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RANK–ONE LMI APPROACH
TO ROBUST STABILITY OF POLYNOMIAL MATRICES

Didier Henrion, Kenji Sugimoto and Michael Šebek

Necessary and sufficient conditions are formulated for checking robust stability of an
uncertain polynomial matrix. Various stability regions and uncertainty models are handled
in a unified way. The conditions, stemming from a general optimization methodology
similar to the one used in µ-analysis, are expressed as a rank-one LMI, a non-convex
problem frequently arising in robust control. Convex relaxations of the problem yield
tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.

1. INTRODUCTION

Polynomial matrices play a central role in modern systems theory. Algebraic meth-
ods such as the polynomial approach [20] or the behavioral approach [28] heavily rely
upon polynomial matrices. Dynamics of many systems (e. g. lightly damped struc-
tures such as oil derricks or regional power system models, see [19] and references
therein) are most naturally represented by polynomial matrices and polynomial ma-
trix fraction descriptions. Unsurprisingly, fundamental system features are captured
by properties of polynomial matrices. For example, the zeros1 of the denominator
polynomial matrix in a matrix fraction description characterize system dynamics
and performance. Satisfactory transient time response can be ensured as soon as
the zeros are located in some specific region of the complex plane.

An important issue in control is to assess to what extent stability and performance
of a system can be guaranteed in face of uncertainty or variation of the system
parameters. A lot of research efforts has been recently devoted to the investigation
of this problem, which has been coined out as the robust stability analysis problem,
see e. g. the textbooks [2, 3, 29] and references therein. Quite naturally, the problem
of checking robust stability of uncertain linear systems amounts to checking robust
stability of uncertain polynomial matrices.

A very few works have been devoted so far to the study of robust stability of
polynomial matrices, probably because the problem is particularly difficult to solve
in its most general form. For example, it was proved that checking robust stability
of a polytope of polynomial matrices (the so-called polytopic uncertainty model, see

1The zeros of a polynomial matrix are the roots of its determinant.
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e. g. [2]) is an NP-hard problem even in the simple case that all vertex matrices
are of degree zero (i. e. when they do not depend in the indeterminate) [4]. NP-
hardness roughly means that it is very unlikely to find an algorithm that solves
the problem in a time which is a polynomial function of the problem dimensions.
These negative results have naturally led to the development of conservative, yet
tractable, polynomial-time conditions for checking robust stability. One possibility
is to strengthen the standard notions of stability and allowable uncertainty model
[19]. Another possibility is to pursue the so-called quadratic stability approach in the
context of Lyapunov theory [2, 11]. It paved the way for the development of efficient
polynomial-time stability tests based on optimization over linear matrix inequalities
(LMIs, see [5]). Such stability tests are based on sufficient stability conditions. That
is to say, they may guarantee robust stability at the price of a certain amount of
conservatism which is difficult to evaluate. Preliminary results on the application of
LMI techniques to the study of robust stability of polytopes of polynomial matrices
are reported in [17].

In view of this unsatisfactory state of the art, the paper is precisely an attempt
to overcome the lack of sufficiently general methods for assessing robust stability
of uncertain polynomial matrices. As an extension of the results presented in [17],
we provide sufficient but also necessary robust stability conditions. Our approach is
sufficiently general to handle in a unified way a fairly large number of uncertainty
models and stability regions. The basic idea behind our approach can be found in
[9] and can be traced back to µ-analysis [10, 21]. It has been used recently to assess
D-stability of polynomial matrices [15] and stability of 2-D polynomial matrices [16].
The stability problem is first expressed as a quadratic optimization problem. Then,
several techniques are used to come up with a standard form of the problem. The
necessary and sufficient robust stability conditions are expressed as a rank-one LMI
problem, a non-convex optimization problem frequently arising in robust control
problems, see [14] and references therein. Convex relaxations of this non-convex
rank-one LMI problem yield possibly conservative but tractable LMI conditions for
robust stability.

The outline of the paper is as follows. In Section 2 we state the problem to
be solved. Then we introduce the stability regions (Section 3) and uncertainty
models (Section 4) considered in the paper. In Section 5 we derive a rank-one LMI
formulation of the problem. An illustrative example is proposed in Section 6 .

Notations: R and C are the sets of real and complex numbers, respectively. A?

means transpose conjugate of complex matrix A. The matrix inequalities A Â B
and A º B mean that matrix A − B is positive definite and positive semidefinite,
respectively.

2. PROBLEM STATEMENT

Suppose we are given a non-singular complex polynomial matrix

A(s,∆) = A0(∆) + A1(∆)s + · · ·+ Ad(∆)sd
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of size n and degree d, whose matrix coefficients Ai(∆) are affected by some uncer-
tainty ∆ ∈ ∆ where ∆ is a given set of allowable uncertainties. Suppose moreover
that we are given a region D ⊂ C of the complex plane.

We say that uncertain polynomial matrix A(s, ∆) is robustly D-stable if and
only if the zeros of A(s,∆) remain in region D for all admissible values ∆ of the
uncertainty. We aim at finding necessary and sufficient conditions for robust D-
stability of polynomial matrix A(s,∆).

3. STABILITY REGIONS

First we describe the class of regions D we will consider throughout the paper.
Define DC = {s ∈ C : s /∈ D} as the complement of region D in C. In this paper,

we restrict our attention to two-dimensional regions D whose complement reads

DC = {s ∈ C : D00 + D01s + D10s? + D11ss? º 0} (1)

where Hermitian matrix

D = D? =
[

D00 D01

D10 D11

]

is non-singular and has at least one negative eigenvalue. In [15] we show that
the above description is fairly general and can cover half-planes, disks, ellipsoids,
parabolas and their complements, or possibly non-connected unions. For the sake
of simplicity, in this paper we restrict our attention to the following simple regions:

– Half-plane D = {x + jy ∈ C : ax + by + c ≥ 0} with a, b, c ∈ R and

D =
[

2c a + jb
a− jb 0

]
.

– Disk D = {s ∈ C : |s− s0| ≤ r} with s0 ∈ C, r > 0 ∈ R and

D =
[

r2 − s0s
?
0 s0

s?
0 −1

]
.

– Disk complement D = {s ∈ C : |s− s0| ≥ r} with s0 ∈ C, r > 0 ∈ R and

D =
[ −r2 + s0s

?
0 −s0

−s?
0 1

]
.

where 2×2 matrix D has exactly one negative eigenvalue and one positive eigenvalue.
Note that some care must be taken with zeros at infinity when dealing with open
stability regions such as the disk complement or the left half-plane, see [15, § 3] for
details.
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4. UNCERTAINTY MODELS

In this section, we describe the class of allowable uncertainties studied in the paper.
We consider that uncertainty ∆ has a block-diagonal structure, a standard as-

sumption made in the robust control literature, i. e.

∆ =




∆1 0
∆2

. . .
0 ∆K


 .

Each sub-block ∆i belongs to CNi×Ni . This allows us to write uncertain polynomial
matrix A(s,∆) using a Linear Fractional Representation (LFR)

A(s,∆) = A0 + L∆s(IN −D∆s)−1R (2)

where the indeterminate s has been incorporated into

∆s =
[

sIdn 0
0 ∆

]

so that N = dn + N1 + · · · + NK [29]. For a given index i, a rather large set of
uncertainties can be captured by the quadratic description

∆i = {∆i ∈ CNi×Ni : D00
i + D01

i ∆i + ∆?
i D

10
i + ∆?

i D
11
i ∆i º 0}

where Hermitian matrix

Di = D?
i =

[
D00

i D01
i

D10
i D11

i

]

is non-singular and has at least one negative eigenvalue. Note that this class of
uncertainties is similar to the stability regions considered in Section 3. In [25], this
class is referred to as {X,Y, Z}-dissipative uncertainties (with an additional sign
assumption on D11

i ).
In this paper, we restrict ourselves to the following uncertainty models:

– Norm-bounded uncertainties, with

∆i = {∆i ∈ CNi×Ni : ‖∆i‖2 ≤ γi}
and

Di =
[

γ2
i INi 0
0 −INi

]
.

– Interval uncertainties, with

∆i = {∆i = (xi + jyi)INi ∈ CNi×Ni : xi ∈ [ai, bi]}
and

Di =
[ −2ab a + b

a + b −2

]
.
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Using the same formalism, we can also cope with positive-real uncertainties, sector-
bounded uncertainties or β-bounded uncertainties [12, 13, 26]. We can also enforce
the uncertain parameters to be purely real (using a technique similar to that exposed
in [10]) but it is out of the scope of the present paper.

5. RANK–ONE LMI FORMULATION OF THE PROBLEM

Following these preliminaries, we can now derive a rank-one LMI formulation of a
necessary and sufficient condition for robust stability of a polynomial matrix.

Our approach is twofold. First in Paragraph 5.1 we show that checking robust
stability amounts to solving a quadratic optimization problem. Second, the LFR of
A(s,∆) is used in Paragraph 5.2 to take advantage of the special quadratic struc-
ture of the optimization problem and to derive an LMI formulation where all the
non-convexity is concentrated into the constraint that a matrix has rank one. Con-
vex primal and dual LMI relaxations are then proposed in Paragraph 5.3 and 5.4
respectively.

5.1. Quadratic optimization problem

Recall from the problem statement in Section 2 that robust stability of uncertain
polynomial matrix A(s, ∆) holds if and only if its zeros remain inD for all uncertainty
∆ ∈ ∆, or equivalently, if and only if A(s, ∆)v 6= 0 for all non-zero v ∈ Cn, s ∈ DC

and ∆ ∈ ∆. Robust stability is then ensured if and only if the optimal value µ of
the quadratic optimization problem

µ = min v?A?(s,∆)A(s,∆)v
s.t. s ∈ DC

∆ ∈ ∆
v?v = 1

(3)

is strictly positive.

5.2. Rank-one LMI problem

Now we show that solving quadratic optimization problem (3) amounts to solving a
rank-one LMI optimization problem.

In relation with the LFR (2) of matrix A(s, ∆), we can define vectors

p =




p0

p1

...
pK


 q =




q0

q1

...
qK




such that
A(s, ∆)v = A0v + Lp

q = Rv + Dp
p = ∆sq.

(4)
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For any sub-vectors pi, qi in p, q, it follows from the block-diagonal structure of ∆s

that
pi = ∆iqi. (5)

Now define the rank-one positive semidefinite matrix

X = xx? =
[

v
p

] [
v
p

]?

º 0 (6)

and matrices A, Pi and Qi such that

A(∆s)v = Ax
qi = Qix
pi = Pix

for i = 0, 1, . . . , K. Define finally the partitioning

[
X00

i X01
i

X10
i X11

i

]
=

[ Qi

Pi

]
X

[ Qi

Pi

]?

and the linear maps Fi from CN×N to CMi×Mi associated with sets ∆i as follows
[9]:

– Stability region ∆i = {sINi ∈ CNi×Ni : D00 + D01s + D10s? + D11s?s ≥ 0}

Fi(X) = D00X00
i + D01X10

i + D10X01
i + D11X11

i .

– Norm-bounded uncertainties ∆i = {∆i ∈ CNi×Ni : ‖∆i‖2 ≤ γi}

Fi(X) = trace (γ2
i X00

i −X11
i ).

– Interval uncertainties ∆i = {(xi + jyi)INi ∈ CNi×Ni : xi ∈ [ai, bi]}

Fi(X) = −2aibiX
00
i + (ai + bi)(X01

i + X10
i )− 2X11

i .

In relation to the above linear maps, equation (5) and rank-one matrix (6), we can
state the following central result.

Lemma 1. Assume vector qi is non-zero. It holds pi = ∆iqi for some ∆i ∈ ∆i if
and only if

Fi(X) º 0. (7)

P r o o f . This is a standard result in µ-analysis, see [10, 21]. The proof is not
reproduced here for conciseness. 2
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Using equations (4), (6), Lemma 1 and gathering all linear maps Fi(X) into one
block-diagonal linear map

F (X) =




F0(X)
F1(X)

. . .
FK(X)


 ,

an alternative formulation of problem (3) can now be derived. It reads

µ = min traceA?AX
s.t. F (X) º 0

X = X? º 0
rankX = 1

trace

[
In 0
0 0

]
X = 1.

(8)

Problem (8) is an LMI optimization problem with a non-convex rank constraint. It
must be pointed out that rank-constrained LMIs frequently arise in control problems
but also in mathematical programming and combinatorial optimization, see [14] for
a recent overview. We have shown the main result of this paper.

Theorem 1. Polynomial matrix A(s, ∆) is robustly D-stable if and only if µ > 0
in rank-one LMI optimization problem (8).

5.3. Primal LMI relaxation

A convex primal LMI relaxation can readily be derived for non-convex rank-constrained
LMI problem (8). As a result, we obtain a sufficient condition of robust D-stability
of polynomial matrix A(s,∆).

Consider the following convex relaxation of rank-one LMI problem (8)

ν = min traceA?AX
s.t. F (X) º 0

X = X? º 0

trace

[
In 0
0 0

]
X = 1

(9)

where the non-convex rank constraint has been dropped. Since the feasible set of
problem (8) is included in the feasible set of problem (9), ν > 0 in problem (9)
obviously implies µ > 0 in problem (8). This is captured in the following corollary
to Theorem 1.

Corollary 1. Polynomial matrix A(s,∆) is robustly D-stable if ν > 0 in LMI
optimization problem (9).
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5.4. Dual LMI relaxation

Now we propose a convex dual LMI relaxation for non-convex rank-constrained LMI
problem (8).

For i = 0, 1, . . . ,K define the linear maps FD
i (Pi) dual to the maps Fi(X) intro-

duced above, i. e. such that for any couple of matrices X ∈ CN×N and Pi ∈ CMi×Mi ,
it holds

trace FD
i (Pi)X = trace Fi(X)Pi.

Then define

P =




P0

P1

. . .
PK




and the associated linear map

FD(P ) = FD
0 (P0)X + FD

1 (P1)X + · · ·+ FD
K (PK)X.

Consider the LMI feasibility problem

A?A Â FD(P )

P = P ? Â 0
(10)

and note that as soon as the above problem is feasible, it holds

traceA?AX > trace FD(P )X = trace F (X)P

for any matrix X = X? º 0. Since the above inequality is also valid for any rank-one
matrix X, it follows that µ > 0 in problem (8).

Using standard semi-definite programming duality arguments [27] it can be shown
that LMI feasibility problem (10) is actually dual to relaxed LMI problem (9). Now
if N denotes a matrix whose columns span the right null-space of A, it follows from
the Elimination Lemma [5] that feasibility problem (10) can equivalently be written
as

N ?FD(P )N ≺ 0

P = P ? Â 0.
(11)

The following corollary to Theorem 1 follows from the above discussion and provides
us with an equivalent sufficient condition of robust D-stability.

Corollary 2. Polynomial matrix A(s, ∆) is robustly D-stable if there is a matrix
P solution to LMI feasibility problem (11).
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6. ILLUSTRATION

Let

A(s, ∆) =
[

1 2
4 0

]

︸ ︷︷ ︸
A0

+




[
0 0

−1 0

]

︸ ︷︷ ︸
A1

+x1

[
0 1
1 0

]

︸ ︷︷ ︸
B1


 s +




[ −1 −1
0 1

]

︸ ︷︷ ︸
A2

+∆2


 s2

be a polynomial matrix affected by interval uncertainty

x1 ∈ [−0.6000, 0.6000] = [a1, b1]

and norm-bounded uncertainty

‖∆2‖2 ≤ γ2 = 0.3000.

We are interested in knowing whether the zeros of polynomial matrix A(s, ∆) stay
outside of the closed unit disk

DC = {s ∈ C : s?s ≤ 1}.

for all admissible uncertainty.
Defining

∆s =




sI4

x1I2

∆2




and using the construction principle described in [29], one possible LFR (2) for the
above polynomial matrix is given by

[
A0 L
R D

]
=




A0 A1 A2 B1 I2

I2 0 0 0 0
0 I2 0 0 0
0 I2 0 0 0
0 0 I2 0 0




.

Projection matrices in LMI problem (9) are as follows

Q0 =
[

I2 0 0 0 0
0 I2 0 0 0

]
P0 =

[
0 I2 0 0 0
0 0 I2 0 0

]

Q1 =
[

0 I2 0 0 0
] P1 =

[
0 0 0 I2 0

]

Q2 =
[

0 0 I2 0 0
] P2 =

[
0 0 0 0 I2

]
.

With the notation
A =

[
A0 A1 A2 B1 I2

]
,
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LMI optimization problem (9) reads

ν = min traceA?AX

s.t. F0(X) = Q0XQ?
0 − P0XP?

0 º 0

F1(X) = −2a1b1Q1XQ?
1 + (a1 + b1)(Q1XP?

1 + P1XQ?
1)− 2P1XQ?

1 º 0

F2(X) = trace (−P2XP?
2 + γ2

2Q2XQ?
2) º 0

trace

[
I2 0
0 0

]
X = 1, X = X? º 0.

With the help of the interior-point algorithm of the sdpHA package 3.0 [6] called
from the user-friendly interface Lmitool 2.0 for Matlab [8] we obtained

ν = 0.004635

as the optimal value of the above problem, with

X =

2
666666666666664

0.1562−0.3551 0.1556−0.3602 0.1539−0.3628−0.0934 0.2082 0.1116−0.0106
−0.3551 0.8438−0.3473 0.8407−0.3371 0.8316 0.2162−0.5043−0.2720 0.0205

0.1556−0.3473 0.1562−0.3551 0.1556−0.3602−0.0923 0.2021 0.1079−0.0112
−0.3602 0.8407−0.3551 0.8438−0.3473 0.8407 0.2177−0.4987−0.2683 0.0223

0.1539−0.3371 0.1556−0.3473 0.1562−0.3551−0.0906 0.1944 0.1035−0.0117
−0.3628 0.8316−0.3602 0.8407−0.3551 0.8438 0.2176−0.4895−0.2626 0.0240
−0.0934 0.2162−0.0923 0.2177−0.0906 0.2176 0.0562−0.1278−0.0687 0.0060

0.2082−0.5043 0.2021−0.4987 0.1944−0.4895−0.1278 0.3038 0.1643−0.0111
0.1116−0.2720 0.1079−0.2683 0.1035−0.2626−0.0687 0.1643 0.0889−0.0058

−0.0106 0.0205−0.0112 0.0223−0.0117 0.0240 0.0060−0.0111−0.0058 0.0011

3
777777777777775

.

In virtue of Corollary 1, ν > 0 implies that A(s,∆) has no zero within the closed
unit disk for any admissible uncertain parameters x1 and ∆2. Hence polynomial
matrix A(s, ∆) is robustly D-stable. This can be checked graphically in Figure 1,
where zeros of A(s,∆) are represented for 1000 randomly chosen admissible uncertain
parameters.

Now if we set
γ2 = 0.4000

the optimal value of LMI problem (9) is

ν = 5.2982 · 10−10 ≈ 0

for

X =

2
666666666666664

0.1423−0.3261 0.1256−0.2777 0.1357−0.3425−0.0794 0.1819 0.1212−0.0215
−0.3261 0.8577−0.2500 0.5999−0.2842 0.8230 0.1995−0.5045−0.3460 0.0319

0.1256−0.2500 0.1412−0.3250 0.1249−0.2771−0.0628 0.1345 0.0878−0.0214
−0.2777 0.5999−0.3250 0.8550−0.2497 0.5998 0.1477−0.3427−0.2293 0.0382

0.1357−0.2842 0.1249−0.2497 0.1395−0.3231−0.0705 0.1509 0.0984−0.0242
−0.3425 0.8230−0.2771 0.5998−0.3231 0.8505 0.1961−0.4639−0.3122 0.0464
−0.0794 0.1995−0.0628 0.1477−0.0705 0.1961 0.0490−0.1160−0.0781 0.0096

0.1819−0.5045 0.1345−0.3427 0.1509−0.4639−0.1160 0.3049 0.2093−0.0131
0.1212−0.3460 0.0878−0.2293 0.0984−0.3122−0.0781 0.2093 0.1477−0.0070

−0.0215 0.0319−0.0214 0.0382−0.0242 0.0464 0.0096−0.0131−0.0070 0.0087

3
777777777777775

.
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Fig. 1. Case γ2 = 0.3000. Zeros of A(s, ∆) for 1000 randomly

chosen admissible uncertain parameters x1 and ∆2.

However, Corollary 1 cannot be used to conclude about robust stability or instability
of polynomial matrix A(s,∆).

Using a trial and error method, we found that matrix A(s,∆) has an unstable
zero at s̄ = 0.9903 for the following choice of admissible uncertain parameters

x̄1 = −0.6000 ∆̄2 =
[

0.1600 −0.3600
0.0800 0.0400

]
.

The normalized vector v̄ such that (A0 + (A1 + x̄1)s̄ + (A2 + ∆̄2)s̄2)v̄ = 0 gives rises
to a vector

x =




v̄
s̄v̄
s̄2v̄
x̄1s̄v̄

∆̄2s̄
2v̄




=




−0.3785
0.9256

−0.3749
0.9166

−0.3712
0.9077
0.2249

−0.5500
−0.3862

0.0066




such that rank-one matrix X = xx′ satisfies µ = 0 in rank-constrained LMI problem
(8). In virtue of Theorem 1, uncertain polynomial matrix A(s,∆) is not robustly
D-stable.
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7. CONCLUSION

Following an idea found in [9, Chapter 1] and that can be traced back to µ-analysis
[10, 21], we have proposed a general methodology for determining whether the zeros
of a given uncertain polynomial matrix stay within a given region of the complex
plane for all admissible uncertainty. Several stability regions and uncertainty models
can be covered in a unified way. Necessary and sufficient conditions are formulated as
a rank-constrained LMI optimization problem. Sufficient robust stability conditions
are readily derived as convex LMI optimization or feasibility problems.

The main motivation behind formulating the robust stability problem as a rank-
constrained LMI problem is in that our results can be extended in various directions:

– Necessary robust stability conditions may also be obtained, using geometric
properties of the intersection of ellipsoids [14].

– The gap between necessity and sufficiency of the LMI conditions can be nar-
rowed thanks to recent results on the full-block S-procedure [24] and quadratic
separators [18, 22].

– Rank-one LMI problems are special kinds of non-convex optimization problems
for which tailored global optimization algorithms have recently been designed
[1]. Quite efficient local optimization algorithms based on successive lineariza-
tions can also be used [7], but without guarantee of convergence to the global
optimum.

– The LFR used to represent the uncertain polynomial matrix is not necessar-
ily minimal, thus problem dimensions in the LMIs can be decreased via any
(sub-optimal) LFR reduction procedure (see [15, 16] for an example of such a
procedure).

– Numerical aspects of solving the LMI conditions must also be carefully checked.
Intensive numerical experiments are currently performed and will result in
several new macros to be implemented in the next release 3.0 of the Polynomial
Toolbox for Matlab, see [23].

– Another interesting extension could eventually be to consider robust synthesis
problems and Diophantine equations over polynomial matrices [20].
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