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GENERALIZED BEZOUTIAN FOR A PERIODIC
COLLECTION OF RATIONAL MATRICES1

Carmen Coll, Rafael Bru and Vicente Hernández

We introduce the concept of periodic generalized Bezoutians associated with discrete-
time linear periodic systems or periodic rational matrices. Given a periodic collection of
rational matrices, we characterize the dimension of minimal periodic realizations by means
of the rank of the associated periodic generalized Bezoutian matrix.

1. INTRODUCTION

The usual Bezoutian matrix involves a pair of scalar polynomials and provides infor-
mation concerning coprimeness and greatest common divisor of polynomials. Helmke
and Fuhrmann [7] surveyed this theory and gave some connections with realization
problems. Anderson and Jury [1] extended the concept of Bezoutian to a quadruple
of polynomial matrices and proved that the rank of the generalized Bezoutian matrix
is equal to the McMillan degree of the transfer matrix. Other authors, Bakri [2],
Wimmer [10], studied the relationships between generalized Bezoutians and Hankel
matrices. Lerer and Tismenetsky [8], gave a natural generalization of the classical
Bezoutian matrix of two polynomials for a family of several matrix polynomials.
Gohberg and Shalom [5] defined the H-Bezoutian and T-Bezoutian, where only two
matrix polynomials are needed. The H-Bezoutian and T-Bezoutian are connected
with Hankel and Toeplitz matrices, respectively. Our goal is to extend some of these
results to discrete-time linear periodic systems.

Section 2 has a preliminary character. In Section 3 we give the notion of periodic
generalized Bezoutian of a periodic collection of rational matrices and we construct
a left (right) matrix fraction description of the rational matrix at time s from a
left (right) matrix fraction description of the rational matrix at time 0. Section 4
contains relations between the periodic Hankel and periodic Bezoutian matrices
associated with a periodic collection of rational matrices and we characterize the
dimension of minimal periodic realizations by means of the rank of the associated
periodic generalized Bezoutian matrix.

1Presented at the IFAC Workshop on System Structure and Control held in Prague on September
3–5, 1992. The research was supported by Spanish DGICYT Grant PB 91–0535.
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2. REALIZATIONS OF PERIODIC RATIONAL MATRICES

Consider the discrete-time linear N -periodic system, N ∈ Z+,

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k),

}
(1)

with A(k + N) = A(k) ∈ Rn×n, B(k + N) = B(k) ∈ Rn×m and C(k + N) = C(k) ∈
Rp×n, k ∈ Z. This system is denoted by (C(·), A(·), B(·))N . The invariant system
associated with the periodic system (1) at time s, s ∈ Z, is defined by (see [9]),

xs(k + 1) = As xs(k) + Bs us(k)

ys(k) = Cs xs(k) + Es us(k),

}
(2)

with

xs(k) = x(s + kN),
us(k) = col [u(s + kN), u(s + kN + 1), . . . , u(s + kN + N − 1)] ,
ys(k) = col [y(s + kN), y(s + kN + 1), . . . , y(s + kN + N − 1)] ,

where

As = φA(s + N, s) ∈ Rn×n,

Bs = [φA(s+N, s+1)B(s), φA(s+N, s+2)B(s+1), . . . , B(s+N−1)]∈Rn×mN ,

Cs = col [C(s), C(s+1) φA(s+1, s), . . . , C(s+N−1)φA(s+N−1, s)]∈RpN×n,

Es =
[
Es

ij

]
, Es

ij ∈ Rp×m, i, j = 1, . . . , N,

Es
ij = 0, i ≤ j,

Es
ij = C(s + i− 1) φA(s + i− 1, s + j)B(s + j − 1), i > j,

and ΦA(k, k0), k ≥ k0, is the transition matrix of (1). This system will be denoted
by (Cs, As, Bs, Es).

The transfer matrix of the periodic system (1) at time s, s ∈ Z, was defined by
Grasselli and Longhi [6] as

Gs(z) = Cs(zI −As)−1 Bs + Es ∈ RpN×mN (z). (3)

The rational matrix Gs(z) is proper with a strictly lower block-triangular poly-
nomial part. All such Gs(z) matrices constitute a ring with identity element I.

The same authors proved the following relation between the transfer matrix of
(1), at consecutive times s and s + 1

Gs+1(z) = S1,p(z)Gs(z) S−1
1,m(z), (4)

where the matrices S1,p(z), S1,m(z) are

S1,t(z) =
[

0 I(N−1)t

zIt 0

]
.
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Note that the product of two transfer matrices Gs(z)Hs(z) and the inverse G−1
s (z)

get transformed by expression (4) in the same way as Gs(z).
From the periodicity of the system (1) the invariant systems (2) satisfy

(Cs+N , As+N , Bs+N , Es+N ) = (Cs, As, Bs, Es), and therefore the transfer matri-
ces satisfy Gs+N (z) = Gs(z).

Now, we give the definition of a periodic realization of a periodic collection of
rational matrices.

Definition 1. Consider the periodic collection of rational matrices

{Hs(z), s ∈ Z} , Hs+N (z) = Hs(z) ∈ RpN×mN (z). (5)

The periodic system (C(·), A(·), B(·))N is a periodic realization of (5) if Hs(z) =
Cs(zI − As)−1 Bs + Es. The size of A(·) is called the dimension of the realization.
A periodic realization is called a minimal periodic realization if there exists no other
periodic realization having a lower dimensional state vector.

In [3] we proved the following result.

Theorem 1. The periodic collection of rational matrices given by (5) has a periodic
realization, if and only if,

Hs+1(z) = S1,p(z)Hs(z)S−1
1,m(z), (6)

and H0(z) is proper with strictly lower block-triangular polynomial part.

Remark 1. From (6) if H0(z) satisfies the above condition then Hs(z), s ∈ Z are
also proper rational matrices with strictly lower block-triangular polynomial parts.

3. PERIODIC GENERALIZED BEZOUTIAN

Consider the transfer matrix of the periodic system (1) at time s, given by (3). Let

Gs(z) = D−1
s (z)Ns(z) = Rs(z)P−1

s (z), (7)

be a left and right polynomial matrix fraction description of Gs(z), where Ds(z),
Ns(z), Rs(z) and Ps(z) are real polynomial matrices with respectively sizes pN ×
pN, pN ×mN, pN ×mN and mN ×mN , with Ds(z) and Ps(z) nonsingular. By
(7) it readily follows that Ds(z) Rs(z)−Ns(z)Rs(z) = 0. To define the generalized
Bezoutian, we construct the following nonsquare polynomial matrices

Ms(z) = [ Ds(z), −Ns(z) ] ∈ RpN×(p+m) N [z], (8)

Ls(z) =
[

Rs(z)
Ps(z)

]
∈ R(p+m) N×mN [z]. (9)

Let ks and hs be the degrees of Ms(z) and Ls(z), respectively. Note that
Ms(z)Ls(z) = 0 then the matrix Ms(λ)Ls(µ) / (λ − µ) is a polynomial matrix
in two different variables, λ and µ. Now, the definition of generalized Bezoutian
given by Gohberg and Shalom [5], allows us to establish the following definition for
a periodic linear system.



396 C. COLL, R. BRU AND V. HERNNDEZ

Definition 2. (i) The polynomial matrix given by

β(Ms, Ls, λ, µ) =
Ms(λ) Ls(µ)

λ− µ
=

ks−1∑

i=0

hs−1∑

j=0

βs
ij λi µj , (10)

with βs
ij ∈ RpN×mN is called the generalized Bezoutian associated with the periodic

system (1) at time s.
(ii) The generalized Bezoutian matrix associated with the periodic system (1) at

time s, is the block matrix

B(Ms, Ls) =




βs
00 βs

01 · · · βs
0,hs−1

βs
10 βs

11 · · · βs
1,hs−1

...
...

...
βs

ks−1,0 βs
ks−1,1 · · · βs

ks−1,hs−1


 , (11)

whose entries are the coefficients of (10).

Remark 2. (i) The generalized Bezoutian of the periodic system (1) at time s is,
by definition, the generalized Bezoutian of the invariant system (Cs, As, Bs, Es).

(ii) By the periodicity of the system (1) it follows that

β (Ms+N , Ls+N , λ, µ) = β (Ms, Ls, λ, µ) ,

B (Ms+N , Ls+N ) = B(Ms, Ls).

(iii) The generalized Bezoutian and the generalized Bezoutian matrix at time s of
the periodic collection of rational matrices (5), can be defined by analogous form. It
suffices to consider a left and right polynomial matrix fraction description of Hs(z)

Hs(z) = D−1
s (z) Ns(z) = Rs(z) P−1

s (z)

and use the expressions (8) – (11).

In the following result we prove some properties of the polynomial matrices Ss,t(z)
defined for any s ∈ Z and t = p, m as follows

Ss,t(z) =
[

0 zj I(N−i) t

zj+1 Iit 0

]
(12)

where s = jN + i, i = 0, 1, . . . , N − 1. Note that Ss,t(z) is an extension of the
polynomial matrix S1,t(z) introduced in expression (4).

Lemma 1. The polynomial matrices Ss,t(z) given by (12) satisfy the following
relations:

i) Ss+N,t(z) = z Ss,t(z), Ss−N,t(z) = z−1 Ss,t(z), s ∈ Z,
ii) Ss1+s2,t(z) = Ss1,t(z), Ss2,t(z), s1, s2 ∈ Z.
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P r o o f . (i)

Ss+N,t(z) =
[

0 zj+1 I(N−i) t

zj+2 Iit 0

]
= z

[
0 zj I(N−i) t

zj+1 Iit 0

]
= z Ss,t(z),

Ss−N,t(z)=
[

0 zj−1 I(N−i) t

zj Iit 0

]
=z−1

[
0 zj I(N−i) t

zj+1 Iit 0

]
=z−1 Ss,t(z).

(ii) Suppose s1 = j1 N + i1, s2 = j2 N + i2, i1, i2 = 0, 1, . . . , N − 1, and i1 + i2 =
j3 N + i3, j3 = 0, 1, i3 = 0, 1, . . . , N − 1. Then s1 + s2 = (j1 + j2 + j3)N + i3. By
relation (i)

Ss1,t(z)Ss2,t(z) = zj1+j2 Si1,t(z)Si2,t(z) =

= zj1+j2

[
0 I(N−i1) t

z Ii1,t 0

] [
0 I(N−i2) t

z Ii2,t 0

]
=

= zj1+j2+j3 Si3,t(z) = Ss1+s2,t(z).

2

Using the relation (4), in the following result we construct a left (right) matrix
fraction description of the transfer matrix at time s from a left( right) matrix fraction
description of the transfer matrix at time 0.

Proposition 1. If G0(z) = D−1
0 (z)N0(z) = R0(z)P−1

0 (z) is a left and right poly-
nomial matrix fraction description of the transfer matrix of (1) at time 0, then

Gs(z) = {D0(z)SN−s,p(z)}−1
N0(z)SN−s,m(z)

= Ss,p(z)R0(z) {Ss,m(z)P0(z)}−1

is a left and right polynomial matrix fraction description of the transfer matrix of
(1) at time s, s ∈ Z where Ss,t(z) is the polynomial matrix defined in (12).

P r o o f . Since the transfer matrices of the periodic system (1) satisfies, Gs+1(z) =
S1,p(z)Gs(z)S−1

1,m(z), s ∈ Z, and by property (ii) of Lemma 1 we obtain

Gs(z) = Ss
1,p(z)G0(z)S−s

1,m(z)

= Ss,p(z)G0(z)S−1
s,m(z), s ∈ Z.

From the left and right matrix fraction description of G0(z), we deduce

Gs(z) = Ss,p(z) D−1
0 (z)N0(z) S−1

s,m(z)

= Ss,p(z) R0(z)P−1
0 (z)S−1

s,m(z).

By Lemma 1, Ss,p(z)SN−s,p(z) = SN,p(z) = z S0,p(z) = z IpN , then Ss,p(z) =
z S−1

N−s,p(z). Now we obtain

Gs(z) = z S−1
N−s,p(z)D−1

0 (z)N0(z) z−1 SN−s,m(z)

= {D0(z)SN−s,p(z)}−1
N0(z)SN−s,m(z).
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Analogously, we have

Gs(z) = Ss,p(z) R0(z)P−1
0 (z)S−1

s,m(z)

= Ss,p(z) R0(z) {Ss,m(z) P0(z)}−1
.

Remark 3. From these matrix fraction descriptions, we construct the following
nonsquare polynomial matrices:

M0(z) = [ D0(z), −N0(z) ] ,

Ms(z) = [ D0(z) SN−s,p(z), −N0(z)SN−s,m(z) ] , s ∈ Z

}
(13)

L0(z) =
[

R0(z)
P0(z)

]
,

Ls(z) =
[

Ss,p(z)R0(z)
Ss,m(z) P0(z)

]
, s ∈ Z





(14)

Note that

Ms(z) = M0(z) diag (SN−s,p(z), SN−s,m(z)) ,

Ls(z) = diag (Ss,p(z), Ss,m(z)) L0(z).

}
(15)

Thus, from a matrix fraction description of the transfer matrix of (1) at time 0,
we can, by Definition 2, determine the generalized Bezoutian of the periodic system
(1) at time s, s ∈ Z.

Remark 4. All the above results remain valid for the periodic collection of rational
matrices (5), provided that the expression (6) holds.

4. MINIMAL REALIZATIONS. PERIODIC BEZOUTIAN AND HANKEL
MATRICES

Consider the periodic collection of rational matrices given by (5), Hs+N (z) = Hs(z) ∈
RpN×mN (z), s ∈ Z. In the following, we assume that this collection satisfies the
conditions of Theorem 1.

To characterize the dimension of the minimal periodic realizations of (5) by means
of the rank of the corresponding generalized periodic Bezoutian matrix, we need the
concept of Hankel matrix associated with a sequence of Markov parameters. The
(α, β)th block Hankel matrix associated with the rational matrix Hs(z) is defined
by

Hs
α,β =




Hs
0 Hs

1 Hs
2 · · · Hs

β−1

Hs
1 Hs

2 Hs
3 · · · Hs

β
...

...
...

...
Hs

α−1 Hs
α Hs

α+1 · · · Hs
α+β−2


 ∈ RαpN×βmN
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where Hs
j are the Markov parameters of Hs(z) that is

Hs(z) =
∞∑

j=0

Hs
j z−j .

By the periodicity of (5) we have that Hs+N
α,β = Hs

α,β .
It was proved that (see [3]), under the conditions of Theorem 1, the periodic

collection of rational matrices given by (5) admits the following polynomial matrix
fraction descriptions

Hs(z) = D−1
s (z) Ns(z) = Rs(z) P−1

s (z), s ∈ Z (16)

where Ds(z) = z d0(z) IpN , Ps(z) = z d0(z) ImN

Ns(z) = Ds(z) Hs(z),

Rs(z) = HS(z)Ps(z),





and d0(z) = ar zr + ar−1 zr−1 + · · · + a0, ar = 1, is the monic least common
denominator of the elements of the proper rational matrix H0(z).

Using the relation between the Hankel and the Bezoutian matrices, associated
with a rational matrix, we establish the following result for a periodic collection of
rational matrices provided that the conditions of Theorem 1 hold.

Proposition 2. The periodic generalized Bezoutian matrix and the periodic (r +
1, r + 1)th block Hankel matrix associated with the periodic collection of rational
matrices (5) satisfy the following relation

B (Ms, Ls) = T (a0 IpN , . . . , ar IpN ) Hs
r+1, r+1 T (a0 ImN , . . . , ar ImN ) ,

where T (a0 ItN , . . . , ar ItN ) is the matrix defined by

T (a0 ItN , . . . , ar ItN )=




a0 ItN a1 ItN · · · ar ItN

a1 ItN a2 ItN · · · 0
...

...
...

ar−1 ItN ar ItN · · · 0
ar ItN 0 · · · 0




.

P r o o f . Given the rational matrix Hs(z) of the collection (5), we know from (16)
that Ds(z) = ar IpN zr+1 + ar−1 IpN zr + · · ·+ a0 IpN z and Ps(z) = ar ImN zr+1 +
ar−1 ImN zr + · · · + a0 ImN z. The result is obtained by using the relation between
the Hankel and the Bezoutian matrices associated with a rational matrix, given by
Anderson and Jury [1]. 2

From this Proposition and using the characterization of minimal periodic realiz-
ations by the block Hankel matrix associated with an input-output periodic appli-
cation, given in [4], we establish the following result.



400 C. COLL, R. BRU AND V. HERNNDEZ

Theorem 2. The rank of the periodic generalized Bezoutian matrix of (5) at time
s is the dimension of the minimal periodic realizations of (5).

P r o o f . By Proposition 2, the (r + 1, r + 1)th block Hankel matrix Hs
r+1, r+1

and the periodic Bezoutian matrix at time s, are related by antidiagonal block-
triangular matrices with nonsingular antidiagonal blocks. Futher, the rank of the
block Hankel matrix is the dimension of the minimal periodic realization of the
input-output periodic application defined by the Markov parameters. Then this
property is translated to the periodic generalized Bezoutian matrix. 2

Using the relation given in [9] for the periodic block Hankel matrix at times s
and s + 1

Hs+1
r+1, r+1 AT

r+1(mN) = Ar+1(pN)Hs
r+1, r+1, s ∈ Z (17)

with

Ar+1(tN)=




S1,t(0) T1,t(0) 0tN · · · 0tN 0tN

0tN S1,t(0) T1,t(0) · · · 0tN 0tN

...
...

...
...

...
0tN 0tN 0tN · · · S1,t(0) T1,t(0)
0tN −a0 T1,t(0) −a1 T1,t(0) · · · −ar−2 T1,t(0) S1,t(−ar−1)




and

S1,t(z) =
[

0 I(n−1) t

z It 0

]
, T1,t(z) =

[
0 z I(N−1) t

It 0

]
,

where the ai’s are the coefficients of the monic least common denominator of the
elements of the proper rational matrix H0(z), d0(z)=ar zr+ar−1 zr−1+. . .a0, ar = 1,
we obtain the following result.

Proposition 3. There exists a left and a right polynomial matrix fraction de-
scription of (5) such that the associated periodic generalized Bezoutian matrix at
consecutive times s and s + 1 satisfies the following relation

AB
r+1(pN)B(Ms, Ls) = B (Ms+1, Ls+1)

{
AB

r+1(mN)
}T

, (18)

where AB
r+1(tN) is the matrix whose column (row) blocks are the row (column)

blocks of Ar+1(tN).

P r o o f . Consider the decompositions (16) and let Hs
α,β be the (α, β)th block

Hankel matrix and B(Ms, Ls) be the generalized Bezoutian matrix associated with
the rational matrix Hs(z). By Proposition 2, we have

B(Ms, Ls) = T (a0 IpN , . . . , ar IpN ) Hs
r+1, r+1T (a0 ImN , . . . , ar ImN ) ,

and

B (Ms+1, Ls+1) = T (a0 IpN , . . . , ar IpN ) Hs+1
r+1, r+1 T (a0, ImN , . . . , ar ImN ) .
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From (17) we obtain

T (a0 IpN , . . . , ar IpN ) Ar+1(pN)T−1 (a0 IpN , . . . , ar IpN ) B (Ms, Ls) =
= B (Ms+1, Ls+1) T−1 (a0 ImN , . . . , ar ImN ) AT

r+1(mN)T (a0 ImN , . . . , ar ImN ) .

To obtain the relation (18) it remains to show that

T (a0, IpN , . . . , ar IpN ) Ar+1(pN) = AB
r+1(pN)T (a0 IpN , . . . , ar IpN ) , (19)

and

AT
r+1(mN)T (a0 ImN , . . . , ar ImN ) = T (a0 ImN , . . . , ar ImN )

{
AB

r+1(mN)
}T

. (20)

Note that

T (a0 ItN , . . . , ar ItN ) Ar+1(tN) =

=




a0S1,t(0) a1S1,t(0) · · · ar−1T1,t(0) + arS1,t(−ar−1)
a1, S1,t(0) a1T1,t(0) + a2S1,t(0) · · · arT1,t(0)

...
...

...
ar−1S1,t(0) ar−1T1,t(0) + arS1,t(0) · · · 0tN

arS1,t(0) arT1,t(0) · · · 0tN




and

AB
r+1(tN)T (a0 ItN , . . . , ar ItN ) =

=




a0S1,t(0) a1S1,t(0) · · · arS1,t(0)
a1S1,t(0) a1T1,t(0) + a2S1,t(0) · · · arT1,t(0)

...
...

...
ar−1S1,t(0) ar−1T1,t(0) + arS1,t(0) · · · 0tN

arS1,t(0) arT1,t(0) · · · 0tN




.

But ar−1 T1,t(0) + arS1,t(−ar−1) = ar S1,t(0). Then expression (20)

T (a0, IpN , . . . , ar ItN ) Ar+1(tN) = AB
r+1(tN) T (a0 ItN , . . . , ar ItN ) ,

holds.
From this expression we obtain

AT
r+1(tN) {T (a0 ItN , . . . , ar ItN )}T = {T (a0 ItN , . . . , ar ItN )}T {

AB
r+1(tN)

}T

and by the symmetry of the matrix T (a0 ItN , . . . , ar ItN ) we deduce expression (21).
2

(Received March 5, 1993.)
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