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Demlová, Petr Hájek, Martin Janžura,
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Igor Vajda, Pavel Źıtek, Pavel Žampa
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Editorial Office:
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AN EXPLORATORY CANONICAL ANALYSIS APPROACH
FOR MULTINOMIAL POPULATIONS
BASED ON THE φ–DIVERGENCE MEASURE∗

J.A. Pardo, L. Pardo, M.C. Pardo and K. Zografos

In this paper we consider an exploratory canonical analysis approach for multinomial
population based on the φ-divergence measure. We define the restricted minimum φ-
divergence estimator, which is seen to be a generalization of the restricted maximum likeli-
hood estimator. This estimator is then used in φ-divergence goodness-of-fit statistics which
is the basis of two new families of statistics for solving the problem of selecting the number
of significant correlations as well as the appropriateness of the model.

Keywords: canonical analysis, restricted minimum φ-divergence estimator, minimum φ-
divergence statistic, simulation, power divergence

AMS Subject Classification: 62H17, 62H20, 62B10

1. INTRODUCTION

Let X and Y denote two categorical response variables with I and J levels re-
spectively. When we classify subjects on both variables, there are IJ possible
combinations of classification. The responses (X,Y ) of a subject randomly cho-
sen from some population have a probability distribution pij = P (X = i, Y = j) ,
with pij > 0, i = 1, . . . , I; j = 1, . . . , J and we denote by p = (p11, . . . , pIJ )T the
joint distribution of X and Y. We usually display this distribution in a rectangular
table having I rows for the categories of X and J columns for the categories of Y.
Let M = min (I − 1, J − 1) and we denote by pi. =

∑J
j=1 pij and p.j =

∑I
i=1 pij .

Here and in the sequel, “T” denotes the vector or matrix transpose.
Canonical analysis explores the structure of a contingency table. It is based on

the fact, see Lancaster [22], that the bivariate probability pij can always be expanded
for each i and j as

pij = pi.p.j

(
1 +

M∑

l=1

λluilvjl

)
, 1 ≤ i ≤ I, 1 ≤ j ≤ J, (1)

∗The research in this paper was supported in part by Greek General Secretary of Research and
Technology and Spanish Foreign Office, through a bilateral program of scientific and technologic
cooperation (1999 – 2000) and DGI BMF2003-0892.
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where I∑
i=1

uilpi. =
J∑
j=1

p.jvjl = 0

I∑
i=1

pi.uiluil′ =
J∑
j=1

p.jvjlvjl′ = δll′
(2)

with 1 ≤ l ≤M, 1 ≤ l′ ≤M. Being δll′ the Kronecker delta. The decomposition (1)
is called the canonical form of the bivariate distribution p = (p11, . . . , pIJ )T .

In the previous representation, the uil (1 ≤ i ≤ I, 1 ≤ l ≤M) are canonical scores
assigned to X such that the canonical variables Ul = (u1l, . . . , uIl)

T have means 0
and variances 1, and are uncorrelated. The vjl (1 ≤ j ≤ J, 1 ≤ l ≤M) are canonical
scores assigned to Y such that the canonical variables Vl = (v1l, . . . , vJl)

T also have
means 0 and variances 1, and are uncorrelated. Thus, λl is the canonical correlation
of Ul and Vl. More details about canonical analysis from contingency tables can be
seen in Anderson [3], Greenacre [18, 20] and references there in.

The purpose of canonical analysis of contingency tables is the determination of
the dimensionality of (1); that is, the determination of the number of significant
correlations. If the scores are ordered so that |λ1| ≥ |λ2| ≥ · · · . ≥ |λM | we can
obtain the appropriate dimension by the values of the ratios

r2m =
λ2

1 + · · ·+ λ2
m

λ2
1 + · · ·+ λ2

M

(3)

for m = 1, 2, . . . ,M. The ratio (3) is interpreted as the amount of the variation
accounted for the first m dimensions. The choice of dimension m = M0 is considered
satisfactory if (3) is close to 1 and largely unchanged if M0 is further increased.
However, the choice of M0 and the appropriateness of the model can also be based on
statistical inference principles. Gilula and Haberman [17] presented a development of
canonical analysis that for the first time exploits general results concerning restricted
maximum likelihood estimators. That approach permits use of confidence intervals
and estimated asymptotic standard deviations as well as to study the likelihood
ratio test and chi-squared test based on restricted maximum likelihood estimators
to select M0 and the appropriateness of the model.

The kind of cross-tabulated frequency data, considered by the canonical analysis,
often arise in Biometry. For example, in ecology, the species appear in different
communities and the relation between them can be found by canonical analysis.
Some interesting applications of the canonical analysis can be seen in Fasham [16]
and Dahdouh et al [15]. A list of important references in the field of ecology can be
seen in Greenacre [18, Section 9.12, p. 318]. In genetics many features can be related
(eyes color and hair color, genes and populations) and its canonical analysis repre-
sentation is also a useful tool, especially in studying polymorphism in population
genetics. In medicine one can relate the effectiveness of several drugs, where each
drug is rated on a verbal scale (poor, fair, good, very good) for a group of hospital
patients. In Greenacre [19] various applications of canonical analysis to biomedical
data are presented: On the relationship between headache types and age; On the
association between personality types and various medical diagnostic groups; On the
categorical rating scales such as an efficacy scale for a medication or a scale pain;
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On a collection of bacterial isolates with the object of comparing bacterial types
and understanding the inter-relationships of the different tests. Another interesting
application in this field is given in Greenacre [21]. In this paper the canonical anal-
ysis is used to explore relationship between variables in a complex survey and to
suggest models for these relationship. The paper of N. J. Crichton and J. P. Hinde
[13] is also an interesting paper in this area. Notice that the domain of application
of the canonical analysis goes far beyond that of Biometry. In Greenacre [18] there
can be seen many applications published in canonical analysis classified by field of
application.

In this paper we present a generalization of the results given by Gilula and
Haberman [17], in estimation and testing, using the family of φ-divergences. In
Section 2 we present the restricted minimum φ-divergence estimator as a general-
ization of the restricted maximum likelihood estimator studied by the cited authors.
Our generalization is in the sense that the minimum φ-divergence estimator with
φ(x) = x log x − (x − 1) gives the maximum likelihood estimator. In Section 3 we
introduce two new families of statistics based on the φ-divergence for testing the di-
mensionality of (1). One of them (see Theorem 3.1) contains the classical likelihood
ratio statistic (for φ(x) = x log x − (x − 1)) as well as the chi-squared statistic (for
φ(x) = 1

2 (x−1)2), studied in Gilula and Haberman [17], as particular cases. Finally,
in Section 4, we present two examples to demonstrate how the results of Sections 2
and 3 can be applied in practice.

2. THE RESTRICTED MINIMUM φ–DIVERGENCE ESTIMATOR
OF CANONICAL PARAMETERS

We can observe that the probability distribution p = (pij) , (i, j) ∈ I × J, with pij
given in (1) could be written as a function of a = (I + J + 1) (M + 1)−1 parameters.
That is to say,

pij (β) = βiβj+I

(
1 +

M∑

l=1

βl+I+Jβl+I+J+iMβl+I+J+(I+j)M

)

with

β =
(
β1, . . . , β(I+J+1)(M+1)−1

) ∈ B ⊂ Ra

and the βr are defined in the following way: βr = pr. if 1 ≤ r ≤ I; βr = p.(r−I) if
I +1 ≤ r ≤ I +J ; βr = λr−(I+J) if I +J +1 ≤ r ≤ I +J +M ; βr = u1(r−(I+J+M))

if I + J +M + 1 ≤ r ≤ I + J + 2M ; . . . ; βr = uI(r−(I+J+IM)) if I + J + IM + 1 ≤
r ≤ I + J + (I + 1)M ; βr = v1,(r−(I+J+(I+1)M)) if I + J + (I + 1)M + 1 ≤ r ≤
I + J + (I + 1)M +M ; . . . ; βr = vJ(r−(I+J)(M+1)) if (I + J) (M + 1) + 1 ≤ r ≤ a.
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The number of constraints in (2) is b = (M + 1) (M + 2) and they are given by

I∑
i=1

pi. − 1 = 0

J∑
j=1

p.j − 1 = 0

I∑
i=1

pi.uil = 0 1 ≤ l ≤M

J∑
j=1

p.jvjl = 0 1 ≤ l ≤M

I∑
i=1

pi.uiluil′ − δll′ = 0 1 ≤ l ≤ l′ ≤M

and J∑
j=1

p.jvjlvjl′ − δll′ = 0 1 ≤ l ≤ l′ ≤M.

Therefore, we can write them in the following way

fs (β) = 0, s = 1, . . . , b

and it is not difficult to establish that the matrix

L (β0) =
(
∂fs (β0)
∂βk

)
s=1,...,b
k=1,...a

,

where β0 is the true value of the parameter, has the full rank, i. e., b.
First of all, we describe the maximum likelihood procedure, introduced in this

context by Gilula and Haberman [17], to estimate the parameter β ∈ B restricted
to fs (β) = 0, s = 1, . . . , b. Secondly, from this procedure we introduce the restricted
minimum φ-divergence estimator.

Consider a sample (X1, Y1) , . . . , (Xn, Yn) with realizations from

X = {(i, j) , i = 1, . . . , I, j = 1, . . . , J}

independent and identically distributed according to a probability distribution p (β0)
= (p11 (β0) , . . . , pIJ (β0))

T
. This distribution is assumed to be unknown, but belong-

ing to a known family

P =
{
p (β) = (p11 (β) , . . . , pIJ (β))T : β ∈ B

}

of distributions on X with B ⊂ Ra. In other words, the true value β0 of the
parameter β = (β1, . . . , βa)

T ∈ B is assumed to be unknown. We denote p̂ =
(p̂11, . . . , p̂IJ )T with

p̂ij =
Nij
n

and Nij =
n∑

k=1

I{(i,j)} ((Xk, Yk)) , i = 1, . . . , I, j = 1, . . . , J.
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The statistic (N11, . . . , NIJ ) is obviously sufficient for the statistical model under
consideration and it is multinomially distributed; that is

P (N11 = n11, . . . , NIJ = nIJ ) =
n!

n11! . . . nIJ !
p11 (β0)

n11 . . . pIJ (β0)
nIJ

for integers n11, . . . , nIJ ≥ 0 such that n11 + · · ·+ nIJ = n.
If I∑

i=1

J∑

j=1

p̂ij log pij (β)

is almost surely (a. s.) maximized over B, under the constraints

fs (β) = 0, s = 1, . . . , b

at some β̂(r), then β̂(r) is the restricted maximum likelihood estimator (RMLE). For
more details see Gilula and Haberman [17].

However, the RMLE can equivalently be defined by the condition

β̂(r) = arg min
β∈B∗

DKullback (p̂, p (β)) a. s.

where
B∗ = {β ∈ B ⊂ Ra : fs (β) = 0, s = 1, . . . , b} (4)

and
DKullback (p, q) =

I∑

i=1

J∑

j=1

pij log
pij
qij

is the Kullback–Leibler divergence between the probability distributions p = (p11, . . .

, pIJ)T and q = (q11, . . . , qIJ )T . This divergence measure is a particular case of
the φ-divergence introduced independently by Csiszár [14] and Ali and Silvey [2].
The φ-divergence between two probability distributions p = (p11, . . . , pIJ )T , q =
(q11, . . . , qIJ )T is defined as follows:

Dφ (p, q) =
I∑

i=1

J∑

j=1

qijφ

(
pij
qij

)
, φ ∈ Φ∗,

where Φ∗ is the class of all convex functions φ : [0,∞) → R ∪ {∞} , such that at
x = 1, φ (1) = 0, φ′′ (1) > 0, and at x = 0,

0φ
(

0
0

)
≡ 0 and 0φ

(p
0

)
≡ lim
u→∞

φ (u)
u

.

For every φ ∈ Φ∗ that is differentiable at x = 1, the function

ψ (x) ≡ φ (x)− φ′ (1) (x− 1)

also belongs to Φ∗. Then we have

Dψ (p, q) = Dφ (p, q) ,
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and ψ has the additional property that ψ′ (1) = 0. Because the two divergence
measures are equivalent, we can consider the set Φ∗ to be equivalent to the set

Φ ≡ Φ∗ ∩ {φ : φ′ (1) = 0} .
In what follows, we give our theoretical results for φ ∈ Φ but we often apply them
to choices of functions in Φ∗.

In this paper, as a generalization of the RMLE, β̂(r), we consider the restricted
minimum φ-divergence estimator,

β̂
(r)
φ = arg min

β∈B∗
Dφ (p̂, p (β)) a. s.,

where B∗ is defined in (4). We can observe that the RMLE is a particular case of
the restricted minimum φ-divergence estimator because for φ (x) = x log x− (x− 1)
we obtain the RMLE.

The restricted minimum φ-divergence estimator, β̂(r)
φ , can be obtained as the

solution of the following equation system




∂Dφ (p̂, p (β))
∂βk

+
b∑
s=1

ls
∂fs (β)
∂βk

= 0, k = 1, . . . , a

fs (β) = 0, s = 1, . . . , b.

The unrestricted minimum φ-divergence estimator was studied for the first time in
Morales et al [27] and the restricted minimum φ-divergence estimator was introduced
and its properties was studied by Pardo et al [29].

Minimum distance estimation was presented by Wolfowitz [32] and it provides
a convenient method of consistently estimating unknown parameters. An exten-
sive bibliography for minimum distance estimates can be found in Parr [28], some
additions in Read and Cressie [30] and Morales et al [27], Lindsay [24], Basu and
Lindsay [5], Basu and Basu [4] and references there in. Wolfowitz was motivated by
the desire to provide consistent parameter estimators in cases where other methods
had not proved successful. Other desirable features of minimum distance estima-
tors are natural robustness properties, a concrete interpretation for the value to
which the estimator converges even when the model is wrong, ease of application to
problems not involving symmetries or invariance properties, extremely competitive
small-sample behavior in the several situations thus far explored by the Monte Carlo
method (cf. Parr [28]). In the case where the model is discrete, or where the initial
information about the data and hypothetical parametrized model is reduced by par-
titioning the observation space the minimum φ-divergence estimators are first order
efficient under the model. Several of them have considerable robustness property
under moderate contaminations. For more details see Lindsay [24] and Basu and
Sarkar [6, 7].

Maximum likelihood estimation subject to constraints is considered for the first
time by Aitchison and Silvey [1] in general populations. Matthews and Crowther [25,
26] present a procedure for the exponential family and Pardo et al [29] in multinomial
models. For more details see the cited papers and references there in.
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In the following theorems we establish some asymptotic properties of the re-
stricted minimum φ-divergence estimator of canonical parameters.

Theorem 2.1. If we assume that the canonical correlations satisfy

|λ1| > · · · > |λK | > 0, λm = 0, m > K, (5)

then the restricted minimum φ-divergence estimator, β̂(r)
φ , satisfies

β̂
(r)
φ =β0+H (β0) IF (β0)

−1
A (β0)

Tdiag
(
p (β0)

−1/2
)

(p̂−p (β0))+op (‖p̂−p (β0)‖)
(6)

where β̂(r)
φ is unique in a neighbourhood of the true value of the parameter β0;

A (β0) = diag
(
p (β0)

−1/2
) (

∂pij (β0)
∂βk

)
(i,j)∈I×J
k=1,...,a

and

H (β0) = I − IF (β0)
−1
L (β0)

T
(
L (β0) IF (β0)

−1
L (β0)

T
)−1

L (β0)

where IF (β0) = A (β0)
T
A (β0) is the Fisher information matrix associated to the

multinomial model.

P r o o f . In Appendix B of Gilula and Haberman [17] it is proved that the con-
ditions given by Birch [9] about the model are satisfied and that the matrix L (β0)
has the full rank if condition (5) is true. Then the proof is straightforward from
Theorem 2.1 in Pardo et al [29]. 2

In the following theorem we present the asymptotic distribution of the restricted
minimum φ-divergence estimator.

Theorem 2.2. Under the assumptions of Theorem 2.1, it holds,
a) √

n
(
β̂

(r)
φ − β0

)
L−→

n→∞
N

(
0,H (β0) IF (β0)

−1
)

b) √
n

(
p

(
β̂

(r)
φ

)
− p (β0)

)
L−→

n→∞
N (0,Σ1)

where

Σ1 = diag
(
p (β0)

1/2
)
A (β0)H (β0) IF (β0)

−1
A (β0)

T diag
(
p (β0)

1/2
)
.

P r o o f . The proof is straightforward from Theorem 2.2 in Pardo et al [29]. 2
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3. MINIMUM φ–DIVERGENCE STATISTIC IN CANONICAL ANALYSIS

The Pearson chi-squared statistic given by

X2 =
I∑

i=1

J∑

j=1

(
nij − npij

(
β̂(r)

))2

npij

(
β̂(r)

) (7)

and the likelihood ratio statistic given by

G2 = 2
I∑

i=1

J∑

j=1

nij log


 p̂ij

pij

(
β̂(r)

)

 (8)

are asymptotically distributed as a chi-squared distribution with IJ − a + b − 1
degrees of freedom under the hypothesis

H0 : p = p (β)

and assuming that

|λ1| > · · · > |λK | > 0, λm = 0, m > K.

It will be better to use the notation βm instead of β to indicate that βm is the
parameter vector when it is considered in the adding of (1) only the first m terms.
Under these assumptions, the procedure described in Gilula and Haberman [17] to
choose the dimensionality of (1), M0 is to test

H0 : p = p
(
β1

)
,

that is to say m = 1. If we reject the null hypotheses we test

H0 : p = p
(
β2

)
,

that is to say m = 2, until we find the value M0 ≤ K such that H0 will be not
rejected. These tests were carried out using the statistics X2 and G2 described
above.

Now we present a new family of statistics based on φ1-divergence measures to
test

H0 : p = p (βm) , (9)
which is defined by

Tmφ1,φ2
≡ 2n
φ′′1 (1)

Dφ1

(
p̂, p

(
β̂

(r)
φ2,m

))
(10)

where β̂(r)
φ2,m

is the restricted minimum φ2-divergence estimator consideringm canon-
ical correlations. First of all we obtain its asymptotic distribution.
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Theorem 3.1. Under the null hypothesis (9) and the assumptions in Theorem
2.1, we have

Tmφ1,φ2
≡ 2n
φ′′1 (1)

Dφ1

(
p̂, p

(
β̂

(r)
φ2,m

))
L−→

n→∞
χ2
IJ−a(m)+b(m)−1

where by a (m) and b (m) we denote that the number of parameters as well as the
number of restrictions depend on m.

P r o o f . It can be established, for more details see Theorem 3.1 in Pardo et al
[29], that

2
φ′′1 (1)

Dφ1

(
p̂, p

(
β̂

(r)
φ2,m

))
=
ZTZ

n
+ op

(
n−1

)

where ZTZ is asymptotically a chi-squared distribution with IJ − a (m) + b (m)− 1
degrees of freedom. 2

Remark 1. If we consider φ2(x) = x log x − (x − 1) and φ1(x) = 1
2 (x − 1)2 we

get the Pearson chi-squared statistic, X2, given in (7) and for φ1(x) = φ2(x) =
x log x − (x − 1) we get the likelihood ratio statistic, G2, given in (8) (see, i. e.,
Anderson [3] and references there in).

Remark 2. There are important measures of divergence that can not be expressed
as φ-divergences, for instance, the divergence measures given by Battacharya, Rényi,
and Sharma and Mittal. However, such measures can be written in the following
form:

Dφ,h (p, q) = h (Dφ (p, q)) ,

where h is a differentiable increasing function mapping from [0,∞) onto [0,∞) ,
with h (0) = 0 and h′ (0) > 0, and φ ∈ Φ∗. In the following table, we present these
divergence measures:

Divergence h (x) φ (x)

Rényi 1
r(r−1) log (r (r − 1)x+ 1) ; r 6= 0, 1 xr−r(x−1)−1

r(r−1) ; r 6= 0, 1

Sharma-Mittal 1
s−1

{
(1 + r (r − 1)x)

s−1
r−1 − 1

}
; s, r 6= 1 xr−r(x−1)−1

r(r−1) ; r 6= 0, 1

Battacharya − log (−x+ 1) −x1/2 + 1
2 (x+ 1)

In the case of Rényi’s divergence, we have

Dr (p, q) =
1

r (r − 1)
log




k∑

j=1

prjq
1−r
j


 ; r 6= 0, 1,

and limiting cases for r = 0 and r = 1. That is,

D1 (P,Q) = lim
r→1

Dr (P,Q) =
k∑

j=1

pj log
pj
qj

= DKullback (p, q) ,
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which is the Kullback–Leibler divergence.
Similarly,

D0 (P,Q) =
k∑

j=1

qj log
qj
pj

= DKullback (q, p) .

Theorem 3.2. Under the assumptions given in Theorem 3.1, the asymptotic null
distribution of the statistic,

Tmφ1,φ2,h1,h2
≡ 2n
φ′′1 (1)h′1 (0)

h1

(
Dφ1

(
p̂, p

(
β̂

(r)
φ2,h2,m

)))

is a chi-squared distribution with IJ − a (m) + b (m)− 1 degrees of freedom, where
β̂

(r)
φ2,h2,m

is the minimum (φ2, h2)-divergence estimator defined by

β̂
(r)
φ2,h2,m

= arg min
β∈B∗

h2 (Dφ2 (p̂, p (β))) a. s.

P r o o f . Using a similar approach to that given in the proof of Theorem 3.1, it
can be established that

2
φ′′1 (1)

Dφ1

(
p̂, p

(
β̂

(r)
φ2,h2,m

))
=
ZTZ

n
+ op

(
n−1

)

where the asymptotic distribution of ZTZ is a chi-squared distribution with IJ −
a (m) + b (m)− 1 degrees of freedom.

Further, because h1 (x) = h1 (0) + h′1 (0)x+ o(x), we have,

Tmφ1,φ2,h1,h2
= ZTZ + op (1) . 2

As an alternative to this procedure to choose the value M0 we propose another
one as follows. We consider the nested sequence of hypotheses,

Hm : β ∈ Bm ⊂ Ra(m), m = 1, . . . ,K (11)
where

B1 ⊂ B2 ⊂ · · · ⊂ BK ⊂ Ra(K)

and dim (Bm) = dm = (I + J + 1) (m+ 1)− 1, m = 1, . . . ,K, with

d1 < d2 < · · · < dK .

Our strategy will be to test successively the hypothesis Hm against Hm+1; m =
1, . . . ,K − 1, as null and alternative hypotheses respectively. We go on testing
as long as the null hypothesis is rejected and choose the model with m = M0

canonical correlations for the first m for which Hm is accepted. This strategy is
quite standard for nested models (Read and Cressie [30, p. 42]). An interesting
application in loglinear models can be seen in Cressie and Pardo [10, 11]. To solve
this problem we will consider the family of statistics

T
(m)
φ1,φ2

≡ 2n
φ′′1 (1)

Dφ1

(
p

(
β̂

(r)
φ2,m+1

)
, p

(
β̂

(r)
φ2,m

))
. (12)

Its asymptotic distribution is given in the following theorem.
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Theorem 3.3. Under the null hypothesis (11) and the assumptions of Theorem
2.1, we have

T
(m)
φ1,φ2

≡ 2n
φ′′1 (1)

Dφ1

(
p

(
β̂

(r)
φ2,m+1

)
, p

(
β̂

(r)
φ2,m

))
L−→

n→∞
χ2
I+J+1

for m = 1, . . . ,K − 1.

P r o o f . The second order expansion of

Dφ1

(
p

(
β̂

(r)
φ2,m+1

)
, p

(
β̂

(r)
φ2,m

))

around (p (β0) , p (β0)) , gives

T
(m)
φ1,φ2

= ZTZ + op (1) ,

where
Z =

√
ndiag

(
p (β0)

−1/2
)(

p
(
β̂

(r)
φ2,m+1

)
− p

(
β̂

(r)
φ2,m

))
,

and the first order expansion of p
(
β̂

(r)
φ2,i

)
around p (β0), gives

p
(
β̂

(r)
φ2,i

)
−p (β0) =

(
∂p (β)
∂β

)

β=β0

(
β̂

(r)
φ2,i

−β0

)
+op

(∥∥∥β̂(r)
φ2,i

−β0

∥∥∥
)

i = m,m+ 1.

By Theorem 2.1

β̂
(r)
φ2,i

− β0 = H(i) (β0) I
(i)
F (β0)

−1
(
A(i) (β0)

)T
diag

(
p (β0)

−1/2
)

(p̂− p (β0))

+ op (‖p̂− p (β0)‖)
where

A(i) (β0) = A(i) = diag
(
p (β0)

−1/2
) (

∂p (β)
∂β

)

β=β0

I
(i)
F (β0) = I

(i)
F =

(
A(i)

)T
A(i)

H(i) (β0) = H(i) = I − I
(i)
F (β0)

−1
(
L(i)

)T (
L(i)I

(i)
F (β0)

−1
(
L(i)

)T)−1

L(i),

and

L(i) = L(i) (β0) =
(
∂f (β)
∂β

)

β=β0

i = m,m+ 1.

Then

p
(
β̂

(r)
φ2,m+1

)
− p

(
β̂

(r)
φ2,m

)
=

((
∂p (β)
∂β

)

β=β0

H(m+1)
(
I
(m+1)
F

)−1 (
A(m+1)

)T

−
(
∂p (β)
∂β

)

β=β0

H(m)
(
I
(m)
F

)−1 (
A(m)

)T)
diag

(
p (β0)

−1/2
)
×

× (p̂− p (β0)) + op

(∥∥∥β̂(r)
φ2,m+1 − β0

∥∥∥
)
− op

(∥∥∥β̂(r)
φ2,m

− β0

∥∥∥
)
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or equivalently

T =
(
Q(m+1) −Q(m)

)
diag

(
p (β0)

−1/2
)

(p̂− p (β0))

+op
(∥∥∥β̂(r)

φ2,m+1 − β0

∥∥∥
)
− op

(∥∥∥β̂(r)
φ2,m

− β0

∥∥∥
)

where
T = diag

(
p (β0)

−1/2
)(

p
(
β̂

(r)
φ2,m+1

)
− p

(
β̂

(r)
φ2,m

))

and
Q(i) = A(i)H(i)

(
I
(i)
F

)−1 (
A(i)

)T
i = m,m+ 1.

Therefore
Z

L−→
n→∞

N (0,Σ∗)

with

Σ∗ =
(
Q(m+1) −Q(m)

) (
I −

√
p (β0)

√
p (β0)

T

) (
Q(m+1) −Q(m)

)

=
(
Q(m+1) −Q(m)

) (
Q(m+1) −Q(m)

)

since √
p (β0)

T
A(i) = 0, i = m,m+ 1.

On being, Q(m)Q(m+1) = Q(m+1)Q(m) = Q(m), Q
2
(m) = Q(m) and Q2

(m+1) =
Q(m+1) we have that Σ∗ = Q(m+1) − Q(m) is symmetric and idempotent so all the
eigenvalues of Σ∗ are zero except for dm+1 − dm = I + J + 1 unit values and

ZTZ
L−→

n→∞
χ2
I+J+1. 2

Theorem 3.4. Under the assumptions given in Theorem 3.3, the asymptotic null
distribution of the statistic,

T
(m)
φ1,φ2,h1,h2

≡ 2n
φ′′1 (1)h′1 (0)

h1

(
Dφ1

(
p

(
β̂

(r)
φ2,h2,m+1

)
, p

(
β̂

(r)
φ2,h2,m

)))

is a chi-squared distribution with I + J + 1 degrees of freedom.

P r o o f . Using a similar approach to that given in the proof of Theorem 3.3, it
can be established that

2
φ′′1 (1)

Dφ1

(
p

(
β̂

(r)
φ2,h2,m+1

)
, p

(
β̂

(r)
φ2,h2,m

))
=
ZTZ

n
+ op

(
n−1

)
.

Now a first-order expansion of h (x) , in a similar way to the Theorem 3.2 gives

T
(m)
φ1,φ2,h1,h2

= ZTZ + op (1)

where ZTZ is asymptotically a chi-squared distribution with I + J + 1 degrees of
freedom. 2
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Theorem 3.5. Under the assumptions given in Theorem 3.3 and 3.4, the asymp-
totic null distribution of each of the statistics,

T̃
(m)
φ1,φ2

≡ 2n
φ′′1 (1)

Dφ1

(
p

(
β̂

(r)
φ2,m

)
, p

(
β̂

(r)
φ2,m+1

))

and

T̃
(m)
φ1,φ2,h1,h2

≡ 2n
φ′′1 (1)h′1 (0)

h1

(
Dφ1

(
p

(
β̂

(r)
φ2,h2,m

)
, p

(
β̂

(r)
φ2,h2,m+1

)))

is asymptotically a chi-squared distribution with I + J + 1 degrees of freedom.

P r o o f . We consider the function ϕ (x) = xφ1

(
x−1

)
. It is clear that ϕ (x) ∈ Φ,

T
(m)
ϕ,φ2

= T̃
(m)
φ1,φ2

, T
(m)
ϕ,φ2,h1,h2

= T̃
(m)
φ1,φ2,h1,h2

. Then the results follow directly from
Theorems 3.3 and 3.4. 2

4. NUMERICAL APPLICATION

To illustrate results, two examples previously analyzed by several authors will be
considered in this section. We consider the power-divergence measure introduced
by Cressie and Read [12], which is a particular case of the Csiszár divergence, for
estimation as well as testing. That is to say, we consider the statistics T (m)

φ(a1),φ(a2)

with

φ(a)(x) ≡ (a (a+ 1))−1 (
xa+1 − x

)− (x− 1) (a+ 1)−1
a 6= 0, a 6= −1

φ(0)(x) = lim
a→0

φ(a)(x), φ(−1)(x) = lim
a→−1

φ(a)(x). (13)

For more details about this family of divergences as well as its importance in statis-
tical inference see Read and Cressie [30].

We estimate the parameters β by the RMLE β̂
(r)
0,m; the restricted minimum chi-

square, β̂(r)
1,m and the new estimator obtained for a2 = 2/3, β̂(r)

2/3,m with β̂
(r)
a2,m ≡

β̂
(r)
φ(a2),m

. They have been obtained by means of a FORTRAN-90 program which
uses the nag nlp module of the NAG F-90 Numerical Libraries. As initial point for
the minimization algorithm have been used the empirical row and column marginal
probabilities p̂i. =

∑J
j=1 p̂ij , i = 1, . . . , I and p̂.j =

∑I
i=1 p̂ij , j = 1, . . . , J as estima-

tors of pi. , i = 1, . . . , I and p.j , j = 1, . . . , J respectively as well as the estimators for
the canonical correlations and scores obtained by ordinary canonical analysis which
is described in the following.

Let further Λ be a diagonal matrix of dimension M with λ̂1, . . . , λ̂M in the diag-
onal and U and V be matrices of dimension I ×M and J ×M , respectively, which
have the û′ims and v̂′jms as elements. Then the elements of Λ are the square roots
of the eigenvalues of the matrix

D = C−1
I RC−1

J RT
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or equivalently the square roots of the eigenvalues of the matrix

E = C−1
J RTC−1

I R

where R = (p̂ij − p̂i.p̂.j) , i = 1, . . . , I, j = 1, . . . , J, CI and CJ are the diagonal
matrices given by CI = diag (p̂1., . . . , p̂I.) and CJ = diag (p̂.1, . . . , p̂.J). The columns
of U are the normalized eigenvectors of D and the columns of V are the normalized
eigenvectors of E according to constraints (2). For more details see for instance
Anderson [3], Lebart et al [23], Benzecri [8], Greenacre [18]. Therefore, λm,m =
1, . . . ,M are replaced by the first canonical correlations λ̂m, m = 1, . . . ,M and the
uim (i = 1, . . . , I, m = 1, . . . ,M) and vjm (j = 1, . . . , J, m = 1, . . . ,M) are replaced
by the first M pairs of canonical row and column scores ûim (i = 1, . . . , I, m =
= 1, . . . ,M) and v̂jm (j = 1, . . . , J, m = 1, . . . ,M).

Example 4.1. The first example is a 6×4 table from Srole et al [31, p. 213], which
was analyzed by Gilula and Haberman in [17], among others. Table 1 shows a
random sample of subjects in Midtown Manhattan cross-classified by mental health
status and parental socioeconomic status.

Table 1.

Parental socioeconomic status stratum
Mental health category A B C D E F

Well
Mild symptom formation
Moderate symptom formation
Impaired

64 57 57 72 36 21
94 94 105 141 97 71
58 54 65 77 54 54
46 40 60 94 78 71

Firstly, we consider the model H1 : pij = pi.p.j (1 + λ1ui1vj1) i = 1, 2, 3, 4, j =
1, 2, 3, 4, 5, 6. The restricted minimum φ(a2)-divergence estimators for a2 = 0, a2 =
2/3 and a2 = 1 of the unknown parameters are given in Table 2. We can observe
that for a2 = 0 we get the RMLE and for a2 = 1 the minimum chi-square estimator.

In Tables 3, 4 and 5 we present the values of the statistic T (m)
a1,a2 ≡ T

(m)
φ(a1),φ(a2)

with
a1 = −2,−1,−0.5, 0, 2/3 and 1, given in (12), for a2 = 0, 2/3 and 1, respectively.
We use the subscript 2 in the values of the parameter a to indicate that these values
will be used associated to the procedure of testing, i. e., associated to the function
φ2.

It is clear that the model with M0 = 1 is quite adequate since the critical point
at level 0.05 for the selection of an appropriate model is χ2

11,.05 = 19.675.
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Table 2. Estimates of the parameters

of the model H1 for a2 = 0, 2/3 and 1.

Parameter a2 = 0 a2 = 2/3 a2 = 1
p1. .184940 .184881 .184852
p2. .362651 .362564 .362521
p3. .218072 .218303 .218417
p4. .234337 .234252 .234210
p.1 .157831 .157803 .157789
p.2 .147590 .147549 .147529
p.3 .172892 .172830 .172799
p.4 .231325 .231348 .231361
p.5 .159639 .159662 .159677
p.6 .130723 .130807 .130846
λ1 .163016 .163016 .163016
u11 −1.60321 −1.60532 −1.60636
u21 −.187737 −.188727 −.189190
u31 .086170 .091533 .094113
u41 1.47561 1.47379 1.47290
v11 −1.08699 −1.08752 −1.08780
v21 −1.17351 −1.17373 −1.17385
v31 −.370019 −.369479 −.369222
v41 .053377 .053051 .052910
v51 1.00962 1.00859 1.00809
v61 1.79929 1.79919 1.79913

Table 3.

Hm v. Hm+1 T
(1)
−2,0 T

(1)
−1,0 T

(1)
−.5,0 T

(1)
0,0 T

(1)
2/3,0 T

(1)
1,0

1 versus 2 2.277942 2.273007 2.271424 2.270432 2.270036 2.270237

Table 4.

Hm v. Hm+1 T
(1)
−2,2/3 T

(1)
−1,2/3 T

(1)
−.5,2/3 T

(1)
0,2/3 T

(1)
2/3,2/3 T

(1)
1,2/3

1 versus 2 2.284696 2.276312 2.272991 2.270250 2.267502 2.266517

Table 5.

Hm v. Hm+1 T
(1)
−2,1 T

(1)
−1,1 T

(1)
−.5,1 T

(1)
0,1 T

(1)
2/3,1 T

(1)
1,1

1 versus 2 2.288831 2.278760 2.274592 2.271001 2.267112 2.265553
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Example 4.2. As another example consider the data in Table 6 on the connection
between frequency of attending meetings and social rank in Denmark. This example
has been solved by the classical way without using statistical inference principles in
Anderson [3].

Table 6.

Attend meetings outside working hours

Social
group

One or
more times

a week

One or
more times
a month

Approx. once
every second
month

A few
times
a year

Never

I
II
III
IV
V

17
25
38
22
9

27
57
91
33
21

13
17
41
21
17

24
49
217
133
87

25
55
213
222
305

In Tables 7, 8 and 9 we present the values of the statistic T (m)
a1,a2 for a2 = 0, 2/3

and 1, respectively. These tables strongly suggests that a model with M0 = 2 fits
the data well while a model with M0 = 1 would not suffice since the critical point
at level 0.05 for the selection of an appropriate model is χ2

11,.05 = 19.675.

Table 7.

Hm v. Hm+1 T
(m)
−2,0 T

(m)
−1,0 T

(m)
−.5,0 T

(m)
0,0 T

(m)
2/3,0 T

(m)
1,0

1 versus 2 35.426666 34.050673 33.504004 33.042161 32.548267 32.350210
2 versus 3 3.057359 3.070039 3.079596 3.091364 3.110592 3.121764

Table 8.

Hm v. Hm+1 T
(m)
−2,2/3 T

(m)
−1,2/3 T

(m)
−.5,2/3 T

(m)
0,2/3 T

(m)
2/3,2/3 T

(m)
1,2/3

1 versus 2 36.417790 34.587473 33.845204 33.204456 32.493337 32.194242
2 versus 3 3.109573 3.108382 3.110927 3.115607 3.125234 3.131527

Table 9.

Hm v. Hm+1 T
(m)
−2,1 T

(m)
−1,1 T

(m)
−.5,1 T

(m)
0,1 T

(m)
2/3,1 T

(m)
1,1

1 versus 2 37.061622 34.970345 34.117991 33.377952 32.548286 32.194872
2 versus 3 3.139479 3.131519 3.130671 3.131940 3.136977 3.140951
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The model with M0 = 2 corresponds to H2, i. e., the model given by

pij = pi.p.j (1 + λ1ui1vj1 + λ2ui2vj2) , i, j = 1, . . . , 5. (14)

The estimates of the parameters are shown in Table 10 and its analysis gives im-
portant information about the original data in Table 6. The different estimates
obtained for a1 = 0, 2/3 and 1 are similar. For this reason we present only some
comments for a1 = 0. The estimated canonical correlation λ̂1 = 0.354498 is fairly
large, so “social group” and “attend meeting outside working hour” are related. The
principal scores u11 and u21 as well as u12 and u22 are fairly similar this means that,
as regards attending meeting, persons in social groups I and II behave in a similar
fashion. The same happens for “one or more times a week” and “one or more times
a month”. From the relation (14), we have

pij
pi.p.j

− 1 = λ1ui1vj1 + λ2ui2vj2, i, j = 1, . . . , 5. (15)

Then big values of the term λ1ui1vj1 + λ2ui2vj2 correspond to dependence between
the levels i and j of the categorical variables “social group” and “attend meeting
outside working hour”. On the basis of (15) we can conclude that persons in the two
highest social groups attend meeting rather frequently and that persons in the two
lowest social groups almost never attend meeting. These conclusions coincide with
that of Example 11.2 in Anderson [3].

It should be noted, in the two examples, that the choice of different test statistics
as well as estimators yields different values but no difference in model choice. It was
of waiting, nevertheless it is not guaranteed for any problem and for every choice
of φ and h. Asymptotically, the statistics have the same distribution, but in finite
samples their performances will differ. To choose the “best” φ-divergence measure in
estimation and testing, in the sense of efficiency and robustness, in these large classes
of divergence measures depends on both finite-sample and asymptotic comparisons.
Read and Cressie [30] give comparative results for the power divergence measures,
although not for canonical analysis. Cressie and Read [12] concluded that for simple
models, the test statistic based on power-divergence statistic, a = 2/3, offered an
attractive alternative to the classical Pearson-based, a = 1, or likelihood-ratio-based,
a = 0, test statistics. It will be interesting to see if this will also be the case for
canonical analysis. In future work we will compare important family members, inter
alia those considered here, through a simulation study for estimation and testing
and for small samples.
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Table 10. Estimates of the parameters

of the model H2 for a2 = 0, 2/3 and 1.

parameter a1 = 0 a1 = 2/3 a1 = 1
p1. .059584 .059781 .059876
p2. .114109 .114125 .114135
p3. .337268 .337170 .337125
p4. .242271 .242308 .242322
p5. .246768 .246616 .246540
p.1 .062394 .062678 .062816
p.2 .128724 .128871 .128950
p.3 .061270 .061367 .061414
p.4 .286678 .286476 .286375
p.5 .460933 .460607 .460445
λ1 .354498 .354719 .354835
λ2 .139138 .139187 .139214
u11 –1.78609 –1.79056 –1.79270
u12 –1.62033 –1.62754 –1.63090
u21 –1.51095 –1.50779 –1.50625
u22 –1.33422 –1.32677 –1.32312
u31 –.463818 –.462214 –.461345
u32 1.03137 1.03224 1.03261
u41 .458414 .456868 .456187
u42 .535603 .534382 .533897
u51 1.31381 1.31475 1.31518
u52 –.927256 –.927810 –.928145
v11 –1.61581 –1.60943 –1.60629
v12 –.881311 –.862700 –.853350
v21 –1.65781 –1.65631 –1.65560
v22 –1.01037 –1.00951 –1.00918
v31 –.922196 –.928161 –.930940
v32 –.401942 –.420273 –.428891
v41 –.233528 –.231709 –.230786
v42 1.55170 1.55336 1.55415
v51 .949528 .950187 .950505
v52 –.510189 –.510283 –.510355

5. CONCLUSIONS

Analysis of data by canonical analysis involves two steps. First, to estimate the
unknown parameters in the model from the data. Second, to use these parameters
estimates in statistical tests for the determination of the number of significant corre-
lations. From the classical point of view the unknown parameters are estimated by
the restricted maximum likelihood and Pearson and likelihood chi-square tests are
used for testing. The first purpose of this paper is to present an analogue procedure
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but using the restricted minimum φ-divergence estimator jointly with a new family
of statistics also based on a φ-divergence measure. The second one is to introduce a
new procedure based on testing a sequence of nested hypotheses for the determina-
tion of the number of significant correlation. Finally, we apply the second procedure
to two data sets studied previously by some authors.
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