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A CLASSIFICATION OF GENERALISED STATE
SPACE REDUCTION METHODS FOR LINEAR
MULTIVARIABLE SYSTEMS

N.P. Karampetakis,1 A. I. Vardulakis and A.C. Pugh

Two algorithms which reduce a general polynomial matrix model of a linear multivari-
able system Σ to an equivalent model in generalised state space (g.s.s.) form are proposed.
The nature of this equivalence is established.

1. INTRODUCTION

Consider a linear multivariable system Σ described by a polynomial matrix model:

(Σ) : A(ρ)β(t) = B(ρ)u(t) (1.1a)

y(t) = C(ρ)β(t) + D(ρ) u(t) (1.1b)

where ρ := d/dt, A(ρ) ∈ R[ρ]r×r with rankRA(ρ) = r, B(ρ) ∈ R[ρ]r×m, C(ρ) ∈
R[ρ]p×r and D(ρ) ∈ R[ρ]p×m, β(t) the pseudostate of Σ, u(t) the input vector and
y(t) the output vector. The normalised form Σ(N) of Σ [9] is

(Σ(N)) : T (ρ) ξ(t) = U u(t) (1.2a)

y(t) = V ξ(t), (1.2b)

where

T (ρ) =




A(ρ) B(ρ) 0
−C(ρ) D(ρ) Ip

0 −Im 0


 ∈ R[ρ]r̃×r̃, U =




0
0

Im


 ∈ Rr̃×m; ξ(t) =




β(t)
−u(t)
y(t)




(1.3)
V = (0 0 Ip) ∈ Rp×r̃ r̃ = r + p + m

Σ, Σ(N) may equally be represented by the polynomial matrices

P (s) =
[

A(s) B(s)
−C(s) D(s)

]
; P(s) =

[T (s) U
−V 0

]
. (1.4)

1Research is supported by EPSRC (Contract: GR/J87329).
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The problem to be studied is, given the polynomial matrix description (PMD)
[A(ρ), B(ρ), C(ρ), D(ρ)] of Σ determine a system

(ΣR) : Eẋ(t) = Ax(t) + Bu(t) (1.5a)

y(t) = Cx(t) + Du(t) (1.5b)

“equivalent” to Σ in the sense that they exhibit identical system properties.
There are essentially two different ways to solve the above problem. The first

and the most common method is to produce an algorithm, which reduces a general
PMD of a linear multivariable system Σ to ΣR, and to show step by step that
all the required properties of Σ remain invariant [2, 8, 9]. The second and more
direct way, [1], is to produce a reduction algorithm and to show it is achieved via a
system equivalence transformation, which has the property of preserving the desired
properties. The system equivalence tools available are strong system equivalence
[1] and full system equivalence [3]. Now, strong system equivalence is composed of
two separate system transformations whereas full system equivalence is composed of
only one. For this reason we use full system equivalence in the sequel.

2. PRELIMINARY RESULTS

Consider the set P (p,m) of (r + p)× (r + m) polynomial matrices where the integer
r ≥ max{−p,−m}. A matrix transformation important in systems theory is

Definition 1. [3] T1(s), T2(s) ∈ P (p,m) are said to be fully equivalent (f.e.) in
case there exist polynomial matrices M(s), N(s) such that:

[M(s) T2(s)]

[
T1(s)

−N(s)

]
= 0 (2.3)

where the compound matrices in (2.1) are such that

(i) they have full normal rank, (2.2a)

(ii) they have no finite nor infinite zeros, (2.2b)

(iii) the following McMillan degree conditions hold

δM ([M(s) T2(s)]) = δM (T2(s)); δM

([
T1(s)

−N(s)

])
= δM (T1(s)). (2.2c)

Let P(p,m) be the set of (r + p) × (r + m) Rosenbrock system matrices (1.4),
then

Definition 2. [3] P1(s), P2(s) ∈ P(p,m) are said to be full system equivalent
(f.s.e.) if ∃ polynomial matrices M(s), N(s), X(s), Y (s) such that

[
M(s) 0

X(s) I

] [
A1(s) B1(s)

−C1(s) D1(s)

]
=

[
A2(s) B2(s)

−C2(s) D2(s)

][
N(s) Y (s)

0 I

]
(2.3)
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where (2.3) is a (f.e.) transformation.

Some interesting results concerning (f.s.e.) are [3, 5]:

Theorem 1. (i) (f.s.e.) is an equivalence relation on P (p,m).

(ii) Under (f.s.e.) the following are invariant
(a) the generalized order f , the order n and the Rosenbrock degree dR,
(b) the transfer function and thus the finite and infinite transmission poles

and zeros,
(c) the finite and infinite system poles and zeros,
(d) the finite and infinite invariant zeros,
(e) the sets of finite and infinite input (output) decoupling zeros.
(f) the set of input (output) dynamical indices.

(iii) Every system matrix P (s) is (f.s.e.) with its normalized form P(s).

Theorem 2. [4] Let P1(s), P2(s) ∈ P(p,m) with transfer function matrices
G1(s), G2(s) be strongly irreducible system matrices i. e. possessing no finite nor
infinite decoupling zeros, then

P1(s)
f.s.e.∼ P2(s) ⇐⇒ G1(s) = G2(s).

3. GENERALISED STATE SPACE REALIZATIONS FOR LINEAR MULTI-
VARIABLE SYSTEMS

The problem of reducing a linear multivariable system to an “equivalent” (g.s.s.)
system has been considered by many authors [1, 2, 8, 9]. The solutions can actually
be classified under two different theoretical algorithms which are proposed in this
section.

Algorithm 1

Step 1. Given [A(s), B(s), C(s), D(s)] be the PMD of (1.1) of Σ form T (s) ∈
R[s]r̄×r̄ where r̄ = r + p + m.

Step 2. Compute a strongly irreducible realisation [A0(s), B0(s), C0(s), D0(s)] of
T (s) in the sense of Verghese [9] i. e. T (s) = C0(s)A0(s)−1B0(s) + D0(s) with

(
A0(s) B0(s) 0
−C0(s) D0(s) I

)
;




A0(s) B0(s)
−C0(s) D0(s)

0 −I




having no finite nor infinite zeros, and the polynomial matrices A0(s), B0(s), C0(s),
D0(s) are matrix pencils.
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Step 3. The system matrix of the “equivalent” (g.s.s.) realization ΣT of Σ is then

PT (s) =




A0(s) B0(s) | 0
−C0(s) D0(s) | U
— — — — — — —

0 −V | 0


 (3.1)

In the case where C0(s), B0(s) are constant matrices and D0(s) = 0 then the
algorithm is that proposed in [1, 9]. Similarly the reduction algorithm of [2, 5] also
arises from Algorithm 1 by effecting a specific strongly irreducible realization of
T (s). We now wish to determine the nature of the equivalence between Σ and ΣT .

Theorem 3. The linear multivariable systems Σ of (1.1) and ΣT of (3.1) are
(f.s.e.).

P r o o f . Clearly the following holds



0 | 0
Ir̃ | 0

— — — — —
0 | Ip






T (s) | U

— — — — —
−V | 0




=




A0(s) B0(s) | 0
−C0(s) D0(s) | U
— — — — — — —

0 −V | 0







−A0(s)−1B0(s) | 0
Ir̃ | 0

— — — — —
0 | Im




(3.2)

where [A0(s), B0(s), C0(s), D0(s)] is a strongly irreducible realisation of T (s) and
the polynomial matrices A0(s), B0(s), C0(s), D0(s) are pencils. We need to show
that (3.2) is a (f.s.e.) transformation or specifically that A0(s)−1B0(s) is a poly-
nomial matrix and that the compound matrices formed from (3.2) satisfy the (f.e.)
conditions (2.2).

It is obvious that the Rosenbrock system matrices

P1(s) =
(

I 0
0 T (s)

)
and P2(s) =

(
A0(s) B0(s)
−C0(s) D0(s)

)
(3.3)

are strongly irreducible and have the same transfer function matrix T (s). Thus from
Theorem 2 P1(s), P2(s) are (f.s.e.) and therefore there exist polynomial matrices
M(s), N(s), X(s), Y (s) such that

(
M(s) 0
X(s) Ir̃

) (
I 0
0 T (s)

)
=

(
A0(s) B0(s)
−C0(s) D0(s)

) (
N(s) Y (s)

0 Ir̃

)
(3.4)

where (3.4) is a (f.e.) transformation. From the (1,2) equation of (3.4) we have that
Y (s) = −A0(s)−1B0(s) and thus A0(s)−1B0(s) is a polynomial matrix.
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The compound matrix formed by the left matrices of the relation (3.2) satisfies
the McMillan degree conditions of (2.2) and further it can be easily transformed
under constant, nonsingular column operations to




0 | 0 A0(s) B0(s) 0
0 | Ir̃ −C0(s) D0(s) 0

— — — — — — — — — — —
Ip | 0 0 0 0


 (3.5)

which obviously satisfies (2.2b) because [A0(s), B0(s), C0(s), D0(s)] is strongly irre-
ducible.

From the McMillan degree condition which holds for the right compound matrix
of the (f.e.) transformation (3.4) we have that since Y (s) = −A0(s)−1B0(s)

δM




I 0
0 T (s)

— — — —
−N(s) A0(s)−1B0(s)

0 −Ir̃




= δM

(
I 0
0 T (s)

)
(3.6)

(3.6) implies [3] that N(s) is constant which plays no role in the McMillan degree
conditions and so we conclude that

δM

( T (s)
A0(s)−1B0(s)

)
= δM (T (s)) (3.7)

Thus the compound matrix formed by the right matrices of the relation (3.2) satisfies
the McMillan degree conditions of (2.2) because of (3.7), and since it can be easily
transformed under constant and nonsingular row operations to the following form




0 | 0
T (s) | 0

A0(s)−1B0(s) | 0
−Ir̃ | 0

— — — — — —
0 | Im




(3.8)

it follows that it has no finite nor infinite zeros. Thus (3.2) is an (f.e.) transformation.
It then follows from Theorem 1 (iii) and the transitivity of (f.s.e.) that the system

matrix P (s) corresponding to Σ of (1.1) is (f.s.e.) to the system matrix (3.1) of ΣT .
2

While the first algorithm is based on the realization of T (s) defined in (1.3), a
second reduction may be based on a realization of T (s)−1.

Algorithm 2

Step 1. Given Σ of (1.1), form T (s) ∈ R[s]r̃×r̃ of (1.3) where r̃ = r + p + m.
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Step 2. Compute a strongly irreducible realization [E,A ∈ Rλ×λ, B ∈ Rλ×r̃, C ∈
Rr̃×λ, D ∈ Rr̃×r̃] of T (s)−1 in the sense of Verghese i. e. T (s)−1 = C(sE−A)−1B+
D where the compound matrices

(
sE −A B

)
;

(
sE −A
−C

)

have no finite nor infinite zeros.

Step 3. The “equivalent” generalized state space system ΣT −1 of Σ will be the
following

(ΣT −1) : Eẋ(t) = Ax(t) + BUu(t) (3.9a)

y(t) = VCx(t) + VDUu(t). (3.9b)

Theorem 4. The linear multivariable systems Σ of (1.1) and ΣT −1 of (3.9) are
(f.s.e.).

P r o o f . This follows in a similar way to the result in Theorem 3. The (f.s.e.)
transformations which relates the systems (1.2) and (3.9) are the following

(T (s)C(sE −A)−1 0
0 Ip

)(
sE −A BU
−VC VDU

)
=

(T (s) U
−V 0

)(
C −DU
0 Im

)
(3.10)

(
B 0
VD Ip

)(T (s) U
−V 0

)
=

(
sE −A BU
−VC VDU

)(
(sE −A)−1BT (s) 0

0 Im

)
(3.11)

2

As we can see from Algorithms 1 and 2 the construction of an “equivalent” gen-
eralized state space realization of the system Σ in (1.1) centres on the computation
of a strongly irreducible realization either of T (s) or T (s)−1. [1] and [9] ([8]) gave a
solution to this problem with the construction of a strongly irreducible realization of
T (s) (T (s)−1) in terms of finite and infinite Jordan pairs of T (s) (T (s)−1). A conse-
quence of this kind of solution is, that these algorithms are not easily implemented.
In contrast [2] proposed a more practical solution to the above problem.

4. AN EXTENSION OF TAN AND VAN DEWALL’S MODEL

A different approach to the implementation of the above algorithms is given by an
extension of the known generalized state space realization method for MFDs (matrix
fraction descriptions) presented by [6]. We first present some useful lemmas.

Lemma 1. [7] Let T (s) ∈ R(s)p×m with rankR(s)T (s) = m (resp. = p). Then
T (s) is column (row) reduced at s = ∞ iff the pole-zero structure at s = ∞ of T (s)
is given by the pole-zero structure of its columns (rows) taken separately.
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Lemma 2. [7] Let T (s)∈R(s)p×m and T (s)=Q1(s)−1R1(s) (=R2(s)Q2(s)−1), be
a left (right) MFD of T (s). If the compound matrix [Q1(s) R1(s)], ([Q2(s)T R2(s)T ]T )
possesses no zeros in CU{∞} then

δM (Q1(s)−1R1(s)) =
k∑

i=1

qi[Q1 R1] = δM (Q1(s) R1(s))

[
δM (R2(s)Q2(s)−1) =

k∑

i=1

qi[QT
2 RT

2 ]T = δM (Q2(s)T R2(s)T )T

]
(4.1)

where qi[Q1 R1] ≥ 0 (qi[QT
2 RT

2 ]T ≥ 0) are the degrees of the infinite poles of
[Q1(s) R1(s)] ([Q2(s)T R2(s)T ]T ).

If (1.2) is the normalised form of Σ then let

S∞T (s)(s) := diag
[
sq1 , sq2 , . . . , sqk ,

1
sqk+1

, . . . ,
1

sqr̃

]
(4.2)

be the Smith McMillan form at s = ∞ of T (s). The following readily implementable
algorithm for the construction of an “equivalent” (g.s.s.) reduction of Σ is proposed.
The algorithm represents a generalisation of the proposed in [6, 10].

Algorithm 3

Step 1. Compute a unimodular matrix U(s) ∈ R[s]r̃×r̃ such that

T (s)−1 = [U(s)]× [T (s)U(s)]−1 (4.3)

where the following compound matrix is column reduced
(

Q(s)
R(s)

)
:=

(T (s)U(s)
U(s)

)
(4.4)

Step 2. Define,

S∞[Q(s)T R(s)T ]T (s) =
(

diag [sq̄1 , sq̄2 , . . . , sq̄r̃ ]
0r̃×r̃

)
. (4.5)

Define the matrix

ST (s) =




sq̄1 sq̄1−1 . . . 1 . . . 0
0 . . . 0
...

. . . 0
0 . . . sq̄r̃ sq̄r̃−1 . . . 1


 (4.6)

and write the polynomial matrices Q(s) and R(s) as follows

Q(s) = QcS(s); R(s) = RcS(s) (4.7)

where Qc and Rc are constant matrices.
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Step 3. Construct the core realization

Ecs−Ac = block diag{Ec1s−Ac1, . . . , Ecr̃s−Acr̃} (4.8)

Ecis−Aci =




0 0 . . . 0 0
−1 s . . . 0 0
...

. . .
...

...
0 0 . . . −1 s


 ∈ R[s](q̄i+1)×(q̄i+1) (4.9)

BT
c = blockdiag[B1, B2, . . . , Br̃]; Bi = [1 0 . . . 0] ∈ R1×(q̄i+1) (4.10)

Cc = In, n =
r̃∑

i=1

q̄i + r̃. (4.11)

The “equivalent” (g.s.s.) model of the system Σ in (1.1) is then

(ΣR) : Eẋ(t) = Ax(t) + Bu(t) (4.12a)

y(t) = Cx(t) + Du(t), (4.12b)

where

E = Ec, A = Ac −BcQc, B = BcU , C = VRcCc = VRc. (4.13)

Theorem 5. The linear multivariable systems ΣR of (4.12) and Σ of (1.1) are
(f.s.e.).

P r o o f . It is easily checked ([6]) that the PMD [sEc − Ac + BcQc, Bc, Rc] is
strongly irreducible and realizes T (s)−1 i. e. T (s)−1 = Rc(sEc − Ac + BcQc)−1Bc.
Thus from Theorem 4 the (g.s.s.) system (4.12) will be (f.s.e.) with the system Σ(N)

in (1.2), and thus with the system Σ in (1.1). 2

Remark 1. The dimension of x(t) of the (g.s.s.) system ΣR in (4.12) is

λ = r̃ + δM (T (s)). (4.14)

To see this note that from (4.8), (4.9) and (4.13)

λ =
r̃∑

i=1

(q̄i + 1). (4.15)

The compound matrix [Q(s)T R(s)T ]T has been constructed from [Ir̃ T (s)T ]T

with unimodular operations which have no finite zeros. Thus [Q(s)T R(s)T ]T possess
no finite zeros. [Q(s)T R(s)T ]T has also no infinite zeros by Lemma 1 because it is
column reduced. Hence from Lemma 2

δM (T (s))
[7]
= δM (T (s)−1) = δM (R(s)Q(s)−1) = δM ([R(s)T Q(s)T ]T ) =

r̃∑

i=1

q̄i.

(4.16)
The combination of relations (4.15) and (4.16) gives the result.

A similar more practical version of Algorithm 1 can also be given.
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5. ILLUSTRATIVE EXAMPLE FOR ALGORITHM 3

Consider the linear system Σ described by the following system equations

(Σ) : (ρ2 + 5ρ + 6) β(t) = (p + 1) u(t)

y(t) = (−2ρ + 5) β(t) + (3ρ + 2) u(t).
(E.1)

The normalized system matrix P(s) of the above system will be following

P(s) =

(T (s) U
−V 0

)
=




s2 + 5s + 6 s + 1 0 | 0
2s− 5 3s + 2 1 | 0

0 −1 0 | 1
— — — — — — — — —

0 0 −1 | 0




. (E.2)

Step 1. The polynomial matrix T (s)−1 may be written as

T (s)−1 = I3T (s)−1 =: R(s) Q(s)−1. (E.3)

Note that the matrix (
Q(s)
R(s)

)
=

(T (s)
I3

)
(E.4)

is column reduced with column degrees {2, 1, 0} and so there is no need to determine
the unimodular matrix U(s).

Step 2. Let now

S(s)T =




s2 s 1 | 0
— — — — — — — — — — — —

| s 1 |
— — — — — —

0 | 1




. (E.5)

Then

Q(s) = (= T (s)) = QcS(s) =




1 5 6 1 1 0
0 2 −5 3 2 1
0 0 0 0 −1 0


S(s) (E.6)

R(s) = (= I3) = RcS(s) =




0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


S(s). (E.7)
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The core realization is then

sEc −Ac =




0 0 0 |
−1 s 0 |
0 −1 s |

— — — — — — | — — — — |
| 0 0 |
| −1 s |
| — — — — | — —

0 | 0




;

Bc =




1 |
0 |

| 0
0 |

— — | — — |
| 1 |
| 0 |
| — — | — —

0 |
| 1




and Cc = I6

.

(E.8)
The (f.s.e.) g.s.s. system of (E.1) will be the following

PR(s) =
(

sEc −Ac + BcQc BcU
−VRc 0

)
=




1 5 6 1 1 0 | 0
−1 s 0 0 0 0 | 0
0 −1 s 0 0 0 | 0
0 2 −5 3 2 1 | 0
0 0 0 −1 s 0 | 0
0 0 0 0 −1 0 | 1
— — — — — — — —
0 0 0 0 0 −1 | 0




.

(E.9)

CONCLUSIONS

The problem of the reduction of a linear multivariable system to an “equivalent”
(g.s.s.) system has been studied. All the known reduction algorithms proposed
by [1, 2, 8, 9] can be classified by two different theoretical reduction algorithms. In
either case the problem is reduced to the construction of a strongly irreducible
realisation of a square rational matrix. It was shown that these two general reduction
algorithms gives rise to g.s.s. models, which are (f.s.e.) to the original. Thus the
original system and any g.s.s. reduction of it share the same finite and infinite
system properties. A more computationally attractive form of Algorithm 2 has been
presented via Algorithm 3 and a similarly attractive form of Algorithm 1 can be
developed, although this has not been given here.
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