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DISCRETIZATION PROBLEMS ON GENERALIZED
ENTROPIES AND R-DIVERGENCES1

L. Pardo, D. Morales, K. Ferentinos and K. Zografos

In many practical applications, data about an unknown continuous distribution arise
in a grouped form. For these cases, estimation of population entropies and divergences
must be done by means of their sample discretized estimates. In this paper, the problem of
loss of information due to the discretization of the data is studied for (h, φ)-entropies and
Rh

φ-divergences. Quadratic convergence theorems are given and asymptotic distributions
are obtained.

1. INTRODUCTION

Let (X , βX , Pθ)θ∈Θ be a statistical space, where Θ is an open subset of RM . We shall
assume that there exists a generalized probability density fθ(x) for the distribution
Pθ with respect to a σ-finite measure µ. In this context Csiszár [4], Burbea and Rao
[2] considered the φ-entropy associated with fθ(x) in the following way

Hφ(fθ) =
∫

X
φ(fθ(x)) dµ(x) (φ concave). (1)

Special choices of φ, such as φ1(t) = − t log t, φ2(t) = t − t2, φ3(t) = t− t3,
φ4(t) = t−2t2+2t3−t4, φ5(t) = −log

∫∞
0

xte−xdx, φ6(t) = (1−α)−1(tα−1), α 6=
6= 1, α > 0, φ7(t) = (1 + λ−1) log(1 + λ) − λ−1(1 + λt) log(1 + λt), λ > 0, etc.,
give rise to Shannon’s entropy, quadratic entropy, cubic entropy, genetic entropy,
gamma entropy, entropy of degree α, hypoentropy, etc. But in the literature of
Information Theory there exist other information measures, for instance, Rényi’s
entropy, Arimoto’s entropy, Sharma and Mittal’s entropies, etc., which cannot be
obtained from (1) by specially choosing φ. For this reason Salicrú, Menéndez, Pardo
and Morales [7] proposed the (h, φ)-entropy given by

Hh
φ (fθ) = h (Hφ(fθ)) (2)

where either φ : [0,∞) → R is concave and h : (−∞,∞] → (−∞,∞] increasing
and concave or φ : [0,∞) → R is convex and h : (−∞,∞] → (−∞,∞] decreasing

1This work is the result of a joint research effort under project No. STV-91-E-3025 of the
European Economic Community ERASMUS program.
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and concave. Note also that in the remaining cases, i. e., h increasing and convex
and φ convex or h decreasing and convex and φ concave, Hh

φ (fθ) plays the role
of a certainty function. In what follows, we assume that Hh

φ (fθ) is an entropy
function. In the particular but very important case where the family {Pθ : θ ∈ Θ}
is discrete, the entropies Hh

φ (fθ) defined in this manner have been considered by
many authors; e. g., Vajda and Vaek [9], where arbitrary Schur-concave entropies
H(fθ) have been studied, and other references there in. In SalicrÃL et al. [7], the
asymptotic distributions of estimates of (h, φ)-entropies under simple and stratified
random sampling from multinomial populations were obtained.

Based on the following concavity property of the (h, φ)-entropy

Hh
φ

(
fθ1 + fθ2

2

)
≥ Hh

φ (fθ1) + Hh
φ (fθ2)

2
,

Morales, Pardo, Salicrú and Menéndez [6] defined the Rh
φ-divergence between the

generalized probability densities fθ1 and fθ2 as follows

Rh
φ(fθ1 , fθ2) = h

(∫

X
φ

(
fθ1(x) + fθ2(x)

2

)
dµ(x)

)
−

−1
2

{
h

(∫

X
φ(fθ1(x))dµ(x)

)
+ h

(∫

X
φ(fθ2(x)) dµ(x)

)}
,

where θ1 = (θ11, . . . , θ1M ) and θ2 = (θ21, . . . , θ2M ). When h(x) = x, we have the
J-divergence given by Burbea and Rao [2] and if h(x) = (1−s)−1x

s−1
r−1 and φ(x) = xr,

we have the R-divergence defined by Taneja [8].
In practice the values of a continuous random variable X cannot be measured

exactly. Also, frequently continuous data are only available in a grouped form. This
means that, in the case of univariate continuous data, the sample space is partitioned
into disjoint intervals, each yielding a discrete value for X. More precisely, all values
of X such that kε− ε

2 < X ≤ kε + ε
2 are coded kε, k = 0,±1,±2, . . ., where ε > 0 is

the quantum of measurement. If X is an open subset of R, µ is the Lebesgue measure
on X and βX is the corresponding Borel σ-field on X , then the true distribution of
the discretized random variable is

pk(ε, θ) =
∫ kε+ 1

2 ε

kε− 1
2 ε

fθ(x)dx, k = 0,±1,±2, . . .

Ghurye and Johnson [5] have proved that under certain regularity conditions the
discretized Kullback-Leibler divergence

IKL
ε (fθ1 , fθ2) =

∑

k

pk(ε, θ1) log
pk(ε, θ1)
pk(ε, θ2)

differ by O(ε2) from (converges quadratically to) the theoretical Kullback–Leibler
divergence

IKL(fθ1 , fθ2) =
∫

X
fθ1(x) log

fθ1(x)
fθ2(x)

dx.
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Through this result they were able to estimate the loss of information due to the
discretization of the data. Zografos, Ferentinos and Papaioannou [10] have estab-
lished that the discretized versions of the Csiszár and Rényi divergence measures
as well as the discretized version of the Fisher information matrix converge under
certain regularity conditions quadratically to their corresponding theoretical values.
Furthermore the same result holds for the Vajda, Kagan and Matusita divergences
as well as for the affinity between two distributions.

It is well known that (h, φ)-entropies of absolutely continuous distributions cannot
be approximated by the (h, φ)-entropies of the corresponding discrete distributions;
i. e.,

εH
h
φ (fθ) = h

(∑

k

φ(pk(ε, θ))

)

does not converge to Hh
φ (fθ) as ε → 0. Furthermore, there are many classical

examples where Hh
φ (fθ) < ∞ and εH

h
φ (fθ) → ∞ as ε → 0; e. g., Shannon differ-

ential entropy Hφ(fθ) for φ(x) = −x log x, cf. Chap. 9 in Cover and Thomas [3].
Due to these problems, εH

h
φ (fθ) is not a good candidate to be used in measuring

the discretized information. Thus for these mentioned cases, some questions arise
when the observed values of the random variable are actually discrete. How do we
measure the data information? How do we measure the amount of information lost
by discretization of the data? How do we estimate theoretical (h, φ)-entropies? This
paper is motived by the desire to give an answer to these questions on the basis of
the (h, φ)-entropy measures.

From now we assume that X ⊂ R is open and all the positive functions fθ(x),
θ ∈ Θ, are continuous on X . In this case it suffices to consider φ : (0,∞) → R in
our basic definitions (1) and (2). Let Zε = {k ∈ Z/kε ∈ X}, where Z is the set
of integer numbers and X = S(fθ) = {x ∈ R/fθ(x) > 0}. We propose to estimate
Hh

φ (fθ) by the following expression

Hε
(h,φ)(fθ) = h

(
ε

∑

k∈Zε

φ

(
pk(ε, θ)

ε

))
, (3)

which is motived by the fact that

Hε
φ(fθ) = ε

∑

k∈Zε

(
pk(ε, θ)

ε

)

is an approximate Riemann sum associated with the Riemann integral
∫

X
φ(f(x)) dx.

This discretization is based on the one proposed by Csiszár [4] for φ-entropies.
Csiszár proved that under some general conditions Hφ(fθ) can be approximated
by its corresponding discretization. He proved that for every α > Hφ(fθ) there
exists ε > 0 such that Hφ(fθ) ≤ Hε

φ(fθ) < α.
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Remark 1.1. Ghurye and Johnson [5] and Zografos, Ferentinos and Papaioannou
[10] measured the discretized information by means of the divergence between the
discretized distributions. For the measures which they studied, this is equal to
approximate Riemann sums associated with the corresponding divergences between
the absolutely continuous distributions; e. g., for the Kullback-Leibler information,
IKL(fθ1 , fθ2), the divergence between the discretized distributions is IKL

ε (fθ1 , fθ2).
However, as fθ1(kε) ∼= pk(ε,θ)

ε and fθ2(kε) ∼= qk(ε,θ)
ε , the corresponding Riemann sum

associated to IKL(fθ1 , fθ2) is

IKL,ε(fθ1 , fθ2) = ε
∑

k∈Zε

fθ1(kε) log
fθ1(kε)
fθ2(kε)

,

which is approximately equal to IKL
ε (fθ1 , fθ2). This is not the case when we deal

with φ-entropies or (h, φ)-entropies.
Discrete approximations to the Rh

φ-divergence are defined as follows

Rε
(h,φ)(fθ1 , fθ2) = Hε

(h,φ)

(
fθ1 + fθ2

2

)
− 1

2
Hε

(h,φ)(fθ1)− 1
2
Hε

(h,φ)(fθ2). (4)

In this paper we deal with a new problem; i. e., we examine the rate of conver-
gence of Hε

(h,φ)(fθ) and Rε
(h,φ)(fθ1 , fθ2). We establish that these discretized versions

converge under certain regularity conditions quadratically to their corresponding
theoretical values; i. e., to Hh

φ (fθ) and Rh
φ(fθ1 , fθ2) respectively. Finally by using

asymptotic distributions, the problem of estimating theoretical entropies and diver-
gences through discretized data is also studied.

2. QUADRATIC CONVERGENCE OF Hh
φ -ENTROPIES AND Rh

φ-DIVER–
GENCES

In this section we are going to establish that under suitable conditions Hε
(h,φ)(fθ)

and Rε
(h,φ)(fθ1 , fθ2) differ by O(ε2) from Hh

φ (fθ) and Rh
φ(fθ1 , fθ2) respectively as

ε → 0; i. e.,

Hh
φ (fθ)−Hε

(h,φ)(fθ)

ε2
and

Rh
φ(fθ1 , fθ2)−Rε

(h,φ)(fθ1 , fθ2)

ε2

have a finite limite as ε → 0. Theorem 2.1 establishes the quadratic convergence to
the (h, φ)-entropies and its corollary the quadratic convergence to the Rh

φ-divergences.
If we write f ∈ Ci(A) to denote that the real valued function f has a continuous ith
derivative on the set A, then we obtain the following result.

Theorem 2.1. Under the assumptions listed below as regularity conditions, we
have

lim
ε→0

Hh
φ (fθ)−Hε

(h,φ)(fθ)

ε2
=

1
48

h′
(∫

X
φ(fθ(x)) dx

) ∫

X
φ′′(fθ(x)) f ′θ(x)2dx (5)

Regularity conditions:
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(i)
∫
X |φ(fθ(x))|dx < ∞,

(ii) fθ ∈ C2(X ), φ ∈ C2((0,∞)) and h ∈ C1(R).

(iii) φ′′(fθ(x)) f ′θ(x)2 and φ′(fθ(x)) f ′′θ (x) are Riemann integrable on X .

(iv) If νε,k, zε,k, wε,k ∈
[(

k − 1
2

)
ε,

(
k + 1

2

)
ε
]
, then

(a) lim
ε→0

ε
∑

k∈Zε

φ′′(fθ(zε,k)) (f ′θ(zε,k)2 =
∫
X φ′′(fθ(x)) (f ′θ(x))2 dx

(b) lim
ε→0

ε
∑

k∈Zε

φ′(fθ(νε,k) f ′′θ (wε,k) =
∫
X φ′(fθ(x)) (f ′′θ (x))2 dx.

P r o o f . A Taylor’s expansion of h

(
ε

∑
k∈Zε

φ
(

pk(ε,θ)
ε

))
around the point

∫
X φ(fθ(x)) dx yields

Hh
φ (fθ)−Hε

(h,φ)(fθ) = h′
(∫

X
φ(fθ(x)) dx

) (∫

X
φ(fθ(x)) dx−

∑

k∈Zε

εφ

(
pk(ε, θ)

ε

))
+

+o

( ∑

k∈Zε

εφ

(
pk(ε, θ)

ε

)
−

∫

X
φ(fθ(x)) dx

)
.

Therefore

lim
ε→0

Hh
φ (fθ)−Hε

(h,φ)(fθ)

ε2
=h′

(∫

X
φ(fθ(x)) dx

)
lim

ε→∞

∫
X φ(fθ(x)) dx− ∑

k∈Zε

εφ
(

pk(ε,θ)
ε

)

ε2
.

First, we calculate the difference

∫

X
φ(fθ(x)) dx−

∑

k∈Zε

εφ

(
pk(ε, θ)

ε

)
=

∑

k∈Zε

(∫ kε+ 1
2 ε

kε− 1
2 ε

φ(fθ(x)) dx− εφ

(
pk(ε, θ)

ε

))
.

Observe that if
∫ kε+a

kε−a
φ(fθ(x)) dx = F (kε + a)− F (kε− a), then

F (kε + a) = F (kε) + φ(fθ(kε)) a + φ′(fθ(kε)) f ′θ(kε)
a2

2
+

+
{
φ′′(fθ(zε,k)) f ′θ(zε,k)2 + φ′(fθ(zε,k)

} a3

6
.

So, by taking a = ε
2 , we obtain

∫ kε+ 1
2 ε

kε− 1
2 ε

φ(fθ(x)) dx = φ(fθ(kε)) ε +
1
24

{
φ′′(fθ(zε,k)) f ′(zε,k)2+

+φ′(fθ(zε,k)) f ′′θ (zε,k)} ε3. (6)
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A Taylor’s expansion of φ
(

pk(ε,θ)
ε

)
around the point fθ(kε) yields

φ

(
pk(ε, θ)

ε

)
= φ(fθ(kε)) +

(
pk(ε, θ)

ε
− fθ(kε)

)
φ′(r),

with r a point belonging to the interval determined by the points fθ(kε) and pk(ε, θ)/ε.
In fact, since fθ(x) is continuous in all

[
(k − 1

2 )ε, (k + 1
2 )ε

]
, ε > 0, k ∈ Zε we

can easily see that there exists a point wε,k ∈ [
(k − 1

2 )ε, (k + 1
2 )ε

]
, such that

r = fθ(wε,k).
Taking φ(x) = x in (6), for νε,k ∈

[(
k − 1

2

)
ε,

(
k + 1

2

)
ε
]
, we have

pk(ε, θ) = ε fθ(kε) +
ε3

24
f ′′θ (νε,k).

Then
φ

(
pk(ε, θ)

ε

)
= φ(fθ(kε)) +

ε2

24
f ′′θ (νε,k) φ′(fθ(wε,k)).

Therefore, we obtain
∫ kε+ 1

2 ε

kε− 1
2 ε

φ(fθ(x)) dx− φ

(
pk(ε, θ)

ε

)
ε =

ε2

24
{
φ′′(fθ(zk,ε) f ′θ(zk,ε)2+

+φ′(fθ(zk,ε) f ′′(zk,ε)− f ′′θ (νε,k) φ′(fθ(wε,k))}
and finally

lim
ε→0

Hh
φ (fθ)−Hε

(h,φ)(fθ)

ε2
=

1
48

h′
(∫

X
φ(fθ(x)) dx

) ∫

X
φ′′(fθ(x)) f ′θ(x)2 dx.

Remark 2.1. The regularity conditions for this theorem are essentially the same
as those of Ghurye and Johnson [5], except that the convexity of fθ on the tails of
S(fθ) is not required. Conditions (i) – (iii) are fairly easy to check. For condition
(iv), Lemmas 1, 2 and 3 of [5] are applicable. The requirement that the functions f1

and f2 used in these lemmas should be positive valued at the tails of their domains
of definition may be relaxed to the requirement that it should not change sign at
these tails as has been shown by Zografos, Ferentinos and Papaioannou [1].

Remark 2.2. Let ∆ be the right hand side expression of (5), which is negative
because of the conditions assumed on h and φ, i. e., (increasing, concave) or (de-
creasing, convex). It is immediate to obtain ∆ for several discretized versions of
entropy measures. For instance, if we consider h(x) = x and φ(x) = −x log x, we
have the discretized version of Shannon’s entropy and in this case −∆ is given by

1
48

∫

X

(
∂ log fθ(x)

∂x

)2

fθ(x) dx =
1
48

Eθ

((
∂ log fθ(X)

∂x

)2
)

,

which is Fisher’s information number for fθ(x).
In the following table we present some examples:
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Distribution Family −∆
Gamma Family (α > 2, λ > 0) λ2/(48(α− 2))
Normal Family (µ ∈ R, σ > 0) (48σ2)−1

Beta Family (α > 2, β > 2) ((α + β − 1) (α + β − 2) (α + β − 4))/(48(α− 2) (β − 2))

Note that for the Normal family, −∆ is proportional to the inverse of the vari-
ance. In the remaining cases −∆ is approximately proportional to the inverse of the
variance.

In a similar way to the previous theorem, if we suppose that the supports of the
generalized density functions fθ1 and fθ2 are such that S(fθ1) = S(fθ2) = X ⊂ R
is an open set, then we obtain that the rate of convergence of the discrete approxi-
mation to the Rh

φ-divergence is quadratic.

Corollary 2.1. Under a straightforward extension of the regularity conditions
given in Theorem 2.1, to fθ1 , fθ2 and fθ1 + fθ2 , we have

∆∗ = lim
ε→0

Rh
φ(fθ1 , fθ2)−Rε

(hφ)(fθ1 , fθ2)

ε2
=

=
1
24

{
h′

(∫

X
φ

(
fθ1(x) + fθ2(x)

2

)
dx

)
·

·
∫

X
φ′′

(
fθ1(x) + fθ2(x)

2

)(
f ′θ1

(x) + f ′θ2
(x)

2

)2

dx−

−1
2
h′

(∫

X
φ(fθ1(x)) dx

) ∫

X
φ′′(fθ1(x)) f ′θ1

(x)2 dx−

−1
2
h′

(∫

X
φ(fθ2(x)) dx

) ∫

X
φ′′(fθ2(x)) f ′θ2

(x)2 dx

}
.

Remark 2.3. If we consider h(x) = x and φ(x) = −x log x, i. e., for the Informa-
tion Radius, then we obtain that ∆∗ is given by

1
48

{
Eθ1

((
∂ log fθ1(X)

∂x

)2

−
(

∂ log fθ1(X) + fθ2(X))
∂x

))
+

Eθ2

((
∂ log fθ2(X)

∂x

)2

−
(

∂ log fθ1(X) + fθ2(X))
∂x

))}
.

3. ON ESTIMATING THEORETICAL ENTROPIES AND DIVERGENCES
THROUGH DISCRETIZED DATA. NONPARAMETRIC APPROACH.

In the previous discretization scheme, the amount of information lost due to dis-
cretization or grouping of the data is given by

D(ε) = Hh
φ (f)−Hε

(h,φ)(f) or B(ε) = Rh
φ(f1, f2)−Rε

(h,φ)(f1, f2)

for the case of entropies or R-divergences respectively. If f and f1 or f2 are unknown
but grouped data are available from them, which is the case of many practical appli-
cations, then we can use statistical methods to estimate Hh

φ (f) and/or Rh
φ(f1, f2).



452 L. PARDO, D. MORALES, K. FERENTINOS AND K. ZOGRAFOS

We consider two possibilities depending whether X is bounded or not. Let us first
suppose that X = (a, b), where kε − ε

2 < a < kε + ε
2 and (k + K − 1)ε − ε

2 < b <
(k + K − 1)ε + ε

2 for some k ∈ Zε and some K ∈ N; i. e., we have K classes with
probabilities

p1(ε) =
∫ kε+ 1

2 ε

a

fθ(x) dx, pK(ε) =
∫ b

(k+K−1)ε− 1
2 ε

fθ(x) dx

and
pj(ε) =

∫ jε+ 1
2 ε

jε− 1
2 ε

fθ(x) dx, j = 2, . . . , K − 1. (7)

To estimate Hh
φ (f) on the basis of a discretized random sample of size n from f ,

we define the discretized sample estimate as follows:

Hε
(h,φ)(P̂ ) = h


ε

K∑

j=1

φ

(
p̂j(ε)

ε

)


where P̂ = (p̂1(ε), . . . , p̂K(ε))t and p̂j(ε) is the relative frequence associated to the
probability pj(ε). Let us also define

Hε
(h,φ)(P ) = Hε

(h,φ)(f) = h


ε

K∑

j=1

φ

(
pj(ε)

ε

)
 ,

where P = (p1(ε), . . . , pK(ε))t.
The following theorem gives the asymptotic distribution of Hε

(h,φ)(P̂ ).

Theorem 3.1. If h ∈ C1(R) and Φ ∈ C1((0,∞)), then

n1/2
(
Hε

(n,φ)(P̂ )−Hε
(n,φ)(P )

)
L−→

n→∞
N(0, σ2),

where

σ2 =
K∑

i=1

w2
i pi(ε)−

(
K∑

i=1

wi pi(ε)

)2

and

wi =
∂Hε

(h,φ)(P )

∂pi(ε)
= h′


ε

K∑

j=1

φ

(
pj(ε)

ε

)
 φ′

(
pi(ε)

ε

)
.

P r o o f . We consider the Taylor expansion of Hε
(h,φ)(P̂ ) around the point P

Hε
(h,φ)(P̂ ) = Hε

(h,φ)(P ) +
K∑

i=1

∂Hε
(h,φ)(P )

∂pi(ε)
(p̂i(ε)− pi(ε)) + Rn.

As n1/2Rn
L−→

n→∞
0, applying the Central Limit Theorem, we conclude that

n1/2
[
Hε

(h,φ)(P̂ )−Hε
(h,φ)(P )

]
L−→

n→∞
N(0,W tΣP W ),
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where ΣP = diag(P )− P P t and W = (w1, . . . , wK)t. 2

Now we consider the loss due to estimating the theoretical (h, φ)- entropy through
discretized data; i. e., D̃(ε) = Hh

φ (f)−Hε
(h,φ)(P̂ ) · D̃(ε) is still an unknown quantity,

but we know that

D(ε)− D̃(ε) =
(
Hh

φ (f)−Hε
(h,φ)(P )

)
−

(
Hh

φ (f)−Hε
(h,φ)(P̂ )

)
=

= Hε
(h,φ)(P̂ )−Hε

(h,φ)(P ),

whose asymptotic distribution is given in Theorem 3.1. So, a (1 − α) 100 % large
sample confidence interval for D(ε)− D̃(ε), is

(
−zα/2

σ̂

n1/2
, zα/2

σ̂

n1/2

)
,

where σ̂ is obtained by replacing pk(ε) by p̂k(ε) in Theorem 3.1. Finally, if σ̂ is
“small”, then D(ε) ≈ D̃(ε) and as D(ε) ≈ ε2∆ is also “small”, so is D̃(ε).

Now we treat the case where X is an open and not bounded interval of R. For any
c > 0, let us define the open interval (a, b) = X ∩ (−c, c), where kε− ε

2 < a < kε + ε
2

and (k + K − 1)ε − ε
2 < b < (k + K − 1)ε + ε

2 for some k ∈ Zε and some K ∈ N;
i. e., we have K classes whose probabilities pi(ε), i = 2, . . . , K − 1, are given in (7)
and the remaining probabilities are

p1(ε) =
∫ kε+ 1

2 ε

−∞
fθ(x) dx and pK(ε) =

∫ +∞

(k+K−1)ε− 1
2 ε

fθ(x) dx.

Let us also define

Hε,c
(h,φ)(P̂ ) = h


ε

K∑

j=1

φ

(
p̂j(ε)

ε

)
 .

where P̂ = (p̂1(ε), . . . , p̂K(ε))t is the relative frequence vector associated to the
probability vector P = (p1(ε), . . . , pK(ε))t. So Theorem 3.1 can be applied to obtain
the asymptotic distribution of n1/2

(
Hε,c

(h,φ)(P̂ )−Hε,c
(h,φ)(P )

)
.

Now we consider the loss due to estimating the theoretical (h, φ)-entropy through
truncated discretized data; i. e., D̃c(ε) = Hh

φ (f)−Hε,c
(h,φ)(P̂ ).D̃c(ε) is still an unknown

quantity, but we know that

D(ε)− D̃(ε) = Hε,c
(h,φ)(P̂ )−Hε

(h,φ)(P ).

If we now suppose that for a sufficiently small η > 0, there exist a c > 0 such that∣∣∣Hε,c
(h,φ)(P )−Hε

(h,φ)(P )
∣∣∣ < η, then a (1 − α) 100 % large sample confidence interval

for D(ε)− D̃c(ε), is (
−η − zα/2

σ̂

n1/2
, η + zα/2

σ̂

n1/2

)
,

where σ̂ is obtained by replacing pk(ε) by p̂k(ε) in Theorem 3.1. Finally, if σ̂ and η
are “small”, then D(ε) ≈ D̃c(ε) and as D(ε) ≈ ε2∆ is also “small”, so is D̃c(ε).
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To estimate Rh
φ(f1, f2), we consider two possibilities when X1 = X2 = (a, b) :

(1) f1 unknown, (2) f1 and f2 unknown. If (a, b) is partitioned in K disjoint
intervals, let us define according to (7) pi(ε) and qi(ε), i = 1, . . . ,K, to be the
corresponding probabilities under f1 and f2 respectively. Let us consider the prob-
ability vectors P = (p1(ε), . . . , pK(ε))t and Q = (q1(ε), . . . , qK(ε))t and the relative
frequency vectors P̂ = (p̂1(ε), . . . , p̂K(ε))t and Q̂ = (q̂1(ε), . . . , q̂K(ε))t when inde-
pendent discretized random samples of sizes n and m are observed from f1 and f2

respectively. Let us also define Rε
(h,φ)(P, Q) = Rε

(h,φ)(f1, f2) and

Rε
h,φ(P̂ , Q) = Hε

(h,φ)

(
P̂ + Q

2

)
− 1

2
Hε

(h,φ)(P̂ )− 1
2
Hε

(h,φ)(Q)

when f1 is unknown, and

Rε
h,φ(P̂ , Q̂) = Hε

(h,φ)

(
P̂ + Q̂

2

)
− 1

2
Hε

(h,φ)(P̂ )− 1
2
Hε

(h,φ)(Q̂)

when both f1 and f2 are unknown. In an analogous way to the case of Hh
φ (f), one

obtains the following theorem.

Theorem 3.2. (a) If h ∈ C1(R) and Φ ∈ C1((0,∞)), then

n1/2
(
Rε

(h,φ)(P̂ , Q)−Rε
(h,φ)(P,Q)

)
L−→

n→∞
N(0, σ2

1),

where

σ2
1 =

K∑

i=1

t2i pi(ε)−
(

K∑

i=1

ti pi(ε)

)2

and

ti = −1
2
h′


ε

K∑

j=1

φ

(
pj(ε)

ε

)
φ′

(
pi(ε)

ε

)
+

+
1
2
h′


ε

K∑

j=1

φ

(
pj(ε) + qj(ε)

2ε

)
 φ′

(
pi(ε) + qi(ε)

2ε

)
.

(b) If m
n+m

L−→
n→∞

λ ∈ (0, 1), then

(
mn

n + m

)1/2 (
Rε

(h,φ)(P̂ , Q̂)−Rε
(h,φ)(P, Q)

)
L−→

n→∞
N(0, σ2),
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where σ2 = λσ2
1 + (1− λ) σ2

2 , σ2
2 =

∑K
i=1 s2

i qi(ε)−
(∑K

i=1 si qi(ε)
)2

,

si = −1
2
h′


ε

K∑

j=1

φ

(
qj(ε)

ε

)
 φ′

(
qi(ε)

ε

)
+

+
1
2
h′


ε

K∑

j=1

φ

(
pj(ε) + qj(ε)

2ε

)
 φ′

(
pi(ε) + qi(ε)

2ε

)

and n and m are the sizes of the samples of f1 and f2 respectively.

Remark 3.1. For the case h(x) = x and φ(x) = x log x, i. e., for the Information
Radius, we get

ti =
1
2

log
pi(ε)

pi(ε) + qi(ε)
and si =

1
2

log
qi(ε)

pi(ε) + qi(ε)
.

Now, the loss due to estimating the theoretical Rh
φ-divergence through discretized

data is
B̃1(ε) = Rh

φ(f1, f2)−Rε
(h,φ)(P̂ , Q)

if f1 is unknown, and

B̃2(ε) = Rh
φ(f1, f2)−Rε

(h,φ)(P̂ , Q̂)

if f1 and f2 are unknown.

Asymptotic distributions of B(ε)− B̃1(ε) and B(ε)− B̃2(ε) are given in Theorem
3.2. So, (1−α) 100 % large sample confidence intervals for B(ε)− B̃1(ε) and B(ε)−
B̃2(ε), are

(
−zα/2

σ̂1

n1/2
, zα/2

σ̂1

n1/2

)
and


−zα/2

σ̂
(

m n
n+m

)1/2
, zα/2

σ̂
(

m n
n+m

)1/2


 ,

where σ̂1 and σ̂ are obtained by replacing pk(ε) and/or qk(ε) by p̂k(ε) and q̂k(ε)
respectively in Theorem 3.2. Finally, the case of unbounded support can be treated
as in the entropy case and the same considerations can be given.

4. ON ESTIMATING THEORETICAL ENTROPIES AND DIVERGENCES
THROUGH DISCRETIZED DATA. PARAMETRIC APPROACH

In Section 3, the problem of estimating theoretical entropies and divergences through
discretized data was treated when f and f1 or f2 could not be included in any
parametric family of distributions. In this section, we again consider a statistical
space (X , βX , Pθ)θ∈Θ, where X is an open subset of R, Θ is an open subset of RM

and fθ and fθ1 or fθ2 are the Radon–Nikodym derivatives of Pθ and Pθ1 or Pθ2 with
respect to the Lebesgue measure in (X , βX ).
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In the previous discretization scheme, where {Pθ}θ∈Θ is a well known family
of probability functions (Gammma, Normal, Beta,. . .) and only discretized data is
available, it seems more reasonable to estimate Hh

φ (θ) = Hh
φ (fθ) and Rh

φ(θ1, θ2) =
Rh

φ(fθ1 , fθ2) better by means of Hh
φ (θ̃) and Rh

φ(θ̃1, θ̃2), where θ̃, θ̃1 and θ̃2 are the
maximum likelihood estimators (M.L.E.) of θ, θ1 and θ2 respectively based on the
available discretized data, than by means of Hε,c

(h,φ)(P̂ ) and Rε,c
(h,φ)(P̂ , Q̂).

In this section we first develop a general notation useful for discussing a variety of
issues that arise in testing and estimation for the multinomial distribution. Let X =
(X1, . . . , XK)t be a K-dimentional random vector with the multinomial distribution
X

d= MK(n, P ), where P = (p1, . . . , pK)t is a vector of cell probabilities and n =∑K
i=1 Xi. We let ∆K be the set of all possible K-dimensional probability vectors;

i. e.,

∆K =

{
P ∈ RK : pi ≥ 0, i = 1, . . . , K,

K∑

i=1

pi = 1

}
.

The vector of observed proportions P̂ = n−1X is also a point of ∆K . There exist
a function g(θ) that maps each value of a vector θ = (θ1, . . . , θM )t into a point in
∆K . When we assume that a given multinomial parametric model is correct, we are
really just assuming that there exist a parameter value θ0 in Θ such that the true
cell probability vector verifies P = g(θ0). In this section we assume the following
six regularity conditions given by [1]:

1. The point θ0 is an interior point of Θ.
2. pi = gi(θ0) > 0 for i = 1, . . . , K.
3. The mapping g : Θ → ∆K is totally differentiable at θ0, so that the partial

derivatives of gi with respect to each θj exists at θ0 and g(θ) has a linear
approximation at θ0 given by

gi(θ) = gi(θ0) +
M∑

j=1

(θj − θ0
j )

∂gi(θ0)
∂θj

+ o
(‖θ − θ0‖) .

as θ → θ0.
4. The Jacobian matrix

(
∂g
∂θ

)
, whose (i, j) element is ∂gi(θ

0)
∂θj

, is of full rank; i. e.,
rank M .

5. The inverse mapping g−1 : Θ → ∆K is continuous at g(θ0) = p.
6. The mapping g : Θ → ∆K is continuous at every point θ in Θ.

Birch in [1] gives the asymptotic distribution of the M.L.E. θ̃ based on the dis-
cretized data. This is given in the next theorem.

Theorem 4.1. Under conditions 1 – 6 and assuming that P = g(θ0), the asymp-
totic distribution of θ̃ is given by

n1/2(θ̃ − θ)
L−→

n→∞
N(0, (At A)−1),
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where AK×M = diag
(
g(θ0)−1/2

) (
∂g(θ0)

∂θ

)
.

From Theorem 4.1, we obtain the asymptotic distributions of Hh
φ (θ̃) and Rh

φ(θ̃1, θ̃2).

Theorem 4.2. Under conditions 1 – 6, if θ is the true value of the parameter,
fθ ∈ C1(X ), h ∈ C1(R), φ ∈ C1((0,∞)) and

∣∣∣ ∂
∂θ1

φ(fθ(x))
∣∣∣ < Φ(x), where Φ is

finitely integrable in X , then

n1/2
[
Hh

φ (θ̃)−Hh
φ (θ)

]
L−→

n→∞
N(0, σ2),

where σ2 = T t(At A)−1 T, T = (t1, . . . , tm)t and

ti =
∂Hh

φ (θ)
∂θi

= h′
(∫

X
φ(fθ(x)) dx

) ∫

X
φ′(fθ(x))

∂fθ(x)
∂θi

dx, i = 1, . . . , M.

P r o o f . We consider the Taylor expansion of Hh
φ (θ̃) around the point θ

Hh
φ (θ̃) = Hh

φ (θ) + T t(θ̃ − θ) + Rn.

Due to the fact that n1/2Rn converges in probability to 0 when n → ∞, one gets
the result. 2

Now we consider the loss due to estimating the theoretical (h, φ)-entropies through
discretized data under a parametric model assumption. First we suppose that
X = (a, b), where kε− ε

2 < a < kε + ε
2 and (k + K − 1)ε− ε

2 < b < (k + K − 1)ε + ε
2

for some k ∈ Zε and some K ∈ N; i. e., we have K classes whose probabilities
pi(ε), i = 1, . . . , K, are given in (7). In this case D∗(ε) = Hh

φ (θ)−Hh
φ (θ̃), where θ̃ is

the M.L.E. of θ based on the multinomial model with P = (p1(ε), . . . , pK(ε))t. As
the asymptotic distribution of D∗(ε) is given in Theorem 4.2, a (1− α) 100 % large
sample confidence interval for D∗(ε) is

(
−zα/2

σ̂

n1/2
, zα/2

σ̂

n1/2

)
,

where σ̂ is obtained by replacing θ by θ̃ in Theorem 4.2.
For the case that X is an open and not bounded interval of R, we suppose that for

any η > 0, there exist a c > 0 such that X∩(−c, c) = (a, b) and |cHφ
h (θ)−Hφ

h (θ)| < η,
where

cHh
φ(θ) = h

(∫ b

a

φ(fθ(x)) dx

)
.

So, as in Section 3, a (1 − α) 100 % large sample confidence interval for D∗
c (ε) =

Hφ
h (θ)− cHφ

h(θ̃), is (
−η − zα/2

σ̂

n1/2
, η + zα/2

σ̂

n1/2

)
,

where σ̂ is obtained by replacing θ by θ̃ in Theorem 4.2.
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To estimate Rh
φ(θ1, θ2), we consider two possibilities when X1 = X2 = (a, b) :

(1) θ1 unknown, (2) θ1 and θ2 unknown. If (a, b) is partitioned in K disjoint
intervals, let us define according to (7) pi(ε) and qi(ε), i = 1, . . . , K, to be the cor-
responding probabilities under fθ1 and fθ2 respectively. Let us consider the prob-
ability vectors P = (p1(ε), . . . , pK(ε))t and Q = (q1(ε), . . . , qK(ε))t and also the
relative frequency vectors P̂ = (p̂1(ε), . . . , p̂K(ε))t and Q̂ = (q̂1(ε), . . . , q̂K(ε))t when
independent discretized random samples of sizes n and m are observed from fθ1 and
fθ2 respectively. Let us define θ1 = (θ11, . . . , θ1M ), θ2 = (θ21, . . . , θ2M ),

AK×M = diag
(
g(θ1)−1/2

) (
∂g(θ1)
∂θ1

)
, BK×M = diag

(
g(θ2)−1/2

) (
∂g(θ2)
∂θ2

)
,

Rh
φ(θ̃1, θ2) =Hh

φ

(
θ̃1 + θ2

2

)
− 1

2
Hh

φ (θ̃1)− 1
2
Hh

φ (θ2),

when θ1 is unknown, and

Rh
φ(θ̃1, θ̃2) = Hh

φ

(
θ̃1 + θ̃2

2

)
− 1

2
Hh

φ (θ̃1)− 1
2
Hh

φ (θ̃2),

when both θ1 and θ2 are unknown. Let us also define T = (t1, . . . , tM )t and
S = (s1, . . . , sM )t with

ti =
1
2

{
h′

(∫

X
φ(fθ1(x)) dx

)(∫

X
φ′(fθ1(x))

∂fθ1(x)
∂θ1i

dx

)
−

− h′
(∫

X
φ

(
fθ1(x) + fθ2(x)

2

)
dx

)(∫

X
φ′

(
fθ1(x) + fθ2(x)

2

)
∂fθ1(x)

∂θ1i
dx

)}
,

and

si =
1
2

{
h′

(∫

X
φ(fθ2(x)) dx

)(∫

X
φ′(fθ2(x))

∂fθ2(x)
∂θ2i

dx

)
−

− h′
(∫

X
φ

(
fθ1(x) + fθ2(x)

2

)
dx

)(∫

X
φ′

(
fθ1(x) + fθ2(x)

2

)
∂fθ2(x)

∂θ2i
dx

)}
.

In an analogous way to the case of Hh
φ (θ), one obtains the following theorem.

Theorem 4.3. Let θ̃1 and θ̃2 be the M.L.E. of θ1 and θ2 based on independent
discretized samples of size n and m respectively. Let us suppose that conditions
1 – 6 hold, θ1 and θ2 are the true values of the parameter for f1 and f2 respectively,
fθi ∈ C1(X ), i = 1, 2, h ∈ C1(R), φ ∈ C1((0,∞)) and

∣∣∣ ∂
∂θij

φ(fθi(x))
∣∣∣ < Φ(x)

and
∣∣∣ ∂
∂θij

φ
(

fθ1 (x)+fθ2 (x)

2

)∣∣∣ < Φ(x), i = 1, 2, j = 1, . . . , M , where Φ(x) is finitely
integrable in X .
(a) If θ2 is known, then

n1/2
(
Rh

φ(θ̃1, θ2)−Rh
φ(θ1, θ2)

)
L−→

n→∞
N

(
0, T t(At A)−1 T

)
.
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(b) If m
n+m

L−→
n,m→∞

λ ∈ (0, 1), then

(
mn

n + m

)1/2 (
Rh

φ(θ̃1, θ̃2)− εR
h
φ(θ1, θ2)

)
L−→

n→∞

L−→
n→∞

N
(
0, λT t(At A)−1 T + (1− λ) St(Bt B)−1 S

)
.

Remark 4.1. For the case h(x) = x and φ(x) = x log x, i. e., for the Information
Radius, we get

ti =
∫

X

1
2

∂fθ1(x)
∂θ1i

log
2 fθ1(x)

fθ1(x) + fθ2(x)
dx

and

si =
∫

X

1
2

∂fθ2(x)
∂θ2i

log
2 fθ2(x)

fθ1(x) + fθ2(x)
dx.

Now, the loss due to estimating the theoretical Rh
φ-divergence through discretized

data is
B∗

1(ε) = Rh
φ(θ1, θ2)−Rh

φ(θ̃1, θ2)

if θ1 is unknown, and

B∗
2(ε) = Rh

φ(θ1, θ2)−Rh
φ(θ̃1, θ̃2)

if θ1 and θ2 are unknown.
Asymptotic distributions of B∗

1(ε) and B∗
2(ε) are given in Theorem 4.3. So,

(1− α) 100 % large sample confidence intervals for B∗
1(ε) and B∗

2(ε) are

(
−zα/2

σ1

n1/2
, zα/2

σ1

n1/2

)
and


−zα/2

σ̂
(

m n
n+m

)1/2
, zα/2

σ̂
(

m n
n+m

)1/2


 ,

where σ̂1 and σ̂ are obtained by replacing θ1 and/or θ2 by θ̃1 and θ̃2 respectively in
Theorem 4.3. Finally, the case of unbounded support can be treated as in the entropy
case and the same considerations can be given. Now, we give some applications to
testing statistical hypotheses.

Remark 4.2. The previous results giving the asymptotic distribution of the Rh
φ-

divergence statistics in random sampling can be used in various settings to construct
confidence intervals and to test statistical hypotheses based on one or more samples.
We give some examples.
(1) To test the hypothesis that the divergence between θ and θ0, a predicted value
of θ available beforehand to the experimenter, is of a certain magnitude R0, i. e.,
H0 : Rh

φ(θ, θ0) = R0, we can use the statistic

Z =
n1/2

(
Rh

φ(θ̃, θ0)−R0

)

σ̂
,
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which has approximately a standard normal distribution under H0 for sufficiently
large n, and σ̂ is obtained from Theorem 4.3 by replacing θ by its maximum likelihood
estimator θ̃ in (T t(AtA)−1T )1/2.
(2) To test the hypothesis that the divergence between θ1 and θ2 is of a certain
magnitude R0, i. e., H0 : Rh

φ(θ1, θ2) = R0 , we can use the statistic

Z ′ =
(

m n

n + m

)1/2
(

Rh
φ(θ̃1, θ̃2)−R0

σ̂

)
,

which has approximately a standard normal distribution under H0 for sufficiently
large n and m , and σ̂ is obtained from Theorem 4.3 by replacing λ by m

n+m and θ1

and θ2 by their maximum likelihood estimators θ̃1 and θ̃2 in λ T t(AtA)−1T+
(1− λ)St(BtB)−1S.

(Received September 15, 1992.)
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