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SINGULAR FINITE HORIZON FULL INFORMATION H∞

CONTROL VIA REDUCED ORDER RICCATI EQUATIONS

Francesco Amato and Alfredo Pironti

In this paper we consider the standard finite horizon, full information H∞ control prob-
lem when the direct feedthrough matrix, which links the control input to the controlled
output, is not full column rank. Using a differential game approach, we show that, in this
case, the solution of the problem can be obtained solving a reduced order Riccati differential
equation.

1. INTRODUCTION

In this paper we consider the finite horizon, full information H∞ control problem
for linear time-varying systems. Full information means that, as often it happens in
practical situations (see for example [4]) the exogenus inputs, including command
signals and disturbances, are available for the feedback (for the definition of full
information problem see [5]).

This problem has been solved in the nonsingular case (in other words when the
direct feedthrough matrix D between the control input and the controlled output is
full column rank), see for example [5], [6] and [9].

Our goal is to discuss the H∞ problem when the above-mentioned D matrix is
not full column rank, the so-called singular problem. Our main result consists in
proving that, in this case, the original H∞ problem is equivalent to another H∞
problem related to a reduced order system.

The machinery uses a dynamic games approach ([1], [2]) leading to a singular
minmax problem. Using a suitable decomposition of the state space introduced in
the literature by Butman [3] (see also [7]) and considering the class of solutions of
full information type, we will show that this game is equivalent to another game
acting on a reduced order state equation.

This work is a first attempt of generalization to the time-varying setting of the
results contained in the paper by Stoorvogel [8], where the singularH∞ control prob-
lem for time-invariant systems has been solved by means of an elegant decomposition
of the state space involving the concept of strongly controllable subspace.

The paper is organized as follows. In Section 2 we state precisely the problem we
deal with, showing the connections with the differential game theory. In Section 3 a
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theorem concerning the equivalence between the original singular minmax problem
and a certain reduced order minmax problem is proved when D = 0. In Section 4
we come back to the H∞ setting and state our main result when D = 0, while
in Section 5 the case D 6= 0 is discussed, showing that it can be solved using the
same machinery. Finally in Section 6 some concluding remarks and plans for future
research are given.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let Ω := [t0, tf ] any compact interval on the real line. We denote by L2(Ω) the
space of the real vector-valued functions which are square integrable on Ω. The
usual norm in L2(Ω) is denoted by ‖·‖2. Given a linear time-varying system

G :=

{
ẋ(t) = A(t) x(t) + B(t)u(t), x(t0) = 0

y(t) = C(t)x(t) + D(t)u(t)
t ∈ Ω, (1)

it uniquely defines a linear operator from L2(Ω) to L2(Ω) denoted by G. ‖G‖ denotes
the operator norm induced by the norm in L2(Ω). Given any matrix F ∈ IRn×m

(with n ≥ m), F † denotes the left pseudoinverse of F .
We consider the finite horizon full information H∞ control problem for the linear

time-varying system
{

ẋ(t) = A(t)x(t) + B(t) u(t) + H(t)w(t), x(t0) = 0

z(t) = C(t) x(t) + D(t)u(t)
t ∈ Ω, (2)

where x(t) ∈ IRn is the state, u(t) ∈ IRm is the control input, w(t) ∈ IRl is the
exogenus input, and z(t) ∈ IRp is the controlled output. We shall assume that all
the involved matrices are continuously differentiable and, without loss of generality,
that the matrices B and C are full column and row rank respectively.

Since all matrices and vectors in the paper are time-varying, to avoid cumbersome
notation, we will omit the time argument, if this is not cause of ambiguity.

The problem we shall consider in this paper is precisely defined as follows.

Problem 1. Given a positive real number γ, find, if existing, a causal linear control
K : L2(Ω)× L2(Ω) → L2(Ω), (x, w) → u, such that ‖Tzw‖ < γ, where Tzw denotes
the closed loop operator mapping w to z.

Problem 1 has been solved for the full column rank D case in [5] using a dynamic
games approach. The following lemma connects the H∞ theory with the dynamic
games theory.

Lemma 1. ([9, 5]) Let

J(u, w) = γ2‖w‖22 − ‖z‖22 =
∫

Ω

(γ2wT w − zT z) dt .
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Then, for a given control law ũ, ‖Tzw‖ < γ if and only if for some µ > 0

J(ũ, w) ≥ µ‖w‖22, ∀w ∈ L2(Ω). (3)

By virtue of Lemma 1 the solution of the H∞ problem requires the study of the
dynamic game 1





min
w

max
u

J(u, w)

ẋ = Ax + Bu + Hw, x(t0) = x0

z = Cx + Du.

(4)

Lemma 2. ([2, 5]) The zero-sum dynamic game (4) with D full column rank
admits a unique feedback saddle point solution if and only if there exists a positive
semidefinite matrix P which satisfies the Riccati differential equation

−Ṗ =PA+ATP +
1
γ2

PHHTP +CTC−(
PB+CTD

)
(DTD)−1

(
BTP +DTC

)
,

P (tf )=0. (5)

In this case the solution is given by

u∗ = −
(
D†C + BT (DT D)−1P

)
x (6a)

w∗ = 1
γ2 HT Px. (6b)

For arbitrary u, w ∈ L2(Ω), let

u0 = D
(
u +

(
D†C + BT (DT D)−1P

)
x
)

w0 = w − 1
γ2

HT Px ,

then
J(u, w) = xT

0 P (t0)x0 + γ2‖w0‖22 − ‖u0‖22,
where J(u, w) is the same as in Lemma 1.

Now assume there exists a positive semidefinite P satisfying (5). In this case
from Lemma 2 we have that the feedback control law u∗ defined in (6a) is such
that u0 = 0; consequently, letting x0 = 0, the corresponding optimal cost becomes
J(u∗, w) = γ2‖w0‖22. Now it is possible to prove (see for example [5] and [9]) the
existence of a positive scalar k such that, for all t ∈ Ω, ‖w0‖22 ≥ k‖w‖22. From this
follows that

J(u∗, w) ≥ γ2k‖w‖22 , ∀w ∈ L2(Ω) , (7)

and, according to Lemma 1, this means that the control law (6a) solves the H∞
Problem 1.

1The dynamic game requires nonzero initial condition to avoid the trivial solution u = w = 0.
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In this paper we consider the more general situation in which D is not full column
rank, i. e. rank(D) = m1 < m. When this happens the minmax problem (4) becomes
singular and Lemma 2 does not hold.

We will show that when D is not full column rank and we are under Assumption 1,
solving Problem 1 is equivalent to solve another H∞ control problem related to a
reduced order state equation.

3. A REDUCED ORDER DIFFERENTIAL GAME

Throughout this and the next section we shall assume that D = 0; this greatly
simplifies the machinery. How to deal with the more general nonzero D case will be
detailed in Section 5. When D = 0, if the number of inputs m equals the number
of states n, the solution of Problem 1 is trivial, that is u = −B−1Hw; therefore we
shall assume that n > m.

Our goal in this section is to prove that, when D = 0 and we consider solutions of
full information type, problem (4) is equivalent to another minmax problem acting
on a reduced order state equation.

We use a procedure introduced, in the optimal control setting, by Butman [3].
Let E a time-varying continuously differentiable matrix, E(t) ∈ IRn×(n−m), such
that for all t ∈ Ω

ET B = 0, ET E = I . (8)

Note that the existence of E is guaranteed from the fact that n > m and that B is
full column rank.

Now consider the following decomposition of the state space

x = Ey + Bv . (9)

Observe that, by virtue of (8) and (9), we can write

y = ET x (10a)

v = B†x . (10b)

Differentiating (10a) we obtain

ẏ = Ãy + B̃v + H̃w, (10)

where
Ã = Ė

T
E + ET AE (12a)

B̃ = Ė
T
B + ET AB (12b)

H̃ = ET H. (12c)

Differentiating (9) we have

ẋ = Eẏ + Ėy + Bv̇ + Ḃv . (13)
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Equaling the expression for ẋ in (2) and (13) and premultiplying both sides by
B† we obtain

B†AEy + B†ABv + B†Hw + u = v̇ + B†Ėy + B†Ḃv, (14)

where we have used the fact that B†E = 0. From (14) it follows

u = v̇ + B†(Ḃ −AB
)
v + B†(Ė −AE

)
y −B†Hw . (15)

Replacing in the output equation of system (2) (with D = 0) equality (9), we
obtain

z = C̃y + D̃v, (16)

where
C̃ = CE (17a)

D̃ = CB. (17b)

Now let us consider the following two systems

G :=





ẋ = Ax + Bu + Hw, x(t0) = x0

v = B†x,
(18)

F :=





ẏ = Ãy + B̃v + H̃w, y(t0) = ET x0

u = B†(Ė −AE
)
y + B†(Ḃ −AB

)
v −B†Hw + v̇

(19)

System (18) defines an operator G : (u,w) → v, while system (19) defines an
operator F : (v, w) → u. It is simple to show that, for fixed w’s, F is the inverse of
G and viceversa, that is G(F (v,w), w) = v and F (G(u, w), w) = u.

We can redefine the cost function in the following way

J̃(v, w) := J(F (v, w), w) = J(u,w), (20)

and consider the new dynamic game acting on a reduced order state equation (be-
cause y(t) ∈ IRn−m)





min
w

max
v

J̃(v, w)

ẏ = Ãy + B̃v + H̃w, y(t0) = ET x0

z̃ = C̃y + D̃v.

(21)

In the next theorem we will show that problem (21) is equivalent to the original
problem (4).
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Theorem 1. (u∗, w∗) is a feedback solution of problem (4) with D = 0 if and
only if (v∗,w∗) is a feedback solution of problem (21), where

v∗ = v∗(w) = G(u∗, w) (22a)

u∗ = u∗(w) = F (v∗, w). (22b)

P r o o f . If (v∗, w∗) is solution of (21), we have that

J̃(v, w∗) ≤ J̃(v∗, w∗) ≤ J̃(v∗, w) , ∀ (v,w) ∈ L2(Ω)× L2(Ω). (23)

In order to prove that (u∗,w∗), with u∗ satisfying (22b), is solution of (4), we
have to show that

J(u, w∗) ≤ J(u∗(w∗), w∗) ≤ J(u∗(w), w) , ∀ (u, w) ∈ L2(Ω)× L2(Ω). (24)

By contradiction suppose there exists a feedback solution û(w) 6= u∗(w) such
that

J(û(w∗), w∗) > J(u∗(w∗), w∗) (25)

and let
v̂(w) = G(û(w), w) . (26)

We obtain

J̃(v̂(w∗), w∗) = J(û(w∗), w∗) > J(u∗(w∗), w∗) = J̃(v∗,w∗) (27)

which contradicts (23); therefore the left inequality in (24) is proven. The proof of
the right inequality follows the same guidelines.

The proof that if (u∗, w∗) is a solution of (4) then (v∗,w∗) is a solution of (21)
is analogous. 2

From equations (22) follows that the solutions considered in Theorem 1 are of full
information type, that is the player “u” have to know the move of the player “v”
and viceversa; therefore Theorem 1 establishes a one-to-one correspondence between
the full information solutions of the game (4) and the full information solutions of
the game (21). There is no full state feedback counterpart of Theorem 1; this is
the reason for which we cannot extend the technique developed in this paper to full
state feedback H∞ control problems.

4. MAIN RESULT

In this section we come back to the H∞ problem; using Theorem 1 we will show the
equivalence between the original Problem 1 and a reduced order H∞ problem.

Let us consider the time-varying system
{

ẏ = Ãy + B̃v + H̃w, y(t0) = 0

z̃ = C̃y + D̃v
t ∈ Ω. (28)
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Problem 2. Given a positive real number γ, find, if existing, a causal linear control
K : L2(Ω)× L2(Ω) → L2(Ω), (y,w) → v, such that ‖Tz̃w‖ < γ, where Tz̃w denotes
the closed loop operator mapping w to z̃.

Theorem 2. Assume D = 0. Then

i) Problem 1 admits a solution if and only if Problem 2 admits a solution.

ii) If Problem 2 is regular, that is D̃ is full column rank, it admits a solution if
and only if there exists a unique positive semidefinite solution P̃ of the reduced
order Riccati equation

− ˙̃P = P̃ Ã+Ã
T
P̃ +

1
γ2

P̃ H̃H̃
T
P̃ +C̃

T
C̃−(

P̃ B̃+C̃
T
D̃

)
(D̃

T
D̃)−1

(
B̃

T
P̃ +D̃

T
C̃

)
,

P̃ (tf ) = 0 ; (29)

in this case the control law

u = K1x + K2w (30)

with

K1 = ˙̃K1E
T +K̃1

(
Ã + B̃K̃1

)
ET +B†(Ḃ−AB

)
K̃1E

T +B†(Ė−AE
)
ET (31a)

K2 = K̃1H̃ −B†H (31b)

K̃1 = −
(
D̃
†
C̃ + B̃

T
(D̃

T
D̃)−1P̃

)
(31c)

is optimal for the original Problem 1, i. e. it is such that ‖Tzw‖ < γ.

P r o o f . (i) It is a straight consequence of Lemma 1 and of equality (20).

(ii) If D̃ is full column rank problem (21) is regular and, applying Lemma 2, the
solution is

v∗ = K̃1y (32a)

w∗ = K̃2y, (32b)

where K̃1 has the expression (31c) and

K̃2 =
1
γ2

H̃
T
P̃ . (33)

Substituting equations (32) into system (19), it is readily seen that the solution
of the original problem (4), by virtue of Theorem 1, is given by

u∗(t) = F (v∗, w) (t)
= K1(t)x(t) + K2(t)w(t) + dδ(t− t0), (34)
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where K1 and K2 have the expressions (31a) and (31b), δ(t) is the delta function
centered at 0, and

x = Ey + Bv∗ (35a)

d = (v∗(t+0 )− v∗(t−0 )). (35b)

Now, elaborating with some algebra the equations in (18) and (19), it is possible
to show that the control law (30) assures that v = K̃1y. Let

v0 = v − K̃1y (36a)

w0 = w − K̃2y. (36b)

From Lemma 2 with x(t0) = 0

J̃(v,w) = γ2‖w0‖22 − ‖v0‖22, (37)

hence, since v0 = 0, we have that

J̃(v,w) = γ2‖w0‖22 . (38)

Under the control law (30), w and w0 are the input and the output respectively
of the system

{
ẋ = (A + BK1)x + (BK2 + H)w, x(t0) = 0

w0 = −K̃2E
T x + w.

(39)

This system is invertible and the inverse is
{

ẋ = (A+BK1 +BK2K̃2E
T +HK̃2E

T ) x+(BK2 + H)w0, x(t0) = 0
w = K̃2E

T x + w0.
(40)

Since system (40) cannot have finite escape time, we can find µ > 0 such that

γ2‖w0‖22 ≥ µ‖w‖22 (41)

which implies
J(u, w) = J̃(v,w) ≥ µ‖w‖22. (42)

Now from Lemma 1 the statement of the theorem readily follows. 2

Remark 1. Note that v∗(t) is discontinuous at the point t = t0; indeed the ini-
tial condition of the state equation requires that v∗(t−0 ) = B†x0, while the optimal
control law requires that v∗(t+0 ) = K̃1(t0)y0 = K̃1(t0) ET (t0)x0. Hence the sol-
ution u∗ of problem (4) contains an impulse at t0; this is not surprising since u is not
constrained to be bounded. Conversely, due to the zero initial condition in the state-
ment of the H∞ problem, the impulse, appearing in the solution of the associated
singular dynamic game, is not present in the control law given in Theorem 2.
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If D̃ is not full column rank, one can either apply again the reduction procedure
if n−m > m or to replace, as suggested in [9], the output equation in problem (21)
with

z̃ =
(

C̃
0

)
y +

(
D̃
βI

)
v, (43)

where β is a sufficiently small positive number. Obviously the same trick could be
applied directly to the original problem (4). However now the advantage is that, in
any case, we are dealing with a reduced order state equation.

5. EXTENSION TO THE NONZERO D CASE

Now we will show that the case 0 < rank(D) = m1 < m can be treated using
the same machinery introduced in Section 3. Let us denote by V a continuously
differentiable matrix, V (t) ∈ IRm×m, such that

V T V = V V T = I, DV =
(
D1 0

)
, (44)

where D1(t) ∈ IRp×m1 is full column rank. Letting u = V r, r =
(
rT

1 rT
2

)T , and
BV =

(
B1 B2

)
, with B1(t) ∈ IRn×m1 and B2(t) ∈ IRn×(m−m1) full column rank,

system (2) can be rewritten as
{

ẋ = Ax + B1r1 + B2r2 + Hw, x(t0) = 0

z = Cx + D1r1

t ∈ Ω . (45)

Let
x = Ey + B2v1, (46)

where E is continuously differentiable, E(t) ∈ IRn×(n−m+m1), ET E = I and
ET B2 = 0. Differentiating (46) and following the same guidelines of Section 3,
we obtain the reduced order system (y(t) ∈ IRn−m+m1)





ẏ = Ãy + B̃1r1 + B̃2v1 + H̃w, y(t0) = 0

z̃ = C̃y + D1r1 + D̃2v1,
(47)

where Ã, H̃, and C̃ are still given from equations (12a), (12c) and (17a) respectively,
and

B̃1 = ET B1 (48a)

B̃2 = ET AB2 + ĖT B2 (48b)

D̃2 = CB2. (48c)

Letting

v =
(
rT

1 vT
1

)T (49a)

B̃ =
(
B̃1 B̃2

)
(49b)

D̃ =
(
D1 D̃2

)
, (49c)
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system (47) can be rewritten as
{

ẏ = Ãy + B̃v + H̃w, y(t0) = 0

z̃ = C̃y + D̃v.
(50)

Using the same machinery of Sections 3 and 4, it is simple to prove Theorem 2 in
the general case considered in the current section. In particular Problem 1 admits a
solution if and only if Problem 2, stated for system (50), admits a solution. Moreover,
if the matrix D̃ defined in (49c) is full column rank, Problem 2 admits a solution if
and only if the reduced order Riccati equation

− ˙̃P = P̃ Ã+Ã
T
P̃ +

1
γ2

P̃ H̃H̃
T
P̃ +C̃

T
C̃−(

P̃ B̃ + C̃
T
D̃

)
(D̃

T
D̃)−1

(
B̃TP̃ +D̃

T
C̃

)
,

P̃ (tf ) = 0 (51)

has a unique positive semidefinite solution P̃ .
Now letting, as in (31c),

K̃1 = −
(
D̃
†
C̃ + B̃

T
(D̃

T
D̃)−1P̃

)
=

(
K̃11

K̃21

)
, (52)

after some algebra it is possible to show that the solution of Problem 1 is given by
(

r1

r2

)
= K1x + K2w

=
(

K11

K21

)
x +

(
0

K22

)
w, (53)

where

K11 = K̃11E
T (54a)

K21 = ˙̃K21E
T +K̃21(Ã+B̃K̃1) ET +B†

2(Ḃ2−AB2)K̃21E
T +B†

2(Ė−AE)ET (54b)

K22 = K̃21H̃−B†
2H . (54c)

In terms of the variable u, the optimal control law (53) is given by

u = V

(
K11

K21

)
x + V

(
0

K22

)
w . (55)

6. CONCLUSIONS

In this paper the singular finite horizon full information H∞ control problem has
been considered. Using the dynamic games theory and a suitable state space de-
composition, we have shown that the original problem is equivalent to a reduced
order one. If a certain assumption is satisfied, this new problem is regular and can
be solved via standard methods. Future research will be devoted to investigate two
open problems: full state feedback and the extension to the output feedback case.

(Received February 24, 1995.)
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