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Editorial Office:
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— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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SOME REMARKS ON THE PROBLEM
OF MODEL MATCHING BY STATE FEEDBACK

J.A. Torres–Muñoz, Petr Zagalak and Manuel A. Duarte–Mermoud

The problem of model matching by state feedback is reconsidered and some of the latest
results are discussed.
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1. INTRODUCTION

The problem of model matching represents a succinct abstract formulation of many
control problems in which the central role plays the transmission properties of the
system, that is to say, the modification of the transfer function is the core problem.
As the regular static state feedback, which is defined below, forms a basic type of
feedback, the discussion concentrates on model matching with this kind of feedback.

Consider a linear time-invariant system described by the equations

.
x = Ax + Bu (1)
y = Cx (2)

where A ∈ Rn×n, B ∈ Rn×l, C ∈ Rp×n with rank B = l and rank C = p. The sys-
tem (1) and (2), called also the plant, is supposed to be controllable and observable
and its transfer function,

T (s) = C(sI −A)−1B ∈ Rp×l
sp , (3)

is supposed to be of rank p (i. e. the system is supposed to be right invertible).
Whenever convenient, the system (1) and (2) is also referred to as the triple (C, A,B),
or T (s).

As far as notation is concerned, some standard symbols like :=, R[s], and R(s)
denoting the defining equality, the ring of polynomials over the field of real numbers
R, and its quotient field, respectively, and Rp(s) (Rsp(s)) standing for the ring of
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proper (strictly proper) rational functions over R, will frequently be used; some other
symbols are defined throughout the text.

Let (Cm, Am, Bm) be another system, called the model, that is also controllable,
observable, right invertible, the dimension of which is nm ≤ n (from now on all the
symbols related to the model will have the index m), and gives rise to the transfer
function Tm(s) ∈ Rp×l

sp (s), i. e. pm = p and lm = l. The problem of model matching
then consists of finding a (regular) static state feedback

u = Fx + Gv, (4)

where F ∈ Rl×n and G ∈ Rl×l with rank G = l, such that the transfer function of
the closed-loop system exactly matches that of the model, i. e.

Tm(s) = TF,G(s) (5)

where TF,G(s) := C(sIn −A−BF )−1BG.
More generally, the equation (5) leads to studying the equation

Tm(s) = T (s)C(s) (6)

where C(s) ∈ Rl×l
p (s) is a compensator transfer function. If a certain type of feedback

is used to achieve model matching, the compensator C(s) has to be realizable by
this type of feedback. In the case of state feedback (4), it follows that C(s) =
(Il − F (sIn − A)−1B)−1G, which implies that C(s) is a biproper matrix (a unit of
the ring Rl×l

p (s)).
The literature concerning the model matching problem by different types of feed-

back is fairly rich. Most of the contributions however deals with dynamic compen-
sation; see [5, 7, 10, 12, 15, 17] and the references therein. The problem of model
matching by state feedback has been defined in [16] for the first time, where also
necessary and sufficient conditions of its solvability can be found. In the same year,
a solution based on Silvermann’s inversion algorithm was established in [11]. Other
necessary and sufficient conditions for the existence of a solution to the problem can
be found in [5]. These conditions are stated in terms of finite and infinite zeros of the
system; however, they are valid just in the case where the system transfer functions
are nonsingular. In this paper we build upon the results given in [13, 19], where
just necessary conditions of solvability are introduced, and provide necessary and
sufficient conditions under which a solution to the model matching problem exists.

2. BACKGROUND

First some facts concerning the Morse invariants of (C, A, B) will be introduced.
Consider the relationship

(C,A, B) ◦ Ω = (C ′, A′, B′),

where C ′ := HCT−1, A′ := T (A − BF − LC)T−1, and B′ := TBG, describ-
ing the action of the Morse group upon the system (C, A, B). The quintuple



Some Remarks on the Problem of Model Matching by State Feedback 49

Ω := (H,T, F, L,G) is an element of the Morse group where the matrices T,G, and
H are nonsingular and stand for similarity, input space, and output space trans-
formations, respectively, while F represents state feedback and L output injection.
Using transformations of this type the system (C, A, B) can be brought into the
Morse canonical form [8] that is characterized by certain invariants. These invari-
ants are known as the Morse invariants and correspond to the Kronecker invariants
of the system matrix

P(s) :=
[

sIn −A −B
−C 0

]
.

Generally, there are four kinds of the Kronecker invariants (invariant polynomials,
row and column minimal indices, and infinite zero orders) that are, in the case of
the Morse transformations acting on (C, A,B), reduced to infinite zero orders and
column minimal indices of P(s).

There clearly exists a one-to-one correspondence between the aforementioned
Morse invariants and some quantities characterizing T (s). This comes from the fact
that the matrices C, A, and B are given by a minimal realization of T (s). For
example, the infinite zero orders of P(s) and T (s) are the same and can be obtained
from the Smith–McMillan form of T (s) at infinity and the column minimal indices of
P(s) appear in the so–called extended interactor, the concept that is defined below.

Lemma 1. ([17]) Let H(s) ∈ Rp×l
sp (s) be a right invertible matrix. Then there

exists a unique matrix Φ(s) ∈ Rp×p[s], called the interactor of H(s), such that

Φ(s)H(s) = [Ip 0]B(s) (7)

where B(s) is a biproper matrix. The interactor Φ(s) is of the form

Φ(s) = UΦ(s) Λf (s)

where Λf (s) = diag {sfi}p
i=1 with fi being positive integers and

UΦ(s) =




1
ϕ21(s) 1

...
. . . . . .

ϕp1(s) . . . ϕp,p−1(s) 1


 .

The polynomials ϕij(s) are divisible by s, or are equal to zero.

The relationship (7) shows that [Φ−1(s), 0] is the Hermite form of H(s) (the Rp(s)
is considered now as a special case of the ring of generalized polynomials [12]). As the
biproper matrices play, in the case of the ring Rp(s), the role of unimodular matrices
(or units of the ring Rl×l

p (s)), it easily follows that the interactor is unchanged when
H(s) is postmultiplied by a biproper matrix. If the interactor Φ(s) is row reduced,
it can be easily shown that the integers fi are the infinite zero orders of H(s), and
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that the row reducedness of Φ(s) can be achieved just by permuting the rows of
H(s); see [6].

The supremal output-nulling controllability subspace R∗ contained in Ker C
plays an important role in the problems like this one. This subspace is charac-
terized by the column minimal (or R∗-controllability) indices of P(s). To reveal
them, we add m− p new rows to the matrix C in such a way that the new matrix,
say Ce, will be of rank l and the supremal controllability subspace of the system
(Ce, A,B) contained in Ker Ce will be zero. Such a system (Ce, A, B) is called the
extended system [3] and has the transfer function

Te(s) := Ce(sIn −A)−1B.

The interactor Φe(s) of Te(s) is called the extended interactor and is of the form

Φe(s) =
[

Φ1(s) 0
Φ2(s) Φ3(s)

]

where Φ1(s) stands for the interactor of T (s), Φ2(s) is a polynomial matrix whose
entries φij(s) have the properties stated in Lemma 1, and

Φ3(s) = diag {sσi}m−p
i=1

with σi being the column minimal indices of P(s). The indices σi are supposed to
be non-decreasingly ordered (and the indices σi,m of the model as well).

In the sequel the following lemma will be useful.

Lemma 2. ([4]) Let P (s) ∈ Rn×m[s], m ≤ n, and let a(s) and b(s) be polynomial
vectors such that

b(s) = P (s) a(s).

Then P (s) is column reduced if and only if

deg b(s) = max{degci P (s) + deg ai(s), 1 ≤ i ≤ m}.

Let now N(s) and D(s) be polynomial matrices that form a normalized matrix
fraction description (n.m.f.d.) of T (s), i. e.

T (s) = N(s)D−1(s) (8)

where N(s), D(s) are right coprime and D(s) is column reduced with column degrees
c1 ≤ c2 ≤ . . . ≤ cm. Let further Nm(s) and Dm(s) form a n.m.f.d. of Tm(s) and let
C(s) be a state-feedback realizable compensator such that (6) holds. Then using a
n.m.f.d. of T (s) and a n.m.f.d. of Tm(s), the relationship (6) can be rewritten in
the form [

N(s)
C−1(s)D(s)

]
=

[
Nm(s)
Dm(s)

]
X(s) (9)
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where X(s) is a nonsingular polynomial matrix representing a greatest common right
divisor of N(s) and C−1(s)D(s). Notice that C−1(s)D(s) ∈ Rm×m[s] by assumption.
Recall that this relationship describes a necessary and sufficient condition for the
compensator C(s) to be realizable with a (regular) static state feedback [2]. In fact
the relationship (9) describes the result stated in [16], which is a starting point of
our development.

To begin with, a special case of model matching that arises when Tm(s) represents
the feedback irreducible system (a closed-loop system TFG(s) having its McMillan
degree minimal [1]) will be considered first. To enlighten this concept, consider
the relationship (9) again. Applying a state feedback (4) to the system (1) and(2)
may result in a zero cancellation between N(s) and C−1(s)D(s). But this not all;
another kind of cancellation caused by a non-trivial R∗ of (C, A,B) may take place.
To explain that, consider the matrix

K(s) :=
[

Q(s) 0
0 Im−p

]
U(s), (10)

where Q(s) ∈ Rp×p[s] is nonsingular and U(s) is a unimodular matrix given by the
equation

N(s) = [Q(s) 0] U(s). (11)

Then K(s) and D(s) form a n.m.f.d. of Te(s) [18].

Further, by Lemma 1,
Φe(s) Te(s) = Be(s) (12)

where Be(s) is a biproper matrix. Next, it follows, from (9), that

[
N(s)

Be(s)D(s)

]
=




Ip 0

Φ1(s) 0
Φ2(s) Im−p


 Γ(s) (13)

with

Γ(s) :=
[

Q(s) 0
0 Φ3(s)

]
U(s).

Thus, applying the state feedback (FΦ, GΦ) given by Be(s) to (C, A, B) results in
the feedback irreducible system , denoted by (CΦ, AΦ, BΦ), that is a minimal realiza-
tion of its transfer function TΦ(s) = Φ−1

1 (s). Moreover, the relationship (13) reveals
all the cancellations that take place in the closed-loop system (C, A + BFΦ, BGΦ).
The matrix Q(s) represents the (finite) pole-zero cancellation while Φ3(s) corre-
sponds to the second kind of cancellation. All that is summarized in the following

Proposition 1. Given T (s) and TΦ(s) := Φ−1
1 (s), then there exists a state feed-

back (FΦ, GΦ) (given by Be(s)) such that TΦ(s) = T (s) Be(s) and the McMillan
degree of TΦ(s) is the lowest achievable one; its value is given by the sum of the
infinite zero orders of TΦ(s).
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3. MODEL MATCHING BY STATE FEEDBACK

It has been shown in [1] that the transfer functions TF,G(s) can be ordered with
respect to their McMillan degrees, i. e.

∂(TΦ(s)) ≤ ∂(Tm) = ∂(TF,G(s)) ≤ ∂(T (s)).

The matter in question now is a characterization of all the transfer functions TF,G(s).
To that end, write the relationship (12) in the form

D(s) = B−1
T (s)Φe(s)K(s) (14)

and similarly, for the model,

Dm(s) = B−1
Tm(s)Φe,m(s)Km(s) (15)

and consider the relationship (9) where C(s) represents a state-feedback realizable
compensator. Substituting (14) and (15) into (9) gives

[
N(s)

B(s)Φe(s)K(s)

]
=

[
Nm(s)

Φe,m(s)Km(s)

]
X(s) (16)

where B(s) := BTm(s)C−1(s)B−1
T (s) is a biproper matrix that is state-feedback

realizable. This can further be simplified using (10), (11), and (12) such that

[Q(s) 0] = [Qm 0]Z(s) (17)

and

B(s)
[

Φ1(s)Q(s) 0
Φ2(s)Q(s) Φ3(s)

]
=

[
Φ1,m(s) Q(s) 0
Φ2,m(s) Q(s) Φ3,m(s)

]
Z(s) (18)

where B(s) and Z(s) := Um(s)X(s)U−1(s) are of the form

B(s) =
[

B11(s) 0
B21(s) B22(s)

]
, Z(s) =

[
Z11(s) 0
Z21(s) Z22(s)

]
.

Based on the relationships (17) and (18), necessary and sufficient conditions for
the existence of a state feedback compensator C(s) satisfying (6) can now be estab-
lished.

Theorem 1. Let T (s) and Tm(s) be given transfer functions. Then there exists a
state-feedback realizable compensator C(s) such that Tm(s) = T (s)C(s) if and only
if

(a) the interactors of T (s) and Tm(s) are the same;

(b) the matrices Tm(s) and [T (s) Tm(s)] have the same finite zero structures;

(c) σi ≥ σi,m for i = 1, 2, . . . , m− p;
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(d) There exist polynomial matrices Z21(s) and Z22(s) nonsingular such that

degci Γ(s)V (s) ≤ degci Φ1(s)Q(s)V (s), i = 1, 2, . . . , p, (19)

where Γ(s) := Φ2m(s)Q(s)−Φ3m(s)Z22(s)Φ−1
3 (s)Φ2(s)Q(s) + Φ3m(s) Z21(s)

and V (s) is a unimodular matrix making the product Φ1(s) Q(s) column re-
duced.

P r o o f . (Necessity). The claim (a) follows from the properties of the interactor;
see Lemma 1. To prove (b), write [T (s) Tm(s)] in the form

[T (s) Tm(s)] = [N(s) Nm(s)]
[

D(s) 0
0 Dm(s)

]−1

,

which is a n.m.f.d. for [T (s) Tm(s)]. The finite zero structure of [T (s) Tm(s)] is
given by the greatest common left divisor of N(s) and Nm(s), which is the matrix
Qm(s) in view of (17). To show that (c) holds, consider the equality

B22(s)Φ3(s) = Φ3,m(s)Z22(s) (20)

where B22(s) is a biproper matrix and Z22(s) a nonsingular polynomial matrix. The
following lemma gives an answer.

Lemma 3. Let P (s), Q(s) ∈ Rn×n[s] be column reduced with column degrees
α1 ≤ α2 ≤ . . . αn, β1 ≤ β2 ≤ . . . βn, respectively. Then there exist a biproper matrix
V (s) and a polynomial matrix Z(s) such that

V (s) P (s) = Q(s)Z(s) (21)

if and only if αi ≥ βi, i = 1, 2, . . . , n.

P r o o f . As V (s) is biproper, the product V (s)P (s) is clearly column reduced
with degci V (s)P (s) = αi, i = 1, 2, . . . , n. This means that the product Q(s)Z(s) is
column reduced, too, and has the column degrees αi. Then, by Lemma 3,

αj = max{βi + deg zij(s), 1 ≤ i ≤ n}
for j = 1, 2, . . . , n, which implies that αj ≥ βj , j = 1, 2, . . . , n.

To prove the sufficiency part, define

Z(s) = diag{sαi−βi}n
i=1 and V (s) := L(s)P−1(s)

where L(s) is a column reduced matrix with degci = αi, i = 1, 2, . . . , n. The matrix
V (s) is clearly biproper while the product Q(s)Z(s) is column reduced with column
degrees αi. It follows that (21) holds. 2

By definition, Φ3(s) and Φ3,m(s) are clearly column reduced with the column
degrees σi and σi,m, respectively, which means that the inequalities (c) hold.
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To prove (d), consider the equation

B21(s)Φ1(s)Q(s) + B22(s)Φ2(s)Q(s) = Φ2,m(s)Q(s) + Φ3,m(s)Z21(s), (22)

where B21(s) is proper rational, B22(s) biproper, and Z21(s) polynomial. Substi-
tuting now Φ3m(s) Z22(s)Φ3(s) for B22(s) and F−1(s) G(s) for B21(s), where the
matrices F (s), G(s) form a n.m.f.d. of B21(s), the relationship (22) can be written
in the form

B21(s) := F−1(s)G(s) = Γ(s)
[
Φ1(s) Q(s)

]−1
, (23)

where Γ(s) is defined in (d). As the matrix B21(s) is proper, it implies that

degci Γ(s) ≤ degci Φ1(s)Q(s), i = 1, 2, . . . , p. (24)

Postmultiplying the matrix
2
4 Γ(s)

Φ1(s) Q(s)

3
5 by the unimodular matrix V (s) then

gives (19).

(Sufficiency). To prove the sufficiency part, a biproper matrix B(s) and polynomial
matrix Z(s) will be constructed such that the relationship (18) will hold. Notice first
that the relationship (17) implies that Z11(s) = Q−1

m (s)Q(s). Further, the equality
Φ1(s) = Φ1m(s) gives B11 = Im. The rest of the proof follows from the assumption
that there exist matrices Z21(s) and Z22(s) such that (20) and (19) hold. Then
B21(s) is given by (23) and B22(s) can be computed from (20). 2

The following corollary concerns a special case in which both extended interactors
Φe(s) and Φe,m(s) are diagonal.

Corollary 1. Given a plant T (s) and model Tm(s) with the interactors Φ1(s)
= diag {sni}p

i=1 and Φ1,m(s) = diag {sni,m}p
i=1 where both the integers ni and

ni,m are non-decreasingly ordered, and with the extended interactors Φe(s) and
Φem(s) in which Φ2(s) = 0, Φ2,m(s) = 0, Φ3(s) = diag {sσi}l−p

i=1, and Φ3,m(s) =
diag {sσi,m}l−p

i=1. Then there exists a state feedback (4) such that (6) holds if and
only if

(α) ni = ni,m for i = 1, 2, . . . , p,

(β) the matrices Tm(s) and [T (s) Tm(s)] have the same finite zero structures,

(γ) σi ≥ σi,m for i = 1, 2, . . . , p,

(δ) There exist a polynomial matrix Z21(s) and a proper rational matrix B21(s)
such that

B21(s)Φ1(s) Q(s) = Φ3,m(s) Z21(s). (25)

Another special case, in which necessary and sufficient conditions of its solvability
are known, arises when both T (s) and Tm(s) are square and nonsingular
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Corollary 2. Given nonsingular T (s), Tm(s) ∈ Rl×l
sp (s), there exists a state-

feedback realizable compensator C(s) such that (6) holds if and only if

(i) Φ(s) = Φm(s),

(ii) N(s) = Nm(s)X(s) for some nonsingular X(s) ∈ Rl×l[s].

It is readily seen that the condition (ii) is just the condition (b) of Theorem 1.
In other words, the conditions (a) and (b) of Theorem 1 are necessary and sufficient
if T (s) and Tm(s) are nonsingular.

It should also be noted that the condition (i) and (ii) of Corollary 2 are equivalent
to the conditions established in [5] that are stated as equality between finite and
infinite zero structures of the matrices T (s) and [T (s), Tm(s)]. It can be shown that
this result is an easy consequence of Corollary 2 and subsequent

Lemma 4. Given nonsingular T (s), Tm(s) ∈ Rl×l
sp (s), then Φ(s) = Φm(s) if and

only if the infinite zero orders of the matrices T (s) and [T (s), Tm(s)] are the same.

4. DYNAMIC COMPENSATION

The general problem of model matching is described by the equation (6), that is,

Tm(s) = T (s)C(s) (26)

where Tm(s) ∈ Rp×q
sp , T (s) ∈ Rp×l

sp , and C(s) ∈ Rl×q
p . More precisely, given a plant

T (s) of rank p and a full rank model Tm(s), the problem is to find a compensator
C(s) of rank q such that (26) holds. Such a compensator is called admissible.

The equation (26) is a system of equations over the ring Rp(s), which implies
that an admissible compensator exists if q ≤ p.

Theorem 2. ([17]) Given T (s) and Tm(s) (having the above stated propeties)
with q ≤ p, then there exists an admissible compensator C(s) satisfying (26) if and
only if Φ(s)Φ−1

m (s) ∈ Rp×p
p (s) where Φ(s) and Φm(s) stand for the interactors of

T (s) and Tm(s), respectively.

A special case arises when the compensator is a feedback compensator, like state
feedback (4). In practise, the dynamic output feedback

u(s) = K(s)y(s) + v(s), K(s) ∈ Rl×p
p (s) (27)

is widely used, which leads to the biproper compensator C(s) = [Il +K(s)T (s)]−1 ∈
Rl×l

p (s).

There are many reasons for which we prefere a feedback realization of a given
compensator. For instance, feedback is easier to implement and enables us to realize
more tradeoffs between conflicting performance requirements. However, the question
under which conditions is the compensator C(s) realizable with a certain type of
feedback has not been completely solved yet. Just some partial results are available.
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Theorem 3. ([17]) Given a system T (s) ∈ Rp×l
p (s) of rank p and a compensator

C(s) ∈ Rl×l
p (s) with rank C(s) = l, then there exists a dynamic state feedback

u(s) = F (s)x(s) + Gv(s), (28)

with F (s) ∈ Rl×n
p (s) and G ∈ Rl×l being nonsingular, such that

C(s) = [Il − F (s)N(s)D−1(s)]−1

where N(s) and D(s) form an n.m.f.d. of (sIn − A)−1B, if and only if C(s) is a
biproper matrix.

A direct consequence of the above theorem is the condition under which C(s) is
realizable by a static state feedback (4).

Corollary 3. ([2]) Using the same notation as in Theorem 3, the compensator
C(s) is realizable by a static state feedback (4) if and only if C(s) is biproper and
the product C−1(s)D(s) is a polynomial matrix.

As far as the issue of stability is concerned, the problem can be formulated as
follows. Find, for a given plant T (s) and a stable model Tm(s), an admissible
compensator C(s) such that (26) holds and internal stability, which means that
no cancellation of unstable poles and zeros in the product T (s) C(s) will occur, is
ensured.

One way to tackle the problem lies in prestabilizing the plant T (s) by a state
feedback (4). This can always be done so that there is no loss of generality if
the plant T (s) is assumed to be an element of Rp×l

ps (s). Then the equation (26)
can be viewed as an equation over the ring of proper and stable rational functions
Rps(s), that is to say, C(s) is defined over Rps(s), too. Mathematically speaking,
the problems of model matching and model matching with stability are very similar
(as are the properties of Rp(s) and Rp(s)). From control theoretical point of view
it means that the unstable zeros of T (s) has to be kept unchanged to preserve the
internal stability.

5. CONCLUSIONS

The problem of exact model matching by different types of feedback has been dis-
cussed and some open questions related to this problem have been pointed out. It
is believed that further investigation of the problem will give more insight into the
structure of linear control systems and help in understanding the properties of basic
control laws.
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