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NEW BOUNDS FOR ROBUST STABILITY
OF CONTINUOUS AND DISCRETE–TIME SYSTEMS
UNDER PARAMETRIC UNCERTAINTY

Ioannis K. Konstantopoulos and Panos J. Antsaklis

New conditions for robust stability in linear continuous and discrete-time systems are
derived, when all matrices of the state-space model are perturbed by uncertain parameters
and static output feedback is applied. Also, new conditions for robust stability in linear
discrete-time systems with both unstructured and structured perturbations in the system
matrix A are derived. The analysis is based on the direct method of Lyapunov and several
examples are used to illustrate the results.

1. INTRODUCTION

The problem of robust stability of linear state-space models has been an active area
of research for quite some time; see [1], [4], [18] for extensive discussion and references.
For the cases of both structured and unstructured parametric uncertainty involv-
ing state-space models, results exist for both continuous ([2], [6], [9], [14], [15], [17],
[22], [23], [24]) and discrete-time systems ([6], [7], [10], [16], [20], [21]). In all the above
papers, the uncertain parameters describe the perturbation in either the open-loop
system matrix A or the closed-loop system matrix Ac, when state (A + BK) or
output feedback (A + BKC) is applied. The uncertainty matrix ∆A for either A or
Ac is assumed to be of the form ∆A =

∑m
i=1 κiAi, where κi, i = 1, . . . ,m denote

the uncertain parameters and Ai, i = 1, . . . , m are known constant matrices. Note
that the uncertain parameters enter the uncertainty matrix linearly.

When all matrices of a state-space model, that is the system matrix A, the input
matrix B, and the output matrix C are perturbed and output feedback is applied,
then the above literature methods can not be applied directly, because the sys-
tem matrix of the closed-loop system now contains product-terms of the uncertain
parameters. However, this case of structured uncertainties in all state-space matri-
ces, namely (A, B,C), has been investigated in [8] for discrete-time systems, under
certain restrictions imposed on the uncertain parameters. Although sufficient con-
ditions for stability are provided, no explicit analytic way is presented to derive the
stability bounds for the general case, when no restrictions are imposed on the un-
certain parameters. In [19], the same problem has been studied for both continuous
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and discrete-time systems.
Here, we present a new approach which is based on the selection of a positive

definite matrix and a positive number. In Section 2, we study linear continuous
systems with the state-space description of (1) below, where all state-space matrices
are perturbed by uncertain parameters, as indicated in (2). The proposed approach
gives results at least as good as the ones derived by the method of [19]. In Section 3,
we present theorems, stemming from the direct method of Lyapunov, that provide
sufficient conditions for the robust stability of linear discrete-time systems. First, we
study the case of unstructured perturbations in the system matrix A and then the
case of structured perturbations, (35) below. In both cases, the present approach im-
proves previous results obtained via Lyapunov techniques in [10]. Finally, we study
the discrete-time systems of (40) below, where again all state-space matrices are per-
turbed by uncertain parameters, as indicated in (2) and obtain results comparable
to the ones provided by the method of [19]. In Section 4, illustrative examples for
all the cases mentioned above are presented and in Section 5, concluding remarks
are briefly discussed.

It should be mentioned that although the present paper presents analysis results,
the theorems established for the discrete-time cases have already been used success-
fully for synthesis studies in [13]. Finally note that although only the static output
feedback case is studied in both Sections 2 and 3, the results apply to the dynamic
output feedback case as well. This is because a dynamic output feedback controller
of order r applied to a system of order n is equivalent to a static output feedback
controller applied to an augmented system of order n + r; see for example [9], [19].

It should also be noted that synthesis results for the cases of structured pertur-
bations in all system matrices based on H∞ techniques have also appeared in the
literature, [3], [5], [25]. Note however that in [3], [5] no specific information about the
uncertainty bounds that describe the uncertainty matrices is provided, and in [25]
no explicit way is presented to compute the uncertainty bounds, which are decided
experimentally via the ellipsoidal method. Here, as mentioned before, we present an
analysis technique for state-space models without exogenous disturbances, and for
a given controller we present simple ways to compute the stability bounds for the
uncertain parameters that describe the uncertainty matrices.

2. CONTINUOUS SYSTEMS

We consider the linear continuous system with the state space description

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

where x ∈ <n is the state vector, u ∈ <r is the input vector and y ∈ <q is the output
vector. The state-space matrices are described by

A = A0 +
m∑

i=1

θiAi, B = B0 +
m∑

i=1

θiBi, C = C0 +
m∑

i=1

θiCi, (2)
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where θi, i = 1, . . . , m denote the real, uncertain parameters which describe the
perturbations in A, B, C respectively. We consider the output feedback law

u(t) = Ky(t), (3)

where K is a stabilizing ouput feedback matrix for the nominal system (A0, B0, C0).
Then, the closed loop system is described by

ẋ(t) = [ A + BKC ] x(t)

=


 Ā0 +

m∑

i=1

θi(Ai + EB
i + EC

i ) +
∑

i,j

θiθjEij


 x(t), (4)

where

Ā0 = A0 + B0KC0, EB
i = BiKC0, EC

i = B0KCi, Eij = BiKCj . (5)

The problem can now be formulated as follows:

“If K is a stabilizing output feedback matrix for the nominal continuous system
described by (A0, B0, C0), that is Ā0 stable, find the conditions that have to be
satisfied by the uncertain parameters θi, i = 1, . . . ,m, so that the closed loop system
of (4) remains asymptotically stable.”

Note that the approach presented here is intended to deal with the problem
of product terms of the uncertain parameters. A second approach based on the
methodology of Section 3.3 can be found in [11], [12]. When only the system matrix
A is perturbed, or A together with either B or C, then no such product terms exist.
In these cases, the present techniques can definitely be applied as well. Note however
that this is a problem for which numerous approaches and useful results can be found
in the literature, as indicated in the introduction above.

We now proceed with the solution of the problem stated above. Since K is a
stabilizing gain matrix for the nominal system, there exists a symmetric positive
definite matrix P , which is the unique solution of the Lyapunov equation

PĀ0 + ĀT
0 P + 2In = 0. (6)

Note that we have chosen Q = 2In as the positive definite matrix needed in the
Lyapunov equation above. This choice was made because it facilitates our compu-
tations below. This is not the case, however, in Section 3, where we study discrete-
time systems and consider any positive definite matrix in the discrete-time Lyapunov
equation of (22). The optimal choice of Q is not an issue of interest here. Note,
however, that there exist optimization procedures for systematically choosing the
Lyapunov matrix Q, as in [14].

We define

Pi = PAi + AT
i P, PB

i = PEB
i + (EB

i )T P (7)
PC

i = PEC
i + (EC

i )T P, Pij = PEij + (Eij)T P (8)

P̃ = [ P1 P2 · · ·Pm ]T , P̃B = [ PB
1 PB

2 · · ·PB
m ]T (9)

P̃C = [ PC
1 PC

2 · · ·PC
m ]T , Π? = P̃ + P̃B + P̃C (10)
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Π =




P11 P12 · · · P1m

...
...

...
...

Pm1 Pm2 · · · Pmm


 (11)

Θ = [ θ1 θ2 · · · θm ]T , (12)

where Pi, P
B
i , PC

i , Pij ∈ <n×n, P̃ , P̃B , P̃C ,Π? ∈ <mn×n, Π ∈ <mn×mn, and Θ ∈ <m.

Theorem 2.1. When the output feedback law (3) is applied to the linear continu-
ous system of (1) with structured uncertainties of (2), then the closed loop system (4)
remains asymptotically stable, when the uncertain parameters satisfy the relation

(
m∑

i=1

θ2
i

)
λmax

(α

2
Z + Π

)
< 2− λmax

(
1
2α

(Π?)T
Z−1Π?

)
, (13)

where Π? and Π are defined in (10) and (11) respectively, Z can be any positive
definite matrix ∈ <mn×mn, α can be any positive number, and λmax(A) denotes the
maximum eigenvalue of the matrix A.

P r o o f . We consider the Lyapunov function V (x) = xT Px, where P is the unique
positive definite matrix of (6). The derivative of this function is

V̇ (x) = xT

[
PĀ0 + ĀT

0 P +
m∑

i=1

θi [ PAi + AT
i P + PEB

i + (EB
i )T P

+ PEC
i + (EC

i )T P ] +
∑

i,j

θiθj( PEij + ET
ijP )


 x

= xT
[ −2In + (Θ⊗ In)T Π? + (Θ⊗ In)T Π (Θ⊗ In)

]
x, (14)

where the Lyapunov equation (6) and definitions (7) – (12) have been used and ⊗
denotes the Kronecker product. For any two suitably dimensioned matrices X, Ψ,
and any positive scalar α, the following matrix inequalities hold

0 ≤
(
α XZ

1
2 −ΨZ−

1
2

) (
α XZ

1
2 −ΨZ−

1
2

)T

XΨT + ΨXT ≤ αXZXT +
1
α

ΨZ−1ΨT , (15)

where Z can be any positive definite matrix of appropriate dimensions.
Since (Θ⊗ In)T Π? is a symmetric matrix, the previous inequality gives

2(Θ⊗ In)T Π? = (Θ⊗ In)T Π? + (Π?)T (Θ⊗ In)

≤ α (Θ⊗ In)T Z (Θ⊗ In) +
1
α

(Π?)T Z−1 Π?. (16)
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Hence, (14) can be rewritten as follows

V̇ (x) ≤ xT

[
−2In +

1
2α

(Π?)T Z−1 Π? + (Θ⊗ In)T
(α

2
Z + Π

)
(Θ⊗ In)

]
x

≤ xT

[
−2In +

1
2α

(Π?)T Z−1 Π? + λmax

(α

2
Z + Π

)
(ΘT Θ) In

]
x

= xT

{[
λmax

(α

2
Z + Π

) (
m∑

i=1

θ2
i

)
− 2

]
In +

1
2α

(Π?)T Z−1 Π?

}
x

= xT Φx. (17)

To maintain V̇ (x) < 0, it suffices to have λmax(Φ) < 0. For any matrix A ∈ <n×n

and any real number β, we have λi(βIn + A) = β + λi(A), i = 1, . . . , m, where
λi(A) denotes the ith eigenvalue of the matrix A. Hence, V̇ (x) < 0 if

λmax

(
1
2α

(Π?)T Z−1 Π?

)
+ λmax

(α

2
Z + Π

) (
m∑

i=1

θ2
i

)
− 2 < 0. (18)

Now (13) follows easily. 2

It has been stated that Z can be any positive definite matrix. Note that the
optimal selection of Z is not discussed here and remains an issue of future research.
In the same respect, the positive number α that maximizes the stability bounds
above can be selected experimentally, that is by testing several positive values of
α and choosing the one that maximizes the stability region. Note that the above
remarks for Z and α also hold for the discrete-time cases that are studied in Section 3
that follows.

For the cases, where Z = I gives the largest bounds for the uncertain parameters,
the following lemma can easily be proven; details in [11]. First, we define

ξ? = λmax

(
(Π?)T Π?

)
, ξ = λmax(Π). (19)

Lemma 2.2. (a) If ξ < 0 and |ξ| > ξ?

8 , then the closed loop system (4) remains
asymptotically stable in the whole parameter space <m.

(b) If ξ < 0 and α is selected so that α < min
(

ξ?

4 , 2|ξ|
)
, then the whole <m

outside the hypersphere with radius

R2 =
2− ξ?

2α
α
2 + ξ

(20)

belongs to the solution space.

(c) If ξ > 0 and α is selected so that α > ξ?

4 , then the hypersphere with R in
(20) above belongs to the solution space.
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3. DISCRETE–TIME SYSTEMS

3.1. Unstructured perturbations in A

We consider the linear discete-time system with the state-space description

x(k + 1) = A x(k), (21)

where x ∈ <n is the state vector and A an asymptotically stable matrix. Then,
for every symmetric positive definite matrix Q, we can find a symmetric positive
definite matrix P , which is the unique solution of the Lyapunov equation

AT PA− P + Q = 0. (22)

When A is perturbed by the matrix ∆A, then for the perturbed system

y(k + 1) = ( A + ∆A ) y(k) (23)

the following theorem holds. First define

Ω1 = AT PZ−1PA. (24)

Theorem 3.1.1. Consider the linear discrete-time system (21), where A is an
asymptotically stable matrix that satisfies (22). Suppose that A → A + ∆A, then
the perturbed system of (23) remains asymptotically stable, if

(∆A)T (αZ + P ) (∆A) +
1
α

Ω1 < Q (25)

or

σmax(∆A) <

√
σmin(Q)− σmax( 1

α Ω1)
σmax(αZ + P )

, (26)

where P , Q are defined in (22), Ω1 in (24), Z can be any positive definite matrix
∈ <n×n, and α is any positive number that satisfies

α >
σmax(Ω1)
σmin(Q)

. (27)

P r o o f . We rewrite (22) as follows

(A+∆A)T P (A+∆A)−P +Q− (∆A)T P (∆A)−AT P (∆A)− (∆A)T PA = 0. (28)

Using the direct method of Lyapunov, we see that (A + ∆A) remains an asymp-
totically stable matrix, if

Q̃ = Q− (∆A)T P (∆A)−AT P (∆A)− (∆A)T PA > 0. (29)
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In view of (15) for X = (∆A)T , Ψ = (PA)T and (24), we have

(∆A)T PA + AT P (∆A) ≤ α(∆A)T Z(∆A) +
1
α

Ω1 (30)

Q− (∆A)T (αZ + P )(∆A)− 1
α

Ω1 ≤ Q̃. (31)

A sufficient condition for Q̃ to be positive definite is that the LHS of (31) is
positive definite for some α, from which (25) follows easily. Note that α can be
chosen as any positive number that satisfies (25). Next a sufficient lower bound for
α is derived. For any positive definite matrices A,B

A < B ⇔ σmax(A) < σmin(B). (32)

Defining Ξ1 = (∆A)T (αZ + P ) (∆A) + 1
α Ω1, we have

σmax(Ξ1) ≤ σmax

(
(∆A)T (αZ + P ) (∆A)

)
+ σmax

(
1
α

Ω1

)

≤ σ2
max(∆A) σmax(αZ + P ) + σmax

(
1
α

Ω1

)
. (33)

In view of (32), (33), a sufficient condition for (25) to hold is

σ2
max(∆A) σmax(αZ + P ) + σmax

(
1
α

Ω1

)
< σmin(Q) (34)

from which (26) follows easily. Note that α has to satisfy (27), in order to maintain
the RHS of (26) positive. 2

3.2. Structured perturbations in A

We consider the case where the asymptotically stable matrix A is perturbed by

∆A =
m∑

i=1

θiAi = (Θ⊗ In)T Ã, (35)

where κi, i = 1, . . . , m denote real, uncertain parameters and Ai, i = 1, . . . , m are
constant, known matrices, and the following definition has been used

Ã = [ AT
1 AT

2 · · · AT
m ]T . (36)

Theorem 3.2.1. The linear discrete-time system (23) with structured perturba-
tions of the form of (35) remains asymptotically stable, when the uncertain par-
ameters satisfy

m∑

i=1

θ2
i <

σmin(Q)− σmax( 1
α Ω1)

σ2
max(Ã) σmax(αZ + P )

, (37)
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where Ω1, Ã are defined in (24), (36) respectively, Z can be any positive definite
matrix ∈ <n×n and α is any positive number that satisfies (27).

P r o o f . It can easily be shown that

σ2
max(Θ⊗ In) = ΘT Θ =

m∑

i=1

θ2
i . (38)

In view of (35), we easily get

σ2
max(∆A) <

(
m∑

i=1

θ2
i

)
σ2

max(Ã). (39)

Therefore, (37) follows easily as a sufficient condition for (26), under the condition
that α satisfies (27). 2

3.3. Perturbations in all system matrices

We consider the linear discrete-time system with the state space description

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), (40)

where x ∈ <n is the state vector, u ∈ <r is the input vector and y ∈ <q is the output
vector and, as in Section 2, the state-space matrices above are described by (2). We
consider the output feedback law

u(k) = Ky(k), (41)

where K is a stabilizing ouput feedback matrix for the nominal discrete-time system
(A0, B0, C0). Then, similarly to (4), the closed loop system is

x(k + 1) =


Ā0 +

m∑

i=1

θi (Ai + EB
i + EC

i ) +
∑

i,j

θiθjEij


 x(k). (42)

The problem can now be formulated as follows:

“If K is a stabilizing output feedback matrix for the nominal discrete-time system
(A0, B0, C0), that is Ā0 stable, find the conditions that have to be satisfied by the
uncertain parameters θi, i = 1, . . . , m, so that the closed loop system (42) remains
asymptotically stable.”

Define

ẼB = [(EB
1 )T (EB

2 )T · · · (EB
m)T ]T , ẼC = [(EC

1 )T (EC
2 )T · · · (EC

m)T ]T (43)
Σ? = Ã + ẼB + ẼC , Ω2 = ĀT

0 PZ−1PĀ0 (44)

Σ =




E11 E12 · · · E1m

...
...

...
...

Em1 Em2 · · · Emm


, (45)

where ẼB , ẼC , Σ? ∈ <mn×n, and Σ ∈ <mn×mn.
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Theorem 3.3.1. When the output feedback law (41) is applied to the linear
discrete-time system (40) with structured uncertainties of (2), then the closed loop
system (42) remains asymptotically stable, when the uncertainty parameters satisfy
the relation

(
m∑

i=1

θ2
i

)
<
−σ2

max(Σ
?)

2 σ2
max(Σ)

+ (46)

+

√
σ2

max(αZ+ P) σ4
max(Σ?)+2 σmax(αZ+P ) σ2

max(Σ) [ σmin(Q)−σmax( 1
α Ω2) ]

2 σmax(αZ+P ) σ2
max(Σ)

,

where Σ? and Ω2 are defined in (44), Σ in (45), Z can be any positive definite matrix
∈ <n×n, and α can be any positive number that satisfies

α >
σmax(Ω2)
σmin(Q)

. (47)

P r o o f . Using (43) – (45), we can rewrite (42) as follows

x(k + 1) = ( Ā0 + ∆A) x(k), (48)

where
∆A = (Θ⊗ In)T Σ? + (Θ⊗ In)T Σ (Θ⊗ In). (49)

From Theorem 3.1.1, we have the following sufficient condition for (48) to remain
asymptotically stable

(∆A)T (αZ + P ) (∆A) +
1
α

Ω2 < Q, (50)

where P , Q, and Ā0 satisfy the Lyapunov equation (22), that is

ĀT
0 PĀ0 − P + Q = 0. (51)

We define

Γ1 = (Θ⊗ In)T Σ?, Γ2 = (Θ⊗ In)T Σ (Θ⊗ In) (52)

Φ1 = (αZ + P )
1
2 Γ1, Φ2 = (αZ + P )

1
2 Γ2. (53)

With definitions (52) and (53), we have

(∆A)T (αZ + P ) (∆A) = ΓT
1 (αZ + P ) Γ1 + ΓT

2 (αZ + P ) Γ2

+ ΦT
1 Φ2 + ΦT

2 Φ1 (54)
≤ 2 ΓT

1 (αZ + P ) Γ1 + 2 ΓT
2 (αZ + P ) Γ2, (55)
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where (15) was used in (54) for α = 1 and Z = I. Defining Ξ2 = (∆A)T (αZ +
P ) (∆A)+ 1

α Ω2, the following sufficient condition for (50) holds

σmax[Ξ2] ≤ 2 σmax

(
ΓT

1 (αZ + P ) Γ1

)

+ 2 σmax

(
ΓT

2 (αZ + P ) Γ2

)
+ σmax

(
1
α

Ω2

)

≤ 2 σmax(αZ + P ) σ2
max(Σ

?) (ΘT Θ)

+ 2 σmax(αZ + P ) σ2
max(Σ) (ΘT Θ)2 + σmax

(
1
α

Ω2

)

< σmin(Q) (56)

or finally

[
2 σmax(αZ + P ) σ2

max(Σ)
]

(
m∑

i=1

θ2
i

)2

+
[
2 σmax(αZ + P ) σ2

max(Σ
?)

]
(

m∑

i=1

θ2
i

)

+
[

σmax(
1
α

Ω2)− σmin(Q)
]

< 0. (57)

Selecting α to satisfy (47), we see that the 2 roots of (57) have opposite sign, and
therefore the solution is as indicated in (46). 2

4. ILLUSTRATIVE EXAMPLES

Example 1. Consider the following uncertain continuous system

A =
(−1 −1

0 0

)
+ θ1

(
5 0
−8 3

)
+ θ2

(
0 1
0 1

)
(58)

B =
(

0
−0.7

)
+ θ1

(
0

1.5

)
(59)

C =
(
0 1

)
+ θ1

(−3 0
)

+ θ2

(
0.3 2

)
. (60)

Using (13) for a given output feedback gain K = 1, α = 178.14 and

Z =




3.9214 0 0.0075 0.0302
0 3.9655 0 0

0.0075 0 3.9269 −0.0211
0.0302 0 −0.0211 3.9838


 (61)

we obtain
θ2
1 + θ2

2 < (0.0522)2 (62)

which improves the bound derived via the method of [19], which is

θ2
1 + θ2

2 < (0.0520)2. (63)



New Bounds for Robust Stability of Continuous and Discrete–time Systems. . . 633

Example 2. Consider the uncertain discrete-time system (23) from [10] for

A =
(

0.20 0.30
0.10 −0.15

)
. (64)

Using (26) of Theorem 3.1.1 for Q = I2, α = 0.2702 and

Z =
(

2.0399 −0.2037
−0.2037 1.4586

)
(65)

we obtain
σmax(∆A) < 0.6787 (66)

which compares favorably to the result of [10]

σmax(∆A) < 0.6373. (67)

Example 3. Consider the same nominal system as before, but now with structured
perturbations of the form of (35), with m = 3 and

A1 =
(

10 0.1
−1 5

)
, A2 =

(−0.5 9
0 −3

)
, A3 =

(
1 0.6
1 0.3

)
. (68)

Using (37) of Theorem 3.2.1 for Q = I2, α = 0.40 and

Z =
(

1.3462 −0.1184
−0.1184 0.8786

)
(69)

we obtain
θ2
1 + θ2

2 + θ2
3 < (0.0606)2 (70)

that is a sphere with radius R = 0.0606, whereas the method of [10] gives

|θi| < 0.0348 i = 1, 2, 3. (71)

As we see in Fig. 1, the cube of (71) is completely included in the sphere of (70),
which shows that our bound is less conservative than the one of [10].

Fig. 1. Example 3.
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Example 4. Consider the following uncertain discrete-time system with indepen-
dent uncertain parameters describing the perturbation matrices

A =
( −1 1.20

0.10 −0.15

)
+ θ1

(
1 0
−1 0

)
, B =

(
1
0

)
+ θ2

(
0
1

)
(72)

C =
(
1.2 −1.5

)
+ θ3

(−1 1
)
. (73)

For a given gain K = 0.80, we use (46) for Q = 2I2, α = 0.35 and

Z =
(

0.8160 0.0345
0.0345 1.2865

)
(74)

to obtain
θ2
1 + θ2

2 + θ2
3 < (0.2636)2. (75)

Note that α and Z in all the examples above have been decided experimentally
to give the largest radius for the hypersphere within which the uncertain paremeters
vary. Note also that for all the cases that Q had to be selected in the discrete
Lyapunov equations (Examples 2 – 4), Q = αI gave the best results.

5. CONCLUSIONS

In this paper, a novel approach for robust stability of linear continuous and discrete-
time systems under parametric uncertainty has been presented. The approach is
based on Lyapunov techniques and several examples have been used to illustrate the
results. The main point of this approach is the selection of a positive definite matrix
Z and a positive number α that maximize the stability region, within which the
uncertain parameters vary. Note that the theorems presented here have also been
used in [13] for the design of output feedback controllers that maintain the robust
stability and optimal performance of discrete-time systems.

Issues that remain to be addressed include reduction of conservatism, the exten-
sion of the present results to the case where the bounds do not have to be necessarily
symmetric with respect to the origin, and the study of the case where the parameters
are nonlinear functions of an uncertainty. Another issue that would be of consider-
able interest is the development of a systematic way-procedure, possibly based on
optimization techniques, to obtain the optimal positive matrix Z needed for our
theorems above, where with optimal matrix we mean the matrix that could give the
best bounds.

(Received February 24, 1995.)
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