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Corollary 1. If c = 1 then (2) reduces to

fP (p) =
2b−a+1Γ(a + b + 1)

Γ(a)Γ(b)
pb−1

√
1− 4p

(
1−

√
1− 4p

)a−b−1

for 0 < p < 1/4. If b = a + c then (2) reduces to

fP (p) =
4a+cΓ (a + c + 1/2)

Γ(a)Γ (c + 1/2)
pa+c−1(1− 4p)c−1/2

(
1−

√
1− 4p

)2c

for 0 < p < 1/4.

P r o o f . The proof follows by standard properties of the Gauss hypergeometric
function, see [26] and [5]. 2

3. MOMENTS

Here, we derive the moments of P = XY when X and Y are distributed according
to (1).

Theorem 2. If X and Y are jointly distributed according to (1) then

E (Pn) =
Γ(a + b + c)Γ(a + n)Γ(b + n)
Γ(a + b + c + 2n)Γ(a)Γ(b)

(5)

for n ≥ 1. Using properties of the gamma function, (5) can be rewritten as

E (Pn) =
a(a + 1) · · · (a + n− 1)b(b + 1) · · · (b + n− 1)

(a + b + c)(a + b + c + 1) · · · (a + b + c + 2n− 1)

for n ≥ 1. In particular, the first two moments of P are

E (P ) =
ab

(a + b + c)(a + b + c + 1)
(6)

and

E
(
P 2

)
=

a(a + 1)b(b + 1)
(a + b + c)(a + b + c + 1)(a + b + c + 2)(a + b + c + 3)

. (7)

P r o o f . Note that E(Pn) = E(XnY n) and this is the product moment of the
Dirichlet distribution, which is well known (see, for example, [12]). 2



Exact and Approximate Distributions for the Product of Dirichlet Components 739

4. APPROXIMATION

In view of the fact that 4P has support in the interval [0, 1], we are motivated to
approximate its distribution by a suitable member of the two-parameter beta family
of distributions:

f(x) =
xα−1(1− x)β−1

B(α, β)
(8)

for 0 < x < 1, α > 0 and β > 0. The choice of the beta parameters (α and β) is
made using the method of moments. Equating the first two moments of 4P with
those of the beta distribution, we have

4E (P ) =
α

α + β

and

16E
(
P 2

)
=

α(α + 1)
(α + β)(α + β + 1)

which we must solve simultaneously to find the beta parameters α and β. After
some algebraic manipulation, we find the solutions as

α = E (P )
E (P )− 4E

(
P 2

)

E
(
P 2

)− E2 (P )
(9)

and

β =
{

1
4
− E (P )

}
E (P )− 4E

(
P 2

)

E
(
P 2

)− E2 (P )
. (10)

The two moments E(P ) and E(P 2) can be computed using (6) and (7), respectively,
for given values of the parameters a, b and c.

Table 1. Estimates of (α, β) for selected (a, b, c).

a b c α β
0.5 0.5 0.5 0.375 1.031
0.5 0.5 3 0.239 4.543
0.5 3 0.5 0.474 1.105
0.5 3 3 0.497 3.539
3 0.5 0.5 0.474 1.105
3 0.5 3 0.450 3.539
3 3 0.5 2.831 1.003
3 3 3 2.429 3.643
1 3 3 0.978 3.584
1 1 0.5 0.854 1.014
1 3 1 1 1.5
1 1 1 0.778 1.556
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Approximations of the above kind have been proposed before; see, for example,
[4, 28] and [8]. But this is the first time it has been proposed for correlated beta
random variables. In order to show robustness of the approximation, we selected
twelve values for the parameters (a, b, c) and computed the corresponding estimates
for (α, β) using (9) and (10). The selected parameters (a, b, c) and the estimates
are shown in the table above. We checked robustness by comparing the exact and
approximated pdfs of 4P as given by (2) and (8), respectively. These comparisons are
illustrated in Figures 1, 2 and 3. It is evident that the approximation is quite robust.
We hope that this approximation will be useful – especially to the practitioners of the
Dirichlet distribution – since it avoids the use of the Gauss hypergeometric function
and since the beta distribution is widely accessible in standard statistical packages.
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Fig. 1. The exact pdf (solid curve) and the approximated pdf (broken curve)

of P = XY for (a): (a, b, c) = (0.5, 0.5, 0.5); (b): (a, b, c) = (0.5, 0.5, 3);

(c): (a, b, c) = (0.5, 3, 0.5); and, (d): (a, b, c) = (0.5, 3, 3).
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Fig. 2. The exact pdf (solid curve) and the approximated pdf (broken curve)

of P = XY for (a): (a, b, c) = (3, 0.5, 0.5); (b): (a, b, c) = (3, 0.5, 3);

(c): (a, b, c) = (3, 3, 0.5); and, (d): (a, b, c) = (3, 3, 3).
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Fig. 3. The exact pdf (solid curve) and the approximated pdf (broken curve)

of P = XY for (a): (a, b, c) = (1, 3, 3); (b): (a, b, c) = (1, 1, 0.5);

(c): (a, b, c) = (1, 3, 1); and, (d): (a, b, c) = (1, 1, 1).

(Received April 30, 2004.)
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