
KY BERNET I K A — V OL UME 2 8 ( 1 9 9 2 ) , N UM B ER 5 , PAGE S 3 9 2 – 4 0 1

ON VARIOUS CRITERIA OF OPTIMALITY
IN PROBABILISTIC DECISION–MAKING

Jiřina Vejnarová

There are two possibilities how to define the optimality of a decision function – with respect to
a given set of distributions – in “local” and “global” senses, applying the minimax rule. But an
optimal decision function in any of these senses need not be the optimal one for any distribution
in this set. It is shown, using linear programming methods, how to find out whether the global
minimax decision function is optimal or not. A suitable representation of the decision function is
found – in the latter case – on the base of a barycenter concept.

1. INTRODUCTION

Let us consider the following problem. We have to determine a value of a variable
Y knowing the value of a variable X. A decision function is a mapping

d : X −→ Y

(where X and Y are the ranges of X and Y respectively), which assigns a value y
to every x. Let us suppose P to be a joint distribution of XY . Then we can define
an error of the decision d(x) as

eP (d(x); x) =
∑

y∈Y:y 6=d(x)

P (x, y),

and an expected error of the decision function d as

ēP (d) =
∑

x∈X

eP (d(x); x) =
∑

(x,y)∈X×Y

P (x, y)(1− δ(d(x), y))

(where δ(u, v) = 1 if u = v and δ(u, v) = 0 otherwise).
Our aim is to provide such decisions, which minimize the decision error.
If we knew the distribution P , we could choose a decision function dP satisfying

inequalities

eP (dP (x); x) ≤ eP (d(x);x)

for every x ∈ X and every decision function d, or equivalently

ēP (dP ) ≤ ēP (d)

for every decision function d. Any function dP satisfying these inequalities is called
an optimal decision function with respect to the distribution P .

But in many cases we do not know the distribution P exactly. Let us consider
the situation in which we can assume that it belongs to some class of distributions
P. If we make a decision d(x) = y, the value of the corresponding error can be as
large as
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max
P∈P

eP (y;x).

If we wish this maximum error to be the least possible one, we have to choose such
y that minimizes this expression. Then, we get a minimax rule

min
y

max
P∈P

eP (y;x).

Any optimal decision function (it need not be unique) with respect to this rule
(assuming P is fixed) will be denoted d∗:

d∗(x) ∈ arg min
y

max
P∈P

eP (y;x)

and called a local minimax decision function.
But there is another possibility of defining the minimax decision function. We

can select a function d which minimizes the maximal possible expected error of the
decision function, i.e.

max
P∈P

ēP (d).

Any such function is called a global minimax decision function and denoted d∗:

d∗ ∈ arg min
d

max
P∈P

ēp(d).

It is obvious from the definitions of d∗ and d∗ that

max
P∈P

ēP (d∗) ≤ max
P∈P

ēP (d∗)

and, at the same time,

max
P∈P

eP (d∗(x); x) ≤ max
P∈P

eP (d∗(x); x) for all x ∈ X.

These properties seem to be contradictory, but they are not as

max
P∈P

ēP (d) = max
P∈P

∑
x

eP (d(x); x) ≤
∑

x

max
P∈P

eP (d(x); x).

Example 1 in the Appendix shows that these inequalitites are strict, generally. It
can be seen that d∗ in this example is the optimal decision function with respect to
P2 and d3 is the optimal one with respect to P1. So d∗ = d2 is optimal with respect
to none of the distributions in P. It is not difficult to find other examples where d∗
again is not optimal with respect to any distribution in P.

The question we want to answer is the following: What are the conditions under
which d∗ (resp. d∗) is an optimal decision function for some P ∈ P? If such P
exists, it can be used as a representation of the minimax decision function. This
distribution can be, in fact, more appropriate for practical use than the decision
function (see e.g. [2]). Let us denote P∗ ⊂ P the set of all distributions from P with
respect to which the minimax decision function d∗ is optimal. So, the first question
is whether P∗ is empty or not.

This problem will be solved for d∗ (although similar conclusions can be done for
d∗ as well) and for P being a convex linear polyedr.
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2. EXPLICIT SOLUTION OF THE PROBLEM

It can be seen from the form of the expected error of a decision function that if a
distribution Pα is a linear combination of distributions P1 and P2 then the error
ePα

(d(x); x) of every decision d(x) and the expected error ēp(d) of every decision
function d is a linear combination of the decision errors eP1(d(x); x) and eP2(d(x);x)
and the expected errors of the decision functions ēP1(d) and ēP2(d) respectively. In
general, taking into account the convex polyedr with k vertices in (k−1)-dimensional
space, we have

ePα
(d(x); x) =

k∑

i=1

αiePi
(d(x); x)

and

ēPα
(d) =

k∑

i=1

αiēPi
(d), (1)

for

Pα =
k∑

i=1

αiPi, α = (α1, . . . , αk), αi ≥ 0,

k∑

i=1

αi = 1.

What does the optimality of a decision function mean? The decision function dP

is optimal with respect to the distribution P if

ēP (dP ) ≤ ēP (d)

for all decision functions d. Therefore the question whether the minimax decision
function d∗ (as mentioned above we could consider d∗ and eP (d(x); x) instead of d∗

and ēP (d) as well) is optimal for some Pα is equivalent to the problem whether there
exists α satisfying

ēPα(d∗) ≤ ēPα(d)

for every decision function d . Rewriting this inequality using (1), we get

k∑

i=1

αiēPi(d
∗) ≤

k∑

i=1

αiēPi(d).

Since it is a convex linear combination, the α
′
s have to satisfy in addition the

condition

k∑

i=1

αi = 1, αi ≥ 0, i = 1, ..., k.

In the case of k = 2 this problem can be solved explicitly. Let us set α1 = β,
then α2 = 1− β and we have the inequality

βēP1(d
∗) + (1− β)ēP2(d

∗) ≤ βēP1(d) + (1− β)ēP2(d),

or equivalently

β[ēP1(d
∗)− ēP1(d)] ≤ (1− β)[ēP2(d)− ēP2(d

∗)],

and therefore

β[ēP1(d
∗)− ēP1(d) + ēP2(d)− ēP2(d

∗)] ≤ ēP2(d)− ēP2(d
∗). (2)

Theorem 1 is an immediate consequence of this inequality.
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Theorem 1. Let P = {Pβ = βP1 + (1 − β)P2, β ∈ [0, 1]} and d∗ be the global
minimax decision function. Let us denote

β(d) =
ēP2(d)− ēP2(d

∗)
ēP1(d∗)− ēP1(d) + ēP2(d)− ēP2(d∗)

.

If there exists β∗ satisfying inequalities

β∗ ≤ β(d)

for all d satisfying ēP1(d)− ēP2(d) < ēP1(d
∗)− ēP2(d

∗), and

β∗ ≥ β(d)

for all d satisfying the opposite inequality, then Pβ∗ ∈ P∗ ⊂ P.

Remark. It should be stressed that the respective β has to meet as many inequal-
ities as there are different decision functions with the exception of those for which
the denominator is equal to zero. In this case

ēP1(d
∗)− ēP1(d) = ēP2(d

∗)− ēP2(d)

and therefore

ēP1(d) ≥ ēP1(d
∗) and ēP2(d) ≥ ēP2(d

∗)

for d∗ being the global minimax decision function. Therefore the inequality (2) holds
for all β.

3. SOLUTION VIA THE LINEAR PROGRAMMING METHODS

In general, however, such a simple optimality criterion (as set forth in Theorem
1) cannot be found. Let us denote D the set of all decision functions from X to
Y excluding d∗ (let us notice that D is finite since both X and Y are finite) and
J = card(D). We can index decision functions in D by numbers 1, ..., J and we get
the following problem: To find out whether the system of J inequalities

k∑

i=1

αi[ēPi(dj)− ēPi(d
∗)] ≥ 0, j = 1, . . . , J

and the equality

k∑

i=1

αi = 1,

has at least one solution such that αi ≥ 0, i = 1, . . . , k.
This problem can be reformulated in terms of linear programming: To min-

imize an arbitrary constant function under the conditions stated above. It can
be easily solved using the simplex algorithm (see e.g. [1]). Using slack variables
αk+1, . . . , αk+J , we get equality constraints

k∑

i=1

αi[ēpi(dj)− ēpi(d
∗)]− αk+j = 0, j = 1, . . . , J,

and
k∑

i=1

αi = 1,

αi ≥ 0, i = 1, . . . , k + J.
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In order to determine some basic solution we use an artificial variable αk+J+1.
The problem has then the form

min w αk+J+1 (3)

(where w is some large constant) under conditions

k∑
i=1

αi[ēPi
(d∗)− ēPi

(dj)] + αk+j = 0, j = 1, . . . , J,

k∑
i=1

αi + αk+J+1 = 1,

αi ≥ 0, i = 1, . . . , k + J + 1.

From this form we can easily get the basic solution

(αk+1, . . . , αk+J , αk+J+1) = (0, . . . , 0, 1).

This solution, however, is not feasible. Applying the simplex method, we get even-
tually the optimal solution of this problem.

It is well known (see e.g. [1]) that if this solution involves the artificial variable, a
feasible solution of the primal problem does not exist. In the other case, the optimal
solution of the problem (3) is a feasible solution of the primal problem and we can
find all feasible solutions α(l), l = 1, ..., L (for some L ≤ (k+J)!

(J+1)!(k−1)! ), of the primal
problem (see [1] again).

This general result obtained by linear programming methods can be interpreted
for our purpose in this way: If the solution involves the artificial variable αk+J+1,
the set P∗ is empty. Otherwise the set P∗ is a convex polyedr with vertices Pα(l),
l = 1, ..., L, where α1, ..., αk are certain coordinates of α(l).

But what shall we do if P∗ is the empty set? One possible answer will be offered
in the next section.

4. APPROXIMATION OF DISTRIBUTIONS IN P

In order to solve this problem we have at first to define an f-divergence, which is used
to measure the dissimilarity of two distributions. The f -divergence of probabilities
P and Q is defined in the discrete case for every function f(u) convex on (0,∞) and
strictly convex at the point u = 1 as

Df (P,Q) =
∑

x∈X

Q(x)f
(

P (x)
Q(x)

)

(setting

Q(x)f
(

P (x)
Q(x)

)
= P (x) lim

u→∞
f(u)

u

for such x that Q(x) = 0 and P (x) > 0).
Let us return to the problem stated above. For every decision function d we can

find a set of distributions Pd this decision function is optimal for. At this moment,
we consider all joint probability distributions defined for the pair of variables XY .
Therefore it can be easily seen that Pd 6= ∅ for any d (it is enough to consider the
distribution Pd(x, y) = 1

cardX if d(x) = y and Pd(x, y) = 0 otherwise). Consider d∗

and the set Pd∗ of distributions which have the same optimal decision function d∗.
Any of these distributions can be used to represent the decision function d∗. But
some of them are “too distant” from the original set P of the distributions having
the minimax decision function d∗. For the purpose of the representation of d∗ it
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seems to be reasonable to use such distribution P ∗ ∈ Pd∗ , which is the ”closest”
possible to the distributions from P, i.e. an approximation of distributions from the
set P in the set Pd∗ . It can be done using the barycenter concept introduced by
Perez in [3].

Let us consider sets P and Q (not necessarilly different). Distribution Q∗ will be
called a Df -barycenter of a set P with respect to a set Q, if

Q∗ ∈ arg min
Q∈Q

max
P∈P

Df (P, Q).

Distribution Q∗ then has the following characteristics:
1. The minimax decision function is optimal with respect to it, i.e.

eQ∗(d∗) ≤ eQ∗(d)

for all possible decision functions d.
2. The divergence Df (P, Q∗) is minimal for the least favourable P ∈ P, i.e.

max
P∈P

Df (P, Q∗) ≤ max
P∈P

Df (P, Q)

for every Q ∈ Q.

The practical construction of the Df -barycenter is another problem whose so-
lution is quite difficult and exceeds the framework of this paper. But the whole
procedure (decision whether there exists, or not, any P ∈ P with respect to which
d∗ is optimal, the construction – in the latter case – of the set Pd∗ and finding the
barycenter of P in Pd∗) is demonstrated in Example 2 in the Appendix.

Barycenter of the set P with respect to the set Q need not be unique, which is
shown in Example 3 of the Appendix.

APPENDIX

Example 1. Let the class P consist of the two following distributions

P1(0, 0) = 1
6 , P2(0, 0) = 1

3 ,

P1(0, 1) = 1
4 , P2(0, 1) = 1

8 ,

P1(1, 0) = 1
4 , P2(1, 0) = 5

12 ,

P1(1, 1) = 1
3 , P2(1, 1) = 1

8 .

Knowing the value of the variable X, we want to decide about the value of the
variable Y . Using the local minimax rule we get

d∗(0) = 0 and d∗(1) = 0.

Defining the other functions

d1(0) = 0, d1(1) = 1,
d2(0) = 1, d2(1) = 0,
d3(0) = 1, d3(1) = 1,

we can compute corresponding errors

eP1(d1) = 1
2 , eP2(d1) = 13

24 ,

eP1(d2) = 1
2 , eP2(d2) = 11

24 ,

eP1(d3) = 5
12 , eP2(d3) = 3

4 ,

eP1(d∗) = 7
12 , eP2(d∗) = 1

4 .
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It is obvious that not d∗ but d2 is the global minimax decision function.

In Section 4 we have defined the f -divergence. There is a large class of func-
tions satisfying the requirements stated there, i.e. we can define a lot of divergences
(see e.g. [4]). In our examples we will use only one of them – the total variation
(f(u) = |u− 1|)

V (P,Q) =
∑

x∈X

|P (x)−Q(x)|.

Example 2. Let us consider following convex set P of distributions

Pα(0, 0) = 1
12 + 5

12α,

Pα(0, 1) = 5
24 − 1

8α,

Pα(1, 0) = 1
3 ,

Pα(1, 1) = 3
8 − 7

24α, α ∈ [0, 1].

It is not difficult to find out that d2 ≡ 1 is the optimal decision function for Pα, α ∈
[0, 1

7 ], d3(0) = 1, d3(1) = 0 is the optimal one for Pα, α ∈ [ 17 , 3
13 ] and d1 ≡ 0 is the

optimal one for Pα, α ∈ [ 3
13 , 1]. But the minimax decision function is

d∗(0) = 0, d∗(1) = 1

and so it is not optimal for any α ∈ [0, 1].
Let us consider a set

P∗ = {P : P (0, 0) = p1, P (0, 1) = p2, P (1, 0) = p3, P (1, 1) = 1− p1 − p2 − p3,
p1 ≥ p2, p1 + p2 + p3 ≤ 1}.

(4)
The decision function d∗ is the optimal one with respect to the distributions from

this set.
The total variation of the distributions Pα ∈ P and P ∈ P∗ is

V (Pα, P ) = | 1
12

+
5
12

α−p1|+ | 5
24
− 1

8
α−p2|+ |13 −p3|+ |− 5

8
− 7

24
α+p1 +p2 +p3|.

It is obvious that to determine

max
Pα∈P

V (Pα, P ) = max
α∈[0,1]

V (Pα, P )

only values in boundary points of the interval [0,1] are important (for V (Pα, P ) is
a convex function of the variable α). So, we will be interested only in maxima of
the values V (P0, P ) and V (P1, P ). It is too laborious and not very interesting to
determine the subsets of [0, 1]3, where one or the other value is maximal. Therefore,
it is not done here, but only the result is stated. We have to determine values of
parameters p1, p2 and p3, which the max{V (P0, P ), V (P1, P )} is minimal for. These
values are

p1 = p3 =
11
36

, p2 =
1
12

and the maximum value is
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max{V (P0, P ), V (P1, P )} =
4
9
.

So the barycenter of the set P with respect to the set P∗ is the distribution P ∗:

P ∗(0, 0) = 11
36 ,

P ∗(0, 1) = 1
12 ,

P ∗(1, 0) = 11
36 ,

P ∗(1, 1) = 11
36

and the following equality holds

max
P∈P

V (Pα, P ∗) =
4
9
.

Example 3. Let us consider a convex set P of distributions

Pα(0, 0) = 1
6 + 23

48α,

Pα(0, 1) = 5
12 − 19

48α,

Pα(1, 0) = 1
6 + 7

48α,

Pα(1, 1) = 1
4 − 11

48α, α ∈ [0, 1].

It is clear, that d2 ≡ 1 is optimal for Pα, α ∈ [0, 4
15 ] (by the way d∗ ≡ d2) and d1 ≡ 0

is optimal for Pα, α ∈ [ 4
15 , 1], while

d∗(0) = 0, d∗(1) = 1.

A set of distributions with respect to which d∗ is optimal has the form (4) again.
Using the same procedure as in Example 2, we will find out, that the barycenter of
the set P with respect to P∗ is an arbitrary distribution from the set

P∗0 = {P : P (0, 0) = p1, P (0, 1) = p2, P (1, 0) = 31
48 − p1, P (1, 1) = 17

48 − p2,
p1 ≥ p2 + 7

24}.
(Received September 25, 1991.)
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