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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Editor-in-Chief:

Milan Mareš
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Havlena, Yiguang Hong, Martin Janžura,
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EXTENSIONS OF THE PARAMETRIC
FAMILIES OF DIVERGENCES
USED IN STATISTICAL INFERENCE

Václav Kůs, Domingo Morales and Igor Vajda

We propose a simple method of construction of new families of φ-divergences. This
method called convex standardization is applicable to convex and concave functions ψ(t)
twice continuously differentiable in a neighborhood of t = 1 with nonzero second derivative
at the point t = 1. Using this method we introduce several extensions of the LeCam, power,
χa and Matusita divergences. The extended families are shown to connect smoothly these
divergences with the Kullback divergence or they connect various pairs of these particular
divergences themselves. We investigate also the metric properties of divergences from these
extended families.

Keywords: divergences, metric divergences, families of f -divergences

AMS Subject Classification: 62B05, 62H30

1. INTRODUCTION

Statistical inference widely uses the divergences of probability distributions P,Q
with densities p = dP/dµ and q = dQ/dµ on a measurable observation space (X ,A)
given by the formula

Dφ(P,Q) =
∫

X
q φ

(
p

q

)
dµ (1)

for φ(t) convex in the interval (0,∞) being equal to zero and strictly convex at
t = 1. These divergences are called φ-divergences and the best known examples are
the total variation (L1-distance)

V (P,Q) =
∫
|p− q|dµ, (2)

the squared Hellinger distance

H2(P,Q) =
∫

(
√
p−√q)2 dµ, (3)

the χ2-divergence
χ2(P,Q) =

∫
(p− q)2

q
dµ (4)
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and the I-divergence (information divergence, Kullback divergence)

I(P,Q) =
∫
p ln

p

q
dµ. (5)

Note that the integrands of (1) – (5) are extended from the domain p > 0, q > 0 to
p ≥ 0, q ≥ 0 by preserving the convexity and continuity of the function q φ(p/q) of
two variables (if the continuity cannot be preserved then the lower semicontinuity is
required) and that this extension is unique. For this detail about definition and for
the basic properties of φ-divergences we refer to Vajda [21] and Liese and Vajda [10,
11].

The divergences (3) – (5) can be found (eventually in a slightly rescaled form) in
the class of the so-called power divergences

Dα(P,Q) = Dϕα
(P,Q), α ∈ R (6)

where
ϕα(t) =

tα − α(t− 1)− 1
α(α− 1)

, t > 0 (7)

for α 6= 0, α 6= 1 and the corresponding limits

ϕ1(t) = t ln t− t+ 1, ϕ0(t) = − ln t+ t− 1 (8)

satisfy the assumptions imposed on φ in (1). The particular case D1/2(P,Q) =
2H2(P,Q) is Hellinger divergence, D2(P,Q) = χ2(P,Q)/2 is Pearson divergence
and D1(P,Q) = I(P,Q) is Kullback divergence. Further,

D−1(P,Q) = χ2(Q,P )/2 (9)

is a reversed Pearson divergence D2(Q,P ) known also as a Neyman divergence and

D0(P,Q) = I(Q,P ) (10)

is a reversed Kullback divergence D1(Q,P ). Since the Kullback divergence was
in fact introduced in the joint paper [6] of Kullback and Leibler, it seems to be
convenient to call (10) a Leibler divergence.

Statistical applications of the divergences (1) – (10) were studied e. g. in the
monographs of Read and Cressie [19], Vajda [21] and Pardo [18], and in the papers of
Morales et al. [13, 14, 15], Vajda and van der Meulen [23], Beirlant et al. [1], Györfi
and Vajda [3] and others cited there. Divergences Dφ(P, P̂ ) or Dα(P, P̂ ) between
a hypothetic distribution P and an observations-based empirical distribution P̂ are
basic tools for the minimum divergence estimation of parameters of P and for the
minimum divergence testing of statistical hypotheses about P .

The cited books and papers usually verified practical value of methods and results
established for general φ-divergences by applying them to or testing them on spe-
cial simply parametrized families such as the power divergences (6). In the present
paper we propose a number of new simply parametrized families found by a spe-
cial extension procedure. These families connect smoothly pairs of well known and
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extensively applied divergences of different characteristic properties. The smooth
transition of properties may be used in applications (e. g. in the statistical mini-
mum divergence estimation and testing) by selecting divergences with most desirable
properties. These properties are usually carefully weighted compromises between the
properties of the connected pairs of φ-divergences, but on the trajectories connect-
ing some pairs one sometimes meets φ-divergences with qualitatively new properties
diametrically different from the properties of both members of the connected pair
(see e. g. the application of the family (iii) below in robust statistical inference).

Our extension procedure is a convex standardization of convex or concave func-
tions ψ : (0,∞) → R twice continuously differentiable in a neighborhood of t = 1
with the second derivative ψ′′(1) 6= 0. The standard convex form of ψ (briefly, a
convex standard of ψ) is defined by the formula

φ(t) =
ψ(t)− ψ(1)− ψ′(1) (t− 1)

ψ′′(1)
, t > 0. (11)

This function belongs the class Φ of all convex functions φ : (0,∞) → R twice
continuously differentiable in a neighborhood of t = 1 with φ(1) = φ′(1) = 0 and
φ′′(1) = 1. Obviously, functions φ ∈ Φ are strictly convex at t = 1 and also in the
neighborhood of t = 1. If ψ : (0,∞) → R is twice continuously differentiable on
(0,∞) and

ψ′′(t) = 0 for no t > 0 (12)

then it satisfies the conditions assumed in the convex standardization formula (11).
Indeed, then ψ is either strictly convex or strictly concave on (0,∞) and ψ′′(1) 6= 0.
Examples of some functions ψ together with their convex standards φ ∈ Φ and
corresponding φ-divergences are given in Table 1 below.

Table 1. ψ-functions for standard φ-divergences.

Kullback (D1) Leibler (D0) Pearson(D2) Neyman (D−1)

ψ(t) t ln t ln t t2
1

t

φ(t) t ln t− t+ 1 − ln t+ t− 1 (t− 1)2/2
(t− 1)2

2 t

Le Cam (LC2) Hellinger (D1/2) Power (Dα)

ψ(t)
1

1 + t

√
t tα, α 6= 0, 1

φ(t)
(t− 1)2

t+ 1
2 (
√
t− 1)2

tα − α(t− 1)− 1

α(α− 1)
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Remark 1. Sometimes it is convenient to multiply the function φ(t) of (11) by
a positive constant factor. The modified function φ remains to be convex with
φ(1) = φ′(1) = 0 and leads to a φ-divergence modified by the same factor.

Let us note that the method of convex standardization was first used in the
research report [22] but majority of the families introduced in this paper together
with their basic properties are new. They contain as special cases some or all of the
well known classical φ-divergences presented in Table 1.

2. EXTENDED POWER DIVERGENCES

In this section we apply the convex standardization to the family of functions

ψα,β(t) =
1

βtα + 1− β
, t > 0 (13)

for parameters (α, β) from a suitable subset A ⊂ R2. Obviously, the functions
ψ0,β and ψα,0 are constant on (0,∞) and therefore do not satisfy the assumption
ψ′′(1) 6= 0 of (11). Further, if α 6= 0 then β > 1 or β < 0 lead for some t = tα,β > 0
to

ξα,β(t) = 0 where ξα,β(t) = βtα + 1− β. (14)

Hence α 6= 0 and β ∈ (0, 1] are necessary conditions for the parameters α, β to
guarantee that ξα,β(t) > 0 for every t > 0. As

ψ′′α,β(t) =
αβtα−2[2αβtα − (α− 1)ξα,β(t)]

ξ3α,β(t)
, (15)

the condition (12) is fulfilled if (α, β) ∈ A−1 ∪A1 ∪ I for the subsets

A−1 = [−1, 0)×(0, 1]−{(−1, 1)}, A1 = (0, 1]×(0, 1] and I = {(α, 1) : α 6= −1, 0}
of R2.

Hence we get from (11) for all (α, β) ∈ A−1 ∪A1 ∪ I the convex standards

φα,β(t) =
1

α(2αβ − α+ 1)

[
1− tα

βtα + 1− β
+ α(t− 1)

]
, t > 0 (16)

belonging to the set Φ. In the sequel we need also the sets

B−1 = [−1, 0)× [0, 1]− {(−1, 1)}, B1 = (0, 1]× [0, 1]− {(1, 0)}
and

C = [−1, 1]× [0, 1]− {(−1, 1), (1, 0)}
satisfying the inclusions

A−1 ∪A1 ⊂ B−1 ∪B1 ⊂ C.

The sets figuring in these inclusions are illustrated in Figures 1 – 3. The following
properties hold for every t > 0.
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Fig. 1. The set A−1 ∪A1 ∪ I.

Fig. 2. The set B−1 ∪B1 and the point (0, 1/2).

(i) φα,β(t) is continuous in the variables (α, β) ∈ A−1 ∪A1 ∪ I.
(ii) φα,β of (16) can be applied to all (α, β) ∈ B−1∪B1 and the extensions defined

for all α ∈ [−1, 0) ∪ (0, 1) by

φα,0(t) =
tα − α(t− 1)− 1

α(α− 1)
, t > 0, (17)

belong to Φ.

(iii) The values φα,β(t) remain to be symmetric about (0, 1/2) ∈ R2 in the extended
variables (α, β) ∈ B−1 ∪B1 ⊂ R2 in the sense

φα,β(t) = φ−α,1−β(t). (18)

It follows from (i) – (iii) that the extended φα,β(t) defined by (16) for all pa-
rameters (α, β) ∈ B−1 ∪B1 remains to be continuous in these parameters.

(iv) For every β ∈ [0, 1] there exists a limit φ0,β(t) of φα,eβ(t) for (α, β̃) ∈ B−1 ∪B1

tending to the point (0, β) ∈ R2. This limit is not depending on β and obviously
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Fig. 3. The set C.

satisfies the relation

φ0,β(t) = lim
α→0

φα,β(t) = ϕ0(t), t > 0 (19)

where ϕ0(t) was given in (8).

The formulas (16), (17) and (19) define the functions φα,β(t) of variable t > 0 for all
parameters (α, β) ∈ C where C ⊂ R2 is given in Figure 3. It follows from (iv) and
from what has been said before (iv) that φα,β(t) is continuous on C in the parameters
(α, β). Further, since φ0,β(t) is symmetric about 1/2 in the variable β ∈ [0, 1] in the
sense

φ0,β(t) = φ0,1−β(t),

the symmetry (18) extends to all (α, β) ∈ C.
Note that φα,β(t) cannot be continuously extended to the corners (−1, 1) and

(1, 0) of the set C. Namely, it follows from (16) and (18) that

lim
α→−1

φα,1(t) = lim
α→1

φα,0(t) = ϕ1(t) (20)

and
lim
β↑1

φ−1,β(t) = lim
β↓0

φ1,β(t) = ϕ2(t) (21)

where ϕ1(t), ϕ2(t) are different functions given by (7), (8).
We can conclude from (16), (17) and (19) that the following assertion holds.

Proposition 1. The class of convex functions

{φα,β : (α, β) ∈ C} ⊂ Φ (22)

contains the mutually equal subclasses

{φα,0 = ϕα : α ∈ [−1, 1)} = {φα,1 = ϕ−α : α ∈ (−1, 1]} (23)
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of power divergence functions given by (7) and (8). Therefore (22) is an extension
of the class {ϕα : α ∈ [−1, 1)} of power divergence functions, and the corresponding
φα,β-divergences

Dα,β(P,Q) = Dφα,β
(P,Q) =

∫
qφα,β

(
p

q

)
dµ, (α, β) ∈ C (24)

are extensions of the power divergences Dα(P,Q), α ∈ [−1, 1).

Let us now consider the extension

C∗ = C ∪ ((−∞,−1) ∪ [1,∞)× {0}) ∪ ((−∞,−1] ∪ (1,∞)× {1})

of the set C and the functions φα,0 = ϕα for (α, 0) ∈ C∗ r C and φα,1 = ϕ−α for
(α, 1) ∈ C∗ r C. Then the following assertion obviously holds which, together with
Proposition 1, justifies the title of the present section.

Proposition 2. The class of convex functions

{φα,β : (α, β) ∈ C∗} ⊂ Φ (25)

contains all power divergence functions ϕα, α ∈ R and the class of divergences

{Dα,β(P,Q) : (α, β) ∈ C∗} (26)

defined by (21) contains all power divergences Dα(P,Q), α ∈ R.

In addition to the family (23) of power divergence functions and the corresponding
power divergences Dα(P,Q), α ∈ [−1, 1), one can find some other interesting one-
parameter families of functions in the class (22) and the corresponding families of
divergences in the class (24).

(i) Neyman–Pearson family. One such family of functions is

φ1,β(t) =
1
2

(t− 1)2

βt+ 1− β
, β ∈ (0, 1] (27)

with the corresponding family of divergences

D1,β(P,Q) =
1
2

∫
(p− q)2

βp+ (1− β)q
dµ, β ∈ (0, 1]. (28)

Since

D1,1/2(P,Q) = LC2(P,Q) =
∫

(p− q)2

p+ q
dµ (cf. Table 1) (29)

this family contains the LeCam divergence (the squared LeCam distance, see Chap-
ter 4.2 in LeCam [9]). This divergence belongs to the class of divergences (1) defined
for functions φ(t) = |t− 1|α/(t+ 1)α−1 for α ≥ 1. As proved by Kafka et al. [5], the
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(1/α)th roots of the corresponding divergences are metrics in the space of probability
distributions P, Q. By (23), the upper extremes in the classes (27), (28) are

φ1,1 = ϕ−1 and D1,1(P,Q) = D−1(P,Q) = χ2(Q,P )/2.

The lower extremes φ1,0 and D1,0(P,Q) are undefined in (22), (24) since the point
(1, 0) is not in C. This point is in the above introduced extended set C∗, but the
corresponding

φ1,0 = ϕ1 and D1,0(P,Q) = D1(P,Q) = I(P,Q)

considered in (25) and (26) are not continuous extensions of this family. By (21),
such extensions are

φ1,0 = ϕ2 and D1,0(P,Q) = D2(P,Q) = χ2(P,Q)/2. (30)

These extensions together with (27), (28) define a complete Neyman–Pearson fam-
ily {φ1,β : β ∈ [0, 1]} and {D1,β(P,Q) : β ∈ [0, 1]} respectively. This name of
the family comes out of the fact that it smoothly connects the Pearson divergence
D1,0(P,Q) = D2(P,Q) with the Neyman divergence D1,1(P,Q) = D−1(P,Q). By
(29), this connection is passing through the LeCam divergence (29).

Note that here and in the sequel the smoothness means the continuity of the
functions φ1,β in the parameter β ∈ [0, 1]. By the Lebesgue dominated convergence
theorem for integrals, this implies a similar continuity of the divergences

D1,β(P,Q) =
∫
qφ1,β

(
p

q

)
dµ

provided P,Q satisfy some assumptions. Simple and relatively mild assumptions
are that P = (p1, . . . , pK), Q = (q1, . . . , qK) are positive discrete probability dis-
tributions. Then for any φβ ∈ Φ with φβ continuous in a real parameter β, the
φβ-divergence Dφβ

(P,Q) is the sum

Dφβ
(P,Q) =

K∑

k=1

qkφβ

(
pk

qk

)
(31)

which is continuous in β too.

(ii) Kullback–Pearson family. Another interesting one-parameter family of func-
tions in the class (22) with the corresponding family divergences in the class (24)
is the Kullback–Pearson family parametrized by γ ∈ [0,∞]. For γ ∈ [0,∞) it is
obtained from the extended power divergence family (22) by the rule

φγ(t) = lim
α↑1

φα,(1−α)γ(t), t > 0

where φα,(1−α)γ is given by (16) for α ∈ (0, 1) and β = (1− α)γ ∈ [0, 1). Extension
to γ = ∞ is obtained from the continuity rule,

φ∞(t) = lim
γ→∞

φγ(t), t > 0.
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If γ ∈ [0,∞) then substituting for β in (16) and taking the limit for α ↑ 1 we obtain
for every t > 0

φγ(t) =
t ln t+ t− 1 + γ(t− 1)2

2γ + 1
=
ϕ1(t) + 2γϕ2(t)

2γ + 1
(32)

so that the extremes
φ0 = ϕ1 and φ∞ = ϕ2 (33)

are the Kullback and Pearson divergence functions specified in (6), (7). Since ϕ1,
ϕ2 belong to the class Φ, it is clear that all φγ , γ ∈ [0,∞] belong to Φ too. The
corresponding divergences are

Dφγ (P,Q) =
D1(P,Q) + 2γD2(P,Q)

2γ + 1
=
I(P,Q) + γχ2(P,Q)

2γ + 1
(34)

if γ ∈ [0,∞) and
Dφ∞(P,Q) = χ2(P,Q)/2. (35)

The Kullback–Pearson mixed family {Dφγ
(P,Q) : γ ∈ [0,∞]} smoothly connects the

Kullback divergence D1(P,Q) = I(P,Q) with the Pearson divergence D2(P,Q) =
χ2(P,Q)/2 in a linear manner. This differs from the nonlinear connection in the
power divergence subfamily {Dα(P,Q) : α ∈ [1, 2]}. The advantage of the linearity
in some computations is obvious.

(iii) Leibler–Neyman family. Another interesting subfamily of (22) is the Leibler–
Neyman family {φα,(1−2α)2 : α ∈ [0, 1]} where the extremes are

φ0,1 = ϕ0, φ1,1 = ϕ−1

and for α = 1/2 we obtain φ1/2,0 = ϕ1/2. Therefore the corresponding Leibler–
Neyman family of divergences {Dα,(1−2α)2(P,Q) : α ∈ [0, 1]} smoothly connects
the above introduced Leibler divergence D0,1(P,Q) = D0(P,Q) with the Neyman
divergence D1,1(P,Q) = D−1(P,Q) and passes through the Hellinger divergence

D1/2,0(P,Q) = D1/2(P,Q).

Such connection is impossible in the class of power divergences {Dα(P,Q) : α ∈
[−1, 0]} because α = 1/2 is out of the interval [−1, 0].

To illustrate statistical applicability of the Leibler–Neyman family of divergences,
consider empirical relative frequencies P̂ = (p̂1, . . . , p̂K) of n i.i.d. observations
in K disjoint A-measurable cells covering the assumed observation space X . Let
P = (p1, . . . , pK) be a hypothetic probability distribution on these cells. Then

T0,n = 2nD0,1(P, P̂ ) = 2n
K∑

k=1

p̂k ln
p̂k

pk
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is the log-likelihood ratio statistics,

T1,n = 2nD1,1(P, P̂ ) = n

K∑

k=1

(p̂k − pk)2

pk

is the Pearson statistic and

T1/2,n = 2nD1/2,0(P, P̂ ) = 8n

(
1−

K∑

k=1

√
p̂kpk

)
(36)

is the Freeman–Tukey statistic (see e. g. Read and Cressie [19]) which differs from
the previous two non-robust statistics by being robust (in the sense of Lindsay [12],
cf. also Kůs [8]). We see that the family of Leibler–Neyman statistics

Tα,n = 2nDα,(1−2α)2(P, P̂ ) = 2n
K∑

k=1

p̂kφα,(1−2α)2

(
pk

p̂k

)
, α ∈ [0, 1]

smoothly connects the famous efficient but nonrobust statistics T0,n and T1,n by
passing through the robust but less efficient statistic T1/2,n. Similar connection of
T0,n and T1,n is impossible in the class

{2nDα(P, P̂ ) : α ∈ [−1, 0]}
of power divergence statistics. It smoothly connects the statistics

2nD−1(P, P̂ ) = T1,n and 2nD0(P, P̂ ) = T0,n

too but without containing T1/2,n or any other statistic robust in the above men-
tioned sense.

The interesting subfamilies of (22) are not exhausted by those listed above. For
example the simple family {φ1/2,β : β ∈ [0, 1]} leads to the divergences D1/2,β(P,Q)
for which the family of statistics

{
Uβ,n = 2nD1/2,β(P, P̂ ) : β ∈ [0, 1]

}
(37)

smoothly connects the Freeman–Tukey statistic U0,n = T1/2,n given in (36) with the
power divergence statistic

U1,n = 2nD−1/2(P, P̂ ) =
8n
3




K∑

k=1

√
p̂ 3

k

pk
− 1




shown in Read and Cressie [19] to be locally most powerful among all power di-
vergence statistics 2nDα(P, P̂ ), α ∈ R. Thus in the relatively simple and relatively
narrow class (37) one can easily find reasonable compromises between the power and
robustness of the power divergence statistics.
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3. EXTENDED ABSOLUTE POWER DIVERGENCES

Vajda [20] used the absolute power functions φ(t) = |t − 1|α defined on (0,∞) for
α ≥ 1 and belonging to Φ to introduce the family of absolute power divergences

χα(P,Q) =
∫ |p− q|α

pα−1
dµ, α ≥ 1. (38)

This family contains the total variation χ1(P,Q) = V (P,Q) and the Pearson di-
vergence χ2(P,Q) as particular cases. The divergences (38) help to generalize the
Cramer–Rao inequality and to introduce the Fisher information of orders α > 1
where the order α = 2 means the classical Fisher information. As demonstrated e. g.
in Hobza et al. [4], the Fisher informations of some orders α 6= 2 are useful when
the classical Fisher information is trivial or does not exist.

In this section the class {χα(P,Q) : α > 0} is extended by applying the convex
standardization (11) to the functions

ψα,β(t) = |t+ β − 1|α, t > 0 (39)

for suitable parameters α, β. Since the function φ given in (11) is standardized in
the sense that φ′′(1) = 1, the divergences (38) will be rescaled in the extended class.
Obviously, ψα,β of this section differs from that of (13). Therefore we must pay
attention to what section we have in mind when speaking about ψα,β (and about
φα,β resulting from ψα,β in the convex standardization (11)). The present function
ψα,β is trivial for α = 0 and not defined in the whole interval (0,∞) for α < 0, β < 1.
A detailed analysis shows that this function satisfies the assumptions of (11) only
for (α, β) ∈ A where A is the union of four subsets of the plane R2 (see Figure 4),
namely

A1 = (−∞, 0)× [1,∞), A2 = (0, 1)× [1,∞),
A3 = (1,∞)× [0,∞), A4 = (1,∞)× (−∞, 0).

Thus we get from (11) the family of functions

φα,β(t) =
|t+ β − 1|α − |β|α − α sign(β) |β|α−1(t− 1)

α(α− 1)
, (α, β) ∈ A (40)

where we drop out the positive factor |β|α−2 from denominator of (40) (see Remark 1
in Section 1).

The limits

φα,0(t) =
|t− 1|α
α(α− 1)

for α ∈ (1,∞), (41)

φ0,β(t) =
t− 1
β

− ln
t+ β − 1

β
for β ∈ [1,∞) (42)

and

φ1,β(t) = |t+ β − 1| ln |t+ β − 1|
βsgn(β)

− sgn(β)(t− 1) (43)
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Fig. 4. The set A1 ∪A2 ∪A3 ∪A4.

Fig. 5. The set B.

for β 6= 0, with the convention 0 ln 0 = 0, define continuous extension of the family
(40) on the set

B = A− {(1, 0)} = R2 − ((−∞, 1)× (−∞, 1) ∪ {(1, 0)})
where A is the closure of A (see Figure 5). The family

{φα,β : (α, β) ∈ B} (44)

with φα,β given by (40) – (43) defines the family of φα,β-divergences

χα
β(P,Q) =

∫
qφα,β

(
p

q

)
dµ, (α, β) ∈ B (45)

called extended absolute power divergence family. This terminology is justified by
the following easily verifiable assertion.
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Proposition 3. The subfamily {χα
0 (P,Q) : α > 1} ⊂ {χα

β (P,Q) : (α, β) ∈ B}
contains all rescaled absolute power divergences χα(P,Q)/[α(α − 1)], α > 1, see
(38). The subfamily {χα

1 (P,Q) = Dα(P,Q) : α ∈ R} contains all power divergences
Dα(P,Q) : α ∈ R, see (6).

Some symmetric or symmetrized divergences from the class (45) define metrics
in the space P of all probability distributions on (X ,A). For example, from (42) we
get the symmetrized divergence

χ0
2(P,Q) + χ0

2(Q,P ) = I(P, (P +Q)/2) + I(Q, (P +Q)/2).

The sum of the Kullback divergences on the right-hand side is the φ-divergence
Dφ(P,Q) for

φ(t) = t ln
2t
t+ 1

+ ln
2

t+ 1
, t > 0. (46)

As proved in Österreicher and Vajda [17], this φ-divergence is a squared metric
distance on P. Further, one can deduce from Csiszár and Fischer [2] that

ρα(P,Q) = (χα
1 (P,Q) + χα

1 (Q,P ))α
, α ∈ (0, 1/2]

is a family of metrics on P. The particular metric

ρ1/2(P,Q) = 2H(P,Q)

is twice the Hellinger distance on P. Finally, (40) implies

φ−1,2(t) =
(t− 1)2

8(t+ 1)
, t > 0.

Therefore the extended absolute power divergence

χ−1
2 (P,Q) =

1
8
D1,1/2(P,Q)

is nothing but a rescaled Le Cam divergence. Consequently this divergence is a
squared metric on P. An open problem is whether this list of metrics obtained
in the family (45) is exhaustive. The metric properties of φ-divergences are very
desirable because they extend the toolbox of mathematical methods applicable in
their analysis and statistical implementations.

4. EXTENDED MATUSITA DIVERGENCES

In this last section we extend the family of Matusita divergences

Mα(P,Q) =
∫
|pα − qα|1/α dµ, α ∈ (0, 1] (47)

defined by the functions

φα(t) = |tα − 1|1/α, t > 0. (48)
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Since all φ-divergences are reflexive and Mα(P,Q) are symmetric in P,Q, we see
that ρα(P,Q) = (Mα(P,Q))α are metrics on the space P of probability distributions
P,Q under consideration. Our extension will contain further divergences with metric
properties.

As before, we apply the convex standardization (11), in this case to the functions

ψα,β(t) = |tα + β − 1|1/α (49)

for suitable real parameters α and β. The same argument as in the previous section
leads to the domain A = A1 ∪A2 ∪A3 ∪A4 ⊂ R2 for (α, β) where

A1 = (−∞, 0)× (1,∞), A2 = (0, 1)× (1,∞)
A3 = (1,∞)× (1,∞), A4 = (0, 1)× (−∞, 1)

(see Figure 6). From (11) we obtain the family

φα,β(t) =
|tα + β − 1|1/α − sgn(β)|β|1/α−1(t+ β − 1)

(α− 1)(β − 1)|β|1/α−2

for (α, β) ∈ A. Consider for any fixed t > 0 the continuous extensions

φα,1(t) =
t1−α

α(α− 1)
+
t

α
− 1
α− 1

= tϕα(1/t), α 6= 0, 1 (50)

φ0,β(t) =
β

β − 1

[
t− βt1/β + β − 1

]
, β 6= 0, 1 (51)

and

φ1,β(t) =
|β|
β − 1

[
t ln(t) sgn(t+ β − 1)− |t+ β − 1| ln

∣∣∣∣
t+ β − 1

β

∣∣∣∣
]
, β 6= 0, 1 .

(52)
These extensions lead to the family

{φα,β(t) : (α, β) ∈ B} (53)

for
B = A− {(0, 0), (1, 0)} = (0, 1)× (−∞, 1) ∪ R× [1,∞]

where A is the closure of A (see Figure 7). Note that the set B differs from B ⊂ R2 of
Section 3. The functions φα,1 of (50) are adjoint to the power divergence functions
ϕα of (7) in the sense that φα,1(t) = tϕα(1/t), t > 0. Moreover, the continuous
extensions to the corner points (α, β) = (0, 1) and (α, β) = (1, 1) of B are

φ0,1(t) = tϕ0(1/t) = ϕ1(t) and φ1,1(t) = tϕ1(1/t) = ϕ0(t).

The family of functions φα,β defines the family of φα,β-divergences

Mα,β(P,Q) =
∫
qφα,β

(
p

q

)
dµ, (α, β) ∈ B (54)

called extended Matusita family because the following easily verifiable assertion
holds.
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Fig. 6. The set A1 ∪A2 ∪A3 ∪A4.

Proposition 4. The family (54) extends the Matusita divergences in the sense
that the subfamily {Mα,0(P,Q) : α ∈ (0, 1)} ⊂ {Mα,β(P,Q) : (α, β) ∈ B} coin-
cides with the family {Mα(P,Q) : α ∈ (0, 1)} of Matusita divergences. Moreover,
{(Mα,0(P,Q))1/α: α ∈ (0, 1)} is the class of metrics on the space P of distributions
P,Q.

More interesting continuous subfamily of (53) than {φα,0 : α ∈ (0, 1)} seems to
be {φα,2 : α ∈ R} given by the explicit formulas

φα,2(t) =
4

α− 1

[(
tα + 1

2

)1/α

− t+ 1
2

]
(55)

or

φ1,2(t) = 2t ln
2t
t+ 1

+ 2 ln
2

t+ 1
and φ0,2(t) = 4(1−

√
t) + 2(t− 1) (56)

if α(1−α) 6= 0 or α(1−α) = 0 respectively. For α > 0 the functions of this subfamily
are related by

φα,2(t) =
22−1/α

α
fα(t)

to the functions fα ∈ Φ, α > 0 introduced by Österreicher and Vajda [17]. These
authors proved that the latter functions lead to fα-divergences with the roots

ρα(P,Q) = (Dfα(P,Q))min{α,1/2} (57)

being metrics in the space P of probability measures P,Q. Therefore the roots
{

(Mα,2(P,Q))min{α,1/2} : α > 0
}

(58)
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Fig. 7. The set B.

of the extended Matusita divergences Mα,2(P,Q), α > 0 are metrics on P too. This
means in particular that the Kullback–type divergence

M1,2(P,Q) = 2[I(P, (P +Q)/2) + I(Q, (P +Q)/2)]

(cf. (56) and (46)) is a squared metric distance on P, which was already men-
tioned in the previous section. However, we see from the second formula in (56)
that Mα,2(P,Q) for α = 0 is twice the Hellinger divergence 2H2(P,Q) so that the
extremal case (M0,2(P,Q))1/2 is metric on P too. Further, according to (55)

φ−1,2(t) =
2(t− 1)2

t+ 1
.

Therefore M−1,2(P,Q) is twice the Le Cam divergence LC2(P,Q) of (29). This
means that

(M−1,2(P,Q))1/2 =
√

2LC(P,Q)

is metric on P too. This suggests the conjecture that the square roots (Mα,2(P,Q))1/2

of all extended Matusita divergences Mα,2(P,Q), α ∈ R are metrics on P. If true,
this conjecture means a new result for α < 0, α 6= −1, and a stronger result than
the metricity of the roots in (58) for 0 < α < 1/2.

In any case, the new result is the possibility of a smooth divergence connection
of the family of metric divergences found by Österreicher [16] and later extended
by Österreicher and Vajda [17] with the famous Hellinger and LeCam divergences
which are not in the family of Österreicher and Vajda. Such a possibility was not
demonstrated in the previous literature.
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5. CONCLUSIONS

Distances or pseudo-distances between hypothetical and empirical probability dis-
tributions play a fundamental role in statistical inference. They are widely applied
in the minimum distance estimation and testing. The parametric families of di-
vergences introduced in this paper enable, among others, smooth connections of
various pairs of φ1-divergences and φ2-divergences leading separately to minimum
distance statistical methods with different (sometimes diametrally different) prop-
erties. For example, we may face a low bias and a high mean squared error of a
minimum φ1-divergence estimator but a high bias and a low mean squared error of a
minimum φ2-divergence estimator. Smooth φ-divergence connection of the φ1- and
φ2-divergences usually leads to a smooth transition of properties of the correspond-
ing estimators. Thus among the φ-divergences smoothly connecting these extremal
divergences one can find one candidate leading to an estimator with desirably tuned
compromise between the bias and mean squared error. Similar compromise choices
among various statistical procedures are typical for the statistics – well known ex-
amples are the compromises between efficiency and robustness.

We believe that the families of divergences proposed above will be helpful in
the research of optimal practically applicable statistical procedures. But concrete
applications are left for future studies as they exceed the scope of the present paper.
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