
Kybernetika
VOLUME 41 (2005), NUMBER 1

The Journal of the Czech Society for
Cybernetics and Information Sciences

Published by:

Institute of Information Theory
and Automation of the Academy
of Sciences of the Czech Republic

Editor-in-Chief:

Milan Mareš
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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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NON–LINEAR OBSERVER DESIGN METHOD
BASED ON DISSIPATION NORMAL FORM1

Václav Černý and Josef Hrušák

Observer design is one of large fields investigated in automatic control theory and a lot
of articles have already been dedicated to it in technical literature. Non-linear observer
design method based on dissipation normal form proposed in the paper represents a new
approach to solving the observer design problem for a certain class of non-linear systems.
As the theoretical basis of the approach the well known dissipative system theory has
been chosen. The main achievement of the contribution consists in the fact that the error
dynamics of the observer is priory chosen non-linear. It provides more flexibility in the
sense of specifying error convergence properties to zero in comparison with other techniques.
Lyapunov’s stability theory is the other basic point of the approach.

Keywords: invariance, structure, stability, structural condition, Lyapunov function

AMS Subject Classification: 93C10

1. INTRODUCTION

At the beginning, known observer design methods for non-linear systems are shortly
discussed. Bestle and Zeitz [3] were probably the first to introduce a non-linear
canonical form needed for non-linear observer design. However, actual computation
of a non-linear transformation into the form remains an unsolved problem. Krener
and Isidori [16] explored the problem of transforming a non-linear system without
inputs into a linear one by changing state variables and output injection. The ob-
server design problem for non-linear systems with inputs was discussed in the paper
written by Krener and Respondek [17]. They separated the system to be observed
into two parts, an unforced part and an input-dependent part. Then the unforced
part is transformed into an unforced linear observer form. If the transformation can
be determined then it has to be checked whether it changes the input-dependent
part into a non-linear mapping that only depends on input and output variables.
To avoid this restriction, Keller [15] proposed a non-linear observer design method
which consists in transforming the whole (undivided) system into a generalized ob-
server canonical form. In comparison with previous forms, it depends on the first

1This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the project No. 1M6840770004.
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n-time derivatives of input variables. The consequence is that the resulting observer
has to be supplied not only with the input and output variables of the system but
also with the first n-time derivatives of the input variables. Birk and Zeitz [4] devel-
oped a method for non-linear observer design of MIMO systems based on extending
the Luenberger observer. The question of reducing the dependency of an observer on
derivatives of the input was discussed by Proychev and Mishkov [21]. The method of
Krener and Respondek [17] was practically implemented by Chiasson and Novotnak
[5] for the pm stepper motor. One of recent approaches to non-linear observer de-
sign originally proposed by Glumineau, Moog and Plestan is based on input-output
injection [12, 18, 20]. In contrast to other methods, the transformation carrying a
non-linear system into a proper canonical form is computed algorithmically via a
GIOIA procedure.

The characteristic feature of the methods mentioned above is the linear error
dynamics of the appropriate observer. Guaranteeing error convergence to zero is
then performed mostly by the pole assignment technique.

The paper deals with a non-linear observer design problem without any prior
assumption about the structure of the observer and/or linearity of its error dynamics.
Instead of that two natural conditions are formulated. The first one determining the
structure of the observer is an error invariance condition. This means that error
time evolution has to be independent of the unknown internal state of a system, the
state of the observer and external measured (input-output) signals. The second one
determining the parametrization of the observer is an error convergence condition to
zero corresponding to the asymptotical stability of the error dynamics. The approach
presented in the paper consists in the prior choice of the error dynamics selected in
order to fulfill the two conditions mentioned above. The error dynamics is chosen
in the so called dissipation normal form. Its non-linear character provides more
flexibility in specifying error convergence properties to zero in comparison with a
linear one. By means of it we can specify not only required convergence rate but
also other of its characteristics. It is possible to implement for example magnitude
dependent damping by a non-linear function. Then the observer containing the
function has a bigger and more robust damping ability than observers designed in
other ways.

2. PROBLEM FORMULATION

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= f [x(t), u(t)] (1)

y(t) = h[x(t)] (2)

where x(t) ∈ X ⊂ Rn is a state, u(t) ∈ U ⊂ Rp is an input, y(t) ∈ R1 is an output,
n, p ∈ N \ {0}, f ∈ Cn : X ×U → Rn is a vector function and h ∈ Cn : X → R1 is a
scalar function. Assume that the representation R(S) is observable for any input [9]
in the sense that it holds:

∀x(t) ∈ X,u(t) ∈ U : detHo[x(t), u(t)] 6= 0 (3)
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where:

Ho[x(t), u(t)] =
∂

∂x(t)




h[x(t)]
Df{h[x(t)]}

...
Dn−1

f {h[x(t)]}


 (4)

is a generalized observability matrix (for the definition of D see the Appendix).
The aim is to design an observer R(Ŝ):

R(Ŝ) :
dx̂(t)

dt
= f̂ [x̂(t), u(t), y(t)] (5)

which will produce an asymptotic estimate x̂(t) of the state x(t) using the input u(t)
and the output y(t) in such a way that the following two conditions will be fulfilled.

The first one is the error invariance condition:

R(S̃) :
dx̃(t)

dt
= f̃ [x̃(t), x(t), x̂(t), u(t), y(t), t] = f̃ [x̃(t)] (6)

where S̃ is error dynamics and x̃(t) is an error defined as:

x̃(t) = x(t)− x̂(t). (7)

The second one is the error convergence condition to zero:

lim
t→∞

x̃(t) = 0 (8)

corresponding to the asymptotical stability of the error dynamics:

Ṽ [x̃(t)] > 0 for x̃(t) 6= x̃e (9)
Ṽ [x̃(t)] = 0 for x̃(t) = x̃e (10)

Lf̃{Ṽ [x̃(t)]} < 0 for x̃(t) 6= x̃e (11)

Lf̃{Ṽ [x̃(t)]} = 0 for x̃(t) = x̃e (12)

where Ṽ [x̃(t)] is a Lyapunov function related to the representation R(S̃) and x̃e = 0
is its equilibrium state for which it holds that:

dx̃e

dt
= 0. (13)

3. DISSIPATION NORMAL FORM

Definition 1. Consider the representation RD(S) of a system S in the form:

RD(S) :
dx(t)

dt
= f [x(t)] (14)

y(t) = h[x(t)] (15)

where x(t) ∈ X ⊂ Rn is a state, X is a smooth manifold defined on Rn, n ∈ N \ {0},
y(t) ∈ R1 is an output, f : X → Rn is a smooth vector field and h : X → R1 is a
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smooth scalar function. Let xe be an equilibrium state of the representation RD(S).
Assume that there exists a function W : Y → R1 defined on a neighborhood Y ⊂ Rn

of the equilibrium state xe. The representation RD(S) will be called the dissipation
normal form if the function W fulfills the following conditions:

W [x(t)] = ‖x(t)‖2 (16)
Lf{W [x(t)]} = β[y(t)] ≤ 0. (17)

Remark 1. There is an obvious connection between the function W [x(t)] and the
Lyapunov function. The function W [x(t)] is also related to the available storage [24]
and a non-linear function β[y(t)] corresponds to the Rayleigh function [22].

3.1. Asymptotical stability and observability

The following theorem will be used later for guaranteing the asymptotical stability
of the error dynamics.

Theorem 1. Let k2, . . . , kn ∈ R; k2, . . . , kn 6= 0 and α,ϕ1 : R1 → R1 are contin-
uous functions satisfying the following conditions: ∀x(t) ∈ X : α[x1(t)] is strictly
monotonous; ∀x(t) ∈ Z,Z ⊂ Y : ϕ1[x1(t)] < 0 ⇔ x1(t) 6= 0. If the representation
RD(S) has the following structure [13]:

RD(S) :
dx(t)

dt
=




ϕ1[x1(t)] k2 0 · · · 0
−k2 0 k3 · · · 0

...
. . . . . . . . .

...
0 · · · −kn−1 0 kn

0 · · · 0 −kn 0



x(t) (18)

y(t) = α[x1(t)] (19)

then it is observable in the sense of (3) and the equilibrium state xe = 0, xe ∈ Z is
asymptotically stable in Z. Additionally, the function W [x(t)] fulfills the conditions
(16), (17) for any α[x1(t)], ϕ1[x1(t)] and k2, . . . , kn on Z satisfying the premises
given at the beginning of the theorem.

P r o o f . At first, the observability of the representation RD(S) will be proved
and subsequently the proof of the asymptotical stability of its equilibrium state will
follow using the second (direct) Lyapunov stability method.

1. It holds that:

detHo[x(t)]=det
∂

∂x(t)




α[x1(t)]
Lf{α[x1(t)]}

...
Ln−1

f {α[x1(t)]}


=kn−1

2 ·kn−2
3 ·· · ··kn·

{
dα[x1(t)]
dx1(t)

}n

.

(20)
It follows from the relation (20) that the representation RD(S) is observable in
the sense of (3) under the assumptions stated at the beginning of the theorem.
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2. Assume that the representation RD(S) has the form (18), (19) and consider
the function W [x(t)] = ‖x(t)‖2 defined on Rn.

• The relation (18) implies that:

dx(t)
dt

= 0 ⇔ x(t) = xe = 0. (21)

Hence, xe = 0, xe ∈ Z is the equilibrium state of the representationRD(S).

• It holds that:

W [x(t)] > 0 for x(t) 6= 0 (22)
W [x(t)] = 0 for x(t) = 0 (23)

Lf{W [x(t)]} = 2x2
1(t)ϕ1[x1(t)] = 2{α−1[y(t)]}2ϕ1{α−1[y(t)]}

= β[y(t)] < 0 for x(t) /∈M ⊂ Z (24)
Lf{W [x(t)]} = 2x2

1(t)ϕ1[x1(t)] = 2{α−1[y(t)]}2ϕ1{α−1[y(t)]}
= β[y(t)] = 0 for x(t) ∈M (25)

where M = {x(t) ∈ Z,Lf{W [x(t)]} = 0} is the largest invariant subset
of Z. The relations (22), (23), (24), (25) and invoking La Salle’s invariance
principle [11] imply that the function W [x(t)] is a Lyapunov function on
Z. Thus, the equilibrium state xe = 0 is asymptotically stable in Z. It
is also obvious that the function W [x(t)] fulfills the conditions (16), (17)
for any α[x1(t)], ϕ1[x1(t)] and k2, . . . , kn on Z.

Remark 2. The dissipation normal form is similar to the Schwarz matrix [23] and
can be seen as the generalization of a corresponding linear system representation.

Remark 3. In linear case, if the coefficients of the form are as follows:

RD(S) :
dx(t)

dt
= ω0




−1 1 0 · · · 0
−1 0 1 · · · 0
...

. . . . . . . . .
...

0 · · · −1 0 1
0 · · · 0 −1 0



x(t) (26)

y(t) = x1(t) (27)

where ω0 ∈ R, ω0 > 0 then it is optimal with respect to the output signal energy
optimality criterion [13, 19]:

J =
∫ ∞

t0

‖y(t)‖2dt. (28)
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4. NON–LINEAR OBSERVER DESIGN USING DISSIPATION NORMAL FORM

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= f [x(t), u(t)] (29)

y(t) = h[x(t)]. (30)

In the sequel, the dissipation normal form will be used for non-linear observer design
expressing the requirements mentioned in Section 2.

4.1. Error dynamics representation

Let us choose the representation of the error dynamics in the dissipation normal
form:

R∗(S̃) :
dx̃∗(t)

dt
= ω0




δ∗1 [x̃∗1(t)] δ∗2 0 · · · 0
−δ∗2 0 δ∗3 · · · 0

...
. . . . . . . . .

...
0 · · · −δ∗n−1 0 δ∗n
0 · · · 0 −δ∗n 0



x̃∗(t) (31)

where δ∗1 [x̃∗1(t)], δ
∗
2 , . . . , δ

∗
n, ω0 are design parameters. It means that error conver-

gence properties to zero can be specified by their selecting. It holds that:

Lf̃∗{Ṽ ∗[x̃∗(t)]} = Lf̃∗{‖x̃∗(t)‖2} = 2ω0x̃
∗2
1 (t)δ∗1 [x̃∗1(t)] (32)

where Ṽ ∗[x̃∗(t)] = ‖x̃∗(t)‖2 is a Lyapunov function related to the representation
R∗(S̃). The relations (31), (32) imply that both the error invariance condition and
the error convergence condition to zero are fulfilled in case of the design parameters
are properly chosen. Assuming that ω0 > 0 and δ∗1 [x̃∗1(t)] < 0 for all x̃∗1(t) then
the error dynamics is globally asymptotically stable. On condition that ω0 > 0
and δ∗1 [x̃∗1(t)] < 0 only for x̃∗1(t) ∈ r, r ⊂ R then the error dynamics is locally
asymptotically stable over a finite area of the state space induced by r. The constant
ω0 represents a time scale transformation and therefore it affects convergence rate.
The non-linear function δ∗1 [x̃∗1(t)] describes in what way system energy dissipates
and accordingly it specifies convergence mode. It is obvious from the relation (32)
that the constants δ∗2 , . . . , δ

∗
n 6= 0 do not have any effect on rate and/or mode of

convergence. From this point of view, they can in principle be chosen in an arbitrary
way. It is even possible them to be non-linear functions in general. This implies
that the error invariance condition is not necessary to hold. However, it is more
comfortable for the problem solution when the condition is valid. Therefore, the
non-linear observer design will be performed under the assumption of the condition
relevance. Moreover, the complication is not mandatory. It has already been said
that the elements do not have any effect on either rate or mode of convergence.
From this point of view, they are selected without loss of generality as constants.
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Remark 4. In fact, supposing that ω0 →∞ ( 1
ω0
→ 0) then the observer is similar

to the high-gain observer [1, 2, 8] in the sense of possible setting the error convergence
to zero fast enough in order that the asymptotical stability of a closed-loop system
is guaranteed [6].

4.2. Observer structure

Consider a class of representations (29), (30) transformable into the following canon-
ical form induced by the error dynamics representation structure (31):

R∗(S) :
dx∗(t)

dt
= A∗x∗(t) + ψ∗[x∗1(t), u(t), ud(t)] (33)

y(t) = h∗[x∗1(t)] (34)

where

A∗ =




0 a∗2 0 · · · 0
−a∗2 0 a∗3 · · · 0

...
. . . . . . . . .

...
0 · · · −a∗n−1 0 a∗n
0 · · · 0 −a∗n 0




; a∗2, . . . , a
∗
n ∈ R; a∗2, . . . , a

∗
n 6= 0;

ud(t) =
du(t)

dt
, . . . ,

dn−1u(t)
dtn−1

and ψ∗[x∗1(t), u(t), ud(t)] =




ψ∗1 [x∗1(t), u(t)]
ψ∗2 [x∗1(t), u(t),

du(t)
dt ]

...
ψ∗n[x∗1(t), u(t), ud(t)]


 .

Further, the inverse:
x∗1(t) = c[y(t)] (35)

where c[y(t)] = h∗
−1

[y(t)] is supposed to exist. After derivating the relation (7) with
respect to t and an elementary modification we have:

dx̂∗(t)
dt

=
dx∗(t)

dt
− dx̃∗(t)

dt
. (36)

Substituting dx∗(t)
dt , dx̃∗(t)

dt from the relations (31), (33) into (36) we get the structure
of the observer in the form:

R∗(Ŝ) :
dx̂∗(t)

dt
= A∗x̂∗(t) + ψ∗{c[y(t)], u(t), ud(t)}

−ω0




δ∗1{c[y(t)]− x̂∗1(t)}
0
...
0


 {c[y(t)]− x̂∗1(t)} (37)

where the equalities:
a∗2 = ω0δ

∗
2 , . . . , a∗n = ω0δ

∗
n (38)

hold.



66 V. ČERNÝ AND J. HRUŠÁK

4.3. Observer parametrization

The observer parametrization means here to determine the unknown functions c[y(t)]
and ψ∗{c[y(t)], u(t), ud(t)} in (37) and consequently in (33), (34). It will be per-
formed through the generalized observability canonical form [25]:

R̄(S) :
d
dt




x̄1(t)
...

x̄n−1(t)
x̄n(t)


 =




x̄2(t)
...

x̄n(t)
µ̄[x̄(t), u(t), ud(t)]


 (39)

y(t) = x̄1(t). (40)

The form can be generated from the representation (29), (30) by the diffeomorphism:



x̄1(t)
x̄2(t)

...
x̄n(t)


 =




h[x(t)]
Df{h[x(t)]}

...
Dn−1

f {h[x(t)]}


 (41)

and exists if the observability condition (3) holds. Assume that a diffeomorphism:

x̄(t) = T [x∗(t), u(t), ud(t)] (42)

exists. The condition for its existence is:

det
∂T [x∗(t), u(t), ud(t)]

∂x∗(t)
6= 0. (43)

Then it is determined by the following relation:



x̄1(t)
x̄2(t)

...
x̄n(t)


 =




h∗[x∗1(t)]
Df∗{h∗[x∗1(t)]}

...
Dn−1

f∗ {h∗[x∗1(t)]}


 . (44)

Lemma 1. The existence of (42) implies that the structural condition:

µ̄[x̄(t), u(t), ud(t)] = Dn
f∗{h∗[x∗1(t)]}

is fulfilled for x∗(t) = T−1[x̄(t), u(t), ud(t)].

P r o o f . If (42) exists then the equality:

Dn
f̄ [x̄1(t)] = Dn

f∗{h∗[x∗1(t)]} (45)

holds. Substituting into the relation (45) from (39) we have:

µ̄[x̄(t), u(t), ud(t)] = Dn
f∗{h∗[x∗1(t)]} for x∗(t) = T−1[x̄(t), u(t), ud(t)].

The unknown functions ψ∗[x∗1(t), u(t), ud(t)] and c[y(t)] in the observer (37) can
be computed from a system of differential equations which is a consequence of validity
of the structural condition (45).
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4.3.1. Explicit solution for second-order system

For a second-order system, the structural condition (45) has the form:

µ̄

[
x̄(t), u(t),

du(t)
dt

]
= D2

f∗{h∗[x∗1(t)]} = F1[x̄1(t)]x̄2
2(t) + F2[x̄1(t), u(t)]x̄2(t)

+F3

[
x̄1(t), u(t),

du(t)
dt

]
(46)

for x∗(t) = T−1[x̄(t), u(t)] where the functions F3[x̄1(t), u(t),
du(t)

dt ], F2[x̄1(t), u(t)]
and F1[x̄1(t)] are known. In case of the structural condition (46) is fulfilled then the
unknown functions ψ∗1 [x∗1(t), u(t)], ψ

∗
2 [x∗1(t), u(t),

du(t)
dt ] and h∗[x∗1(t)], x

∗
1(t) = c[y(t)],

in the observer:

R∗(Ŝ) :
dx̂∗(t)

dt
=

[
0 a∗2
−a∗2 0

]
x̂∗(t) +

[
ψ∗1{c[y(t)], u(t)}

ψ∗2{c[y(t)], u(t), du(t)
dt }

]

−ω0

[
δ∗1{c[y(t)]− x̂∗1(t)}

0

]
{c[y(t)]− x̂∗1(t)} (47)

can be computed from the system of the three differential equations:

F1[x̄1(t)]|x̄1(t)=h∗[x∗1(t)] =
d2h∗[x∗1(t)]

dx∗1
2(t)

1{
dh∗[x∗1(t)]

dx∗1(t)

}2 (48)

F2[x̄1(t), u(t)]|x̄1(t)=h∗[x∗1(t)] =
∂ψ∗1 [x∗1(t), u(t)]

∂x∗1(t)
(49)

F3

[
x̄1(t), u(t),

du(t)
dt

]∣∣∣∣
x̄1(t)=h∗[x∗1(t)]

= a∗2
dh∗[x∗1(t)]

dx∗1(t)
ψ∗2

[
x∗1(t), u(t),

du(t)
dt

]

+
dh∗[x∗1(t)]

dx∗1(t)
∂ψ∗1 [x∗1(t), u(t)]

∂u(t)
du(t)

dt

−a∗22x∗1(t)
dh∗[x∗1(t)]

dx∗1(t)
. (50)

4.4. Determination of observer in original coordinates

A diffeomorphism x(t) = T [x∗(t), u(t), ud(t)] exists if the condition:

det
∂T [x∗(t), u(t), ud(t)]

∂x∗(t)
6= 0 (51)

is fulfilled. Then it is determined by the following relation:



h[x(t)]
Df{h[x(t)]}

...
Dn−1

f {h[x(t)]}


 =




h∗[x∗1(t)]
Df∗{h∗[x∗1(t)]}

...
Dn−1

f∗ {h∗[x∗1(t)]}


 . (52)
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It obviously holds that:

x̂(t) = T [x̂∗(t), u(t), ud(t)]. (53)

Subsequently, derivating (53) with respect to t we get the observer in the original
coordinates:

R(Ŝ) :
dx̂(t)

dt
= Df̂∗{T [x̂∗(t), u(t), ud(t)]} (54)

for x̂∗(t) = T−1[x̂(t), u(t), ud(t)].

5. ILLUSTRATIVE EXAMPLE

The non-linear observer design method described above will be illustrated on the
following prey-predator model [15]:

R(S) :
dx1(t)

dt
= ax1(t)− bx1(t)x2(t) (55)

dx2(t)
dt

= cx1(t)x2(t)− dx2(t)− fx2(t)u(t) (56)

y(t) = x2(t) (57)

where x1(t) and x2(t) represent prey and predator populations. The predator popu-
lation is decimated by humans via the input variable u(t). The coefficients a = 1.5,
b = 1, c = 0.3, d = 1 are constant birth and death rates and f = 0.5 is an exter-
mination rate. At first, the representation R(S) is transformed into the generalized
observability canonical form:

R̄(S) :
dx̄1(t)

dt
= x̄2(t) (58)

dx̄2(t)
dt

= µ̄[x̄(t), u(t),
du(t)

dt
] (59)

y(t) = x̄1(t) (60)

by the transformation:

x̄(t) = T [x(t), u(t)] =
[

x2(t)
Df [x2(t)]

]
=

[
x2(t)

cx1(t)x2(t)− dx2(t)− fx2(t)u(t)

]
.

(61)
It holds that:

∀x(t), u(t) : det
∂T [x(t), u(t)]

∂x(t)
= −cx2(t) 6= 0 ⇔ x2(t) 6= 0. (62)

This means that the predator population should not die out. Using the transforma-
tion (61) we get:

µ̄

[
x̄(t), u(t),

du(t)
dt

]
=

1
x̄1(t)

x̄2
2(t)+[a−bx̄1(t)]x̄2(t)+[a−bx̄1(t)][d+fu(t)]x̄1(t)

−fx̄1(t)
du(t)

dt
. (63)
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Obviously, the function µ̄[x̄(t), u(t), du(t)
dt ] fulfills the structural condition (46) with:

F1[x̄1(t)] =
1

x̄1(t)
(64)

F2[x̄1(t), u(t)] = a− bx̄1(t) (65)

F3

[
x̄1(t), u(t),

du(t)
dt

]
= [a− bx̄1(t)][d+ fu(t)]x̄1(t)− fx̄1(t)

du(t)
dt

. (66)

The unknown functions ψ∗1 [x∗1(t), u(t)], ψ
∗
2 [x∗1(t), u(t),

du(t)
dt ] and c[y(t)] in the ob-

server (47) are computed from the system of the three differential equations (48),
(49), (50). The solution of the differential equation (48) is:

h∗[x∗1(t)] = ex∗1(t) ⇒ x∗1(t) = ln[y(t)] = c[y(t)]. (67)

The solution of the differential equation (49) leads to:

ψ∗1 [x∗1(t), u(t)] =
∫

[a− bex∗1(t)] dx∗1(t) = ax∗1(t)− bex∗1(t) = a ln[y(t)]− by(t)

= ψ∗1{c[y(t)], u(t)}. (68)

Substituting into the differential equation (50) from (67), (68) we have:

ψ∗2

[
x∗1(t), u(t),

du(t)
dt

]
=

1
a∗2

[a− bex∗1(t)][d+ fu(t)] + a∗2x
∗
1(t)−

1
a∗2
f

du(t)
dt

=
1
a∗2

[a− by(t)][d+ fu(t)] + a∗2 ln[y(t)]− 1
a∗2
f

du(t)
dt

= ψ∗2

{
c[y(t)], u(t),

du(t)
dt

}
. (69)

The appropriate transformation x̄(t) = T [x∗(t)] has the form:

x̄(t) = T [x∗(t)] =
[

ex∗1(t)

a∗2x
∗
2(t)e

x∗1(t) + ax∗1(t)e
x∗1(t) − be2x∗1(t)

]
. (70)

It holds that:

∀x∗(t) : det
∂T [x∗(t)]
∂x∗(t)

= a∗2e
2x∗1(t) 6= 0. (71)

Subsequently, the design parameters in the error dynamics representation:

R∗(S̃) :
dx̃∗(t)

dt
= ω0

[
δ∗1 [x̃∗1(t)] δ∗2
−δ∗2 0

]
x̃∗(t) (72)

are chosen as follows:

1. δ∗1 [x̃∗1(t)] = δ∗1 = −1, ω0 = 4 and δ∗2 = 1. Let us define the output of the
error dynamics as ỹ(t) = x̃∗1(t). Then the representation R∗(S̃) is optimal
with respect to the output signal energy optimality criterion (see Section 3):

J̃ =
∫ ∞

t0

‖ỹ(t)‖2dt. (73)
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2. δ∗1 [x̃∗1(t)] = −0.3x̃∗
4

1 (t) − 2, ω0 = 4 and δ∗2 = 1. The constant δ∗1 was replaced
by the non-linear function δ∗1 [x̃∗1(t)]. The other design parameters stayed the
same.

Substituting (67), (68), (69) and the selected design parameters into (47) we get the
observers in the forms:

1.

R∗(Ŝ) :
dx̂∗(t)

dt
=

[
0 a∗2
−a∗2 0

]
x̂∗(t)

+

[
a ln[y(t)]− by(t)

1
a∗2

[a− by(t)][d+ fu(t)] + a∗2 ln[y(t)]− 1
a∗2
f du(t)

dt

]

−ω0

[ −1
0

]
{ln[y(t)]− x̂∗1(t)} (74)

2.

R∗(Ŝ) :
dx̂∗(t)

dt
=

[
0 a∗2
−a∗2 0

]
x̂∗(t)

+

[
a ln[y(t)]− by(t)

1
a∗2

[a− by(t)][d+ fu(t)] + a∗2 ln[y(t)]− 1
a∗2
f du(t)

dt

]

−ω0

[ −0.3{ln[y(t)]− x̂∗1(t)}4 − 2
0

]
{ln[y(t)]− x̂∗1(t)}

(75)

where a∗2 = ω0δ
∗
2 . Finally, the observers are transformed into the original coordinates

using the relation (54) where:

x(t) = T [x∗(t), u(t)] =
[

a
cx
∗
1(t)− b

ce
x∗1(t) + a∗2

c x
∗
2(t) + d

c + f
c u(t)

ex∗1(t)

]
. (76)

It holds that:

∀x∗(t), u(t) : det
∂T [x∗(t), u(t)]

∂x∗(t)
= −a

∗
2

c
ex∗1(t) 6= 0. (77)

The resulting observers for the given original representation R(S) are the following:

1.

R(Ŝ) :
dx̂1(t)

dt
= ax̂1(t)−bx̂1(t)x̂2(t)+

[
a

c
− b
c
x̂2(t)

]
{−a ln[x̂2(t)]+bx̂2(t)

+a ln[y(t)]−by(t)+ b

c
[d+fu(t)][x̂2(t)−y(t)]

+
a∗2

2

c
{ln[y(t)]−ln[x̂2(t)]}+ω0{ln[y(t)]−ln[x̂2(t)]}}

dx̂2(t)
dt

= cx̂1(t)x̂2(t)−dx̂2(t)−fx̂2(t)u(t)+x̂2(t){−a ln[x̂2(t)]

+bx̂2(t)+a ln[y(t)]−by(t)+ω0{ln[y(t)]−ln[x̂2(t)]}} (78)
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2.

R(Ŝ) :
dx̂1(t)

dt
= ax̂1(t)−bx̂1(t)x̂2(t)+

[
a

c
− b
c
x̂2(t)

]
{−a ln[x̂2(t)]+bx̂2(t)

+a ln[y(t)]−by(t)+ b

c
[d+fu(t)][x̂2(t)−y(t)]

+
a∗2

2

c
{ln[y(t)]− ln[x̂2(t)]}+0.3ω0{ln[y(t)]−ln[x̂2(t)]}5

+2ω0{ln[y(t)]−ln[x̂2(t)]}}
dx̂2(t)

dt
= cx̂1(t)x̂2(t)−dx̂2(t)−fx̂2(t)u(t)+x̂2(t){−a ln[x̂2(t)]

+bx̂2(t)+a ln[y(t)]−by(t)+0.3ω0{ln[y(t)]−ln[x̂2(t)]}5
+2ω0{ln[y(t)]−ln[x̂2(t)]}}. (79)

The behaviour of the designed observers is shown in Figures 1, 2. The effect of the
non-linear function δ∗1 [x̃∗1(t)] on the error trajectory can be seen as implementing
magnitude dependent damping and a consequent bigger damping ability in com-
parison with the other one. Particularly, it is obvious from the right picture of
Figure 2.

Remark 5. An observer for the given system representation R(S) may also be
designed by the method presented in [10] (see Figure 3). The method is based
on transforming a given system representation into phase variables where the error
dynamics of the observer is made asymptotically stable with optional error conver-
gence rate to zero by a parameter θ. The parametrization of the observer is given
by solution of an algebraic equation obtained on behalf of using standard Lyapunov
arguments. The equation can also be derived from a modified form for a Grammian
observability matrix that connects asymptotic stability and observability properties
of a system and its representation [26]. The solution of the equation S∞(θ) is then
equivalent to the matrix. The advantage of the method is simplicity of the observer.
On the other hand, it only works for affine system representations.

6. CONCLUSION

The non-linear observer design method based on the dissipation normal form has
successfully been solved. The approach consists in transforming a given system
representation into proper new coordinates where the error dynamics of the observer
can easily be made homogeneous and asymptotically stable, which is equivalent to
the methods presented for example in [3, 12, 15, 16, 17, 18, 20, 21]. Nevertheless, the
difference from those methods is that the error dynamics of the observer is chosen
priory here. The appropriate canonical form of the system representation and the
observer is then a consequence of the choice. Further, the method is exact and does
not require any linearization in the sense that the non-linear system to be observed
is replaced by a linear one. In contrast to linear case the resulting observer has to be
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Fig. 1. Observing the state: the dashed and dotted line for the observer No. 1,

the dashed line for the observer No. 2.
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Fig. 2. Course of the error: the dashed line for the observer No. 1,

the solid line for the observer No. 2.
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Fig. 3. Course of the error: the dashed line for the observer No. 1, the

solid line for the observer No. 2, the dashed and dotted line for the observer

designed along the method presented in [10] for the design parameter θ = 4.
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supplied not only with input and output variables of a given system but also with
derivatives of the input variables as for example in [15].

The main achievement of the contribution is the non-linear error dynamics of
the observer with a properly placed non-linear function. From this point of view,
the approach can be seen as a straightforward extension of the methods cited above
where the error dynamics is linear. The non-linear function provides more flexibility
in the choice of error convergence properties to zero than a linear one. By means of
it we can specify not only convergence rate but also other of its characteristics. It is
possible to implement for example magnitude dependent damping by the function.
The observer containing the function has then a bigger (and more robust) damping
ability in comparison with observers designed in other ways (see Figure 2). It is also
feasible to guarantee not only the global asymptotical stability of the error dynamics
but also only a local asymptotical stability over a finite area of the state space by
the non-linear function again. Finally, the approach to non-linear observer design
presented in the paper has effectively been used in signal filtering, too [7, 14].

APPENDIX

Let x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rp, f ∈ Ck : X × U → Rn, n, p, k ∈ N \ {0} be
a vector function and h ∈ Ck : X × U → R1 be a scalar function. Then Df (h) is a
differential operator for which it holds that:

D0
f{h[x(t), u(t)]} = h[x(t), u(t)] (80)

D1
f{h[x(t), u(t)]} = Df{h[x(t), u(t)]} =

n∑

i=1

∂h[x(t), u(t)]
∂xi(t)

fi[x(t), u(t)]

+
p∑

j=1

∂h[x(t), u(t)]
∂u(t)

duj(t)
dt

(81)

Dk
f{h[x(t), u(t)]} = Df{Dk−1

f {h[x(t), u(t)]}}. (82)

(Received May 27, 2003.)
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