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ON PSEUDO–RANDOM SEQUENCES AND THEIR
RELATION TO A CLASS OF STOCHASTICAL LAWS

Ivan Kramosil and Jan Šindelář

A finite sequence is complex in the sense of Kolmogorov complexity approach if the length of its
shortest generating program is greater than a prescribed lower bound. Infinite sequences, almost
all initial segments of which are complex in this sense with lower bounds depending on the length
of these segments, will be investigated in this paper. The case of interest is that one when such an
infinite sequence satisfies some stochastical law depending on a function defining the lower bounds
in question. Having a finite or countable collection of stochastical laws and corresponding collection
of functions defining lower bounds one could be interested whether there is some other function
defining lower bounds and characterizing, in a sense, simultaneously all stochastical laws from the
given collection. Existence of such a function is proved and its properties are analyzed. The case
of constructive functions defining lower bounds is investigated as well.

1. INTRODUCTION AND NOTATION

With the aim to introduce a notion of randomness attributable to particular se-
quences of results two approaches have been suggested and developed. The first one,
more close to the classical paradigma of mathematical statistics, originates from the
notion of particular tests for randomness and combines all such tests which are ef-
fectively computable into a universal one; a sequence (finite or infinite) is defined as
random if it passes this universal test of randomness (cf., e. g., [1], [2], [5], [6]). The
other approach defines the so called Kolmogorov (algorithmic) complexity of a finite
sequence of outputs by the length of a shortest program generating this sequence on
a universal Turing machine and proclaims a finite sequence as random if this length
does not differ substantially from the length of the generated sequence itself (cf. [2],
e. g.). This definition is stronger than the former one in the sense that sequences
of high Kolmogorov complexity pass the Martin–Löf’s universal test of randomness,
but there are sequences of low complexity passing this test as well.

Instead of considering all the stochastical laws (laws of large numbers) comprimed
altogether into the universal test of randomness we may be interested in infinite se-
quences obeying some particular stochastical laws and we may try to define, or at
least to approximate, sets of such sequences in terms of Kolmogorov complexities
of their initial segments. This has been done for the laws asserting the stability of
relative frequencies of occurrences of particular events or strings of events in long
run series of experiments [3] and for the law of iterated logarithm [4]. From a
purely mathematical point of view, the results presented below deal with a possi-
bility to define appropriate one-side approximations for countable joints of classes
of infinite sequences of relatively high Kolmogorov complexity in the terms of this
complexity. The results achieved in [3], [4], [7] show that certain particular cases of
classes of infinite sequences which we shall investigate below can be intuitively but
quite reasonably, interpreted by, or identified with, substantial parts of extensions
of some well-known stochastical laws. (It means that any infinite sequence from a
given class satisfies some stochastical law and, moreover, that majority of infinite
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sequences satisfying the stochastical law is contained in the class.) If we allow our-
selves to extend such an interpretation or identification also to some other classes of
infinite sequences investigated in this paper, we can say that the aim of this paper
is to characterize, or to approximate, again in terms of Kolmogorov complexity and
of lower tolerance bounds defined by a single function, the set of infinite sequences
which are random with respect to a given set of stochastical laws. Sufficient condi-
tions under which such approximations are possible and reasonable are found and
corresponding assertions are proved.

The following notation will be used throughout this paper. N = {0, 1, 2, . . .}
will denote the set of all nonnegative integers, F will denote the class of all total
mappings taking N into [0,∞). Consider a finite set-alphabet Σ and let c = card
Σ ≥ 2. For each n ∈ N, Σn denotes the set of all n-tuples of elements of Σ (the
set of all strings or words of the length n, in other words said). Set, moreover,
Σ∗ =

⋃∞
n=0 Σn, hence, Σ∗ is the set of all finite sequences (strings, words) over the

alphabet Σ (here Σ0 contains the empty string Λ as the only element). If x ∈ Σ∗,
then `(x) denotes the length of x, i. e., `(x) = n iff x ∈ Σn. Finally, ΣN will denote
the set of all infinite sequences of elements of Σ; given S ∈ ΣN and n ∈ N,Sn
denotes the initial segment of the length n defined by S.

Let Ψ denote the class of all partial mappings from the Cartesian product Σ∗×Σ∗

into Σ∗.

2. KOLMOGOROV COMPLEXITY OF FINITE AND INFINITE SEQUENCES

Let us begin with the following well-known definition.

Definition 1. Let x,w ∈ Σ∗, let ψ ∈ Ψ. Then the Kolmogorov (algorithmic)
complexity Kψ(x|w) of the sequence x, with respect to the a priori information w
and with respect to ψ, is defined by

Kψ(x|w) = min {`(p) : p ∈ Σ∗, ψ(p, w) = x} (1)

with min(∅) = ∞.

Let W = 〈w0, w1, . . .〉 be a sequence of finite strings over Σ (i. e., wi ∈ Σ∗ for each
i) such that wn expresses some a priori information concerning the initial segments
of the length n of the infinite sequences to be considered below. E. g., wn contains
an information about the length n of these segments or about the value of a function
depending on this length. Let T = T (w) denote the set of all triplets 〈ψ, f,W〉 such
that ψ ∈ Ψ, f ∈ F .

Definition 2. Given 〈ψ, f,W〉 ∈ T , a sequence S ∈ ΣN is called 〈ψ, f,W〉-complex,
if there exists j ∈ N such that, for each n ≥ j, the inequality

Kψ(Sn |wn) ≥ n− f(n) (2)

holds. Let D(ψ, f,W) denote the set of all 〈ψ, f,W〉-complex infinite sequences over
Σ.

3. MARTIN–LÖF CONDITION

With the aim to generalize the well-known Martin–Löf’s result (cf. [6]) we shall
prove that

∑∞
n=0 c

−f(n) <∞ implies D(ψ, f,W) 6= ∅; let us recall that c = card Σ.
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Lemma 1. Let w ∈ Σ∗, ψ ∈ Ψ, r ∈ [0,∞). Then

card {x ∈ Σn : Kψ(x|w) < r} ≤
(
c
dre − 1

)
(c− 1)−1, (3)

where dre = min{n : n ∈ N, n ≥ r}.
P r o o f . Analogous to the proof of Lemma 2.7 in [1], p. 306. 2

Let B be the minimal σ-field generated by the algebra A of cylinders over ΣN ,
let P be the product probability measure generated on B by the uniform probability
distribution over Σ (associating c−1 to each letter). Then, obviously,

P
({S ∈ ΣN : S`(w) = w}) = c−`(w). (4)

A function f ∈ F satisfies the Martin–Löf condition (or: posseses the Martin–Löf
property), if

∑∞
n=0 c

−f(n) < ∞. Let ML ⊂ F denote the class of functions from F
possessing the Martin–Löf property.

Theorem 1. Let 〈ψ, f,W〉 ∈ T . Then D(ψ, f,W) is measurable. Moreover, if
f ∈ ML, then P (D(ψ, f,W)) = 1, hence, D(ψ, f,W) 6= ∅.

P r o o f . Definition 2 immediately implies that

ΣN \D(ψ, f,W) =
∞⋂

j=0

∞⋃

n=j

⋃

x∈Σn

{
S ∈ ΣN : Sn = x,Kψ(x|wn) < n− f(n)

}
. (5)

For each n ∈ N, n fixed, x ∈ ΣN , the set

Bx,n =
{
S ∈ ΣN : Sn = x,Kψ(x|wn) < n− f(n)

}
(6)

is a cylinder, hence, ΣN \D(ψ, f,W) is measurable due to (5). Moreover,

P

( ⋃

x∈Σn

Bx,n

)
= c−n card {x ∈ Σn : Kψ(x|wn) < n− f(n)} , (7)

so that, using Lemma 1 and the fact that c ≥ 2, we obtain that

P

( ⋃

x∈Σn

Bx,n

)
≤ c−n

(
c
dn−f(n)e − 1

)
(c− 1)−1 < c−f(n)+1. (8)

Due to (5), for each j ∈ N ,

P
(
ΣN \D(ψ, f,W)

) ≤
∞∑

n=j

P

( ⋃

x∈Σn

Bx,n

)
, (9)

hence, for each j ∈ N ,

P
(
ΣN \D(ψ, f,W)

)
< c

∞∑

n=j

c−f(n). (10)

But f ∈ ML, so that inf
{
Σ∞n=jc

−f(n) : j ∈ N}
= 0, consequently,

P
(
ΣN \D(ψ, f,W)

)
= 0, (11)

and the assertion immediately follows. 2

For two total mappings f, g takingN into real numbers, define mappings f+̇g, f−̇g
by setting

(f+̇g)(n) = max {f(n) + g(n), 0} , (f−̇g) (n) = max {f(n)− g(n), 0} .
The following assertion is obvious.
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Lemma 2. If f ∈ ML, g : N → R is total, and if |g(n)| ≤ K holds for a constant
K and for all n ∈ N , then (f+̇g) ∈ ML, (f−̇g) ∈ ML.

4. ON CLASSES OF COMPLEX SEQUENCES

Henceforth, ψ andW are fixed so that we may write D(f) instead of D(ψ, f,W) if no
misunderstanding menaces. If G ⊂ F , set D(G) =

⋂
g∈G D(g). For f, g ∈ F , f ≺ g

means that f is smaller than or equal to g almost everywhere, i. e.

f ≺ g ⇔ (∃ j ∈ N) (∀n ≥ j) (f(n) ≤ g(n)) . (12)

If f ∈ F , G ⊂ F , then f ≺ G means that f ≺ g for each g ∈ G.

Lemma 3. If f ≺ g, then D(f) ⊂ D(g).

P r o o f . If D(f) = ∅, the assertion is trivial, so let f ≺ g and let S ∈ D(f).
Hence, there exists j0 ∈ N such that, for all n ≥ j0, f(n) ≤ g(n) holds, at the same
time, S ∈ D(f) implies that there exists j1 ∈ N such that Kψ(Sn |wn) ≥ n−f(n) for
each n ≥ j1. So, n ≥ max{j0, j1} implies Kψ(Sn |wn) ≥ n− g(n), hence, S ∈ D(g)
and the assertion is proved. 2

The following corollary immediately follows.

Corollary 1. Let f ∈ F , G ⊂ F . If f ≺ G, then D(f) ⊂ D(G). If, moreover,
f ∈ML, then P (D(f)) = 1 and P (D(G)) = 1.

Under the interpretation suggested and briefly discussed in the introductory part
of this paper, each set D(g), g ∈ G, corresponds to some “stochastical law”, or “law
of large numbers”, hence, if f ≺ G, then each sequence from D(f) obeys all these
laws corresponding to functions g ∈ G. In other words, the problem to describe or
at least to approximate, in an effective way, the set of infinite sequences obeying all
the laws corresponding to functions from G is reduced to that of finding a function
f such that f ≺ G and f ∈ ML.

There is an analogy between this situation and that occurring when the so called
universal Martin–Löf’s tests are applied. With the aim to develop this analogy in
more detail and to express the properties of the sets D(f) and D(G) in terms of
recursion theory we introduce and prove the following two lemmas and a theorem
resulting from them.

Let Fsum = {f ∈ F :
∑∞
n=0 f(n) <∞} be the class of all summable functions

from F .

Lemma 4. Let H ⊂ Fsum be finite or countable. Then there exists k ∈ Fsum such
that h ≺ k for each h ∈ H and 0 < k(n) ≤ 1 for each n ∈ N .

P r o o f . Let us arrange the set H into a sequence H = 〈h1, h2, . . .〉, let h0 ∈ Fsum

be such that 0 < h0(n) for each n ∈ N and
∑∞
n=0 h0(n) < 1 and let us join h0 to H.

Set, for each m ∈ N ,
`m = max{h0, h1, . . . , hm}. (13)

Obviously, for each m ∈ N ,

∞∑
n=0

`m(n) ≤
∞∑
n=0




m∑

j=0

hj(n)


 <∞, (14)

so that {`0, `1, . . .} ⊂ Fsum. Moreover, for each m ∈ N, hm ≺ `m. Hence, in order
to prove the first part of the assertion, if suffices to find k ∈ Fsum such that `m ≺ k
for each m ∈ N.
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Now, let us construct, by induction, an increasing sequence n0, n1, . . . of integers
such that, for each m ∈ N ,

∞∑
n=nm

`m(n) ≤ 2−m. (15)

In fact, take m = 0 and set n0 = 0. Then `0 = h0 and (15) immediately follows from
the declared properties of h0. Having chosen nm−1, there exists j ∈ N such that∑∞
n=j `m(n) ≤ 2−m holds, hence, set nm = max{j, nm−1 + 1}. Now, (15) evidently

holds. Setting k(n) = `m(n) for each m ∈ N, nm ≤ n ≤ nm+1 − 1, we easily find
that

∞∑
n=0

k(n) =
∞∑
m=0

nm+1−1∑
n=nm

`m(n) ≤ 1, (16)

i. e., k ∈ Fsum, k(n) ≤ 1 for each n ∈ N. As h0(n) = `0(n) ≤ k(n), 0 < k(n) holds
for each n ∈ N.

Take m ∈ N, n ≥ nm. Then there exists q ∈ N such that nq ≤ n ≤ nq+1 − 1.
Evidently, q ≥ m, so that

k(n) = `q(n) = max {h0(n), h1(n), . . . , hq(n)} ≥ (17)
≥ max {h0(n), h1(n), . . . , hm(n)} = `m(n), (18)

hence, for each n ≥ nm, `m(n) ≤ k(n), so that `m ≺ k holds. The assertion is
proved. 2

Lemma 5. Let G ⊂ ML be countable. Then there exists f ∈ ML such that f ≺ G.

P r o o f . Arrange G into a sequence G = 〈g0, g1, . . .〉 and set, for each
m,n ∈ N, hm(n) = c−gm(n). The set H = {h0, h1, . . .} satisfies the condition of
Lemma 4, hence, there exists k ∈ Fsum satisfying the assertion of Lemma 4. Set
f(n) = − logc(k(n)), then 0 ≤ f(n) for each n ∈ N and

∑∞
n=0 c

−f(n) =
∑∞
n=0 k(n) <

∞, so that f ∈ ML.
Let g ∈ G, let g = gm, recalling the proof of Lemma 4 above we can easily see

that there exists j ∈ N such that, for all n ≥ j, hm(n) ≤ k(n). Consequently,
g(n) = gm(n) = − logc hm(n) ≥ − logc k(n) = f(n) holds for each n ≥ j as well, so
that f ≺ g and f ≺ G follow. 2

The following statement immediately follows from Corollary 1 and Lemma 5.

Theorem 2. Let G ⊂ ML be countable. Then there exists f ∈ ML such that
D(f) ⊂ D(G) and P (D(f)) = 1.

Definition 3. For each m ∈ N , let dm(n) = m for all n ∈ N . A class G ⊂ F is
called d-closed, if g−̇dm ∈ G for each g ∈ G, m ∈ N .

E. g., the class ML is d-closed.

Theorem 3. Let G ⊂ F be d-closed and g ∈ G. If g ∈ G is not bounded, then for
each S ∈ D(G)

lim sup
n→∞

{Kψ(Sn |wn)− (n− g(n))} = ∞. (18)

If limn→∞ g(n) = ∞, then for each S ∈ D(g),

lim
n→∞

{Kψ(Sn |wn)− (n− g(n))} = ∞. (19)

P r o o f . Let g ∈ G be unbounded. Then there exists an increasing infinite
sequence n0, n1, . . . of integers such that limi→∞ g(ni) = ∞. Fix m ∈ N , there
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exists i0 ∈ N such that, for each i ≥ i0, (g−̇dm) (ni) = g(ni) − m. Moreover,
g−̇dm ∈ G, so that there exists j1 ∈ N such that, for each n ≥ j1,

Kψ (Sn |wn) ≥ n− (g−̇dm)(n). (20)

Let i1 be such that j1 ≤ ni1 . Take i ≥ max(i0, i1), then

Kψ(Sni |wni)− (ni − (g(ni)) = (21)
= Kψ(Sni

|wni
)− (ni − (g−̇dm) (ni)) +m ≥ m,

and (18) is proved. The case when limn→∞ g(n) = ∞ can be converted into the just
proved one by setting ni = i for each i ∈ N . 2

The importance of the assertion just proved consists in the fact that, as can be
easily seen, the condition of d-closeness is satisfied by a number of theoretically and
practically important classes of functions, e. g., by the class of all recursive functions,
by the class of primitive recursive functions, or by the class of elementary functions.

Lemma 6. Let G ⊂ ML be d-closed. Then for no f ∈ G the relation f ≺ G holds.

P r o o f . Let f ∈ G, then
∑∞
n=0 c

−f(n) < ∞, so that there exists m ∈ N such
that f(n) ≥ 1 for each n ≥ m. Consequently, (f−̇d1)(n) = f(n)− 1 < f(n), hence,
f ≺ f−̇d1 does not hold. However, G is d-closed so that f−̇d1 ∈ G, hence, f ≺ G
cannot hold.

The following assertion is obvious.

Lemma 7. If g ∈ ML, then limn→∞ g(n) = ∞.

Theorem 4. Let G ⊂ ML be d-closed and countable. Then
(a) there exists f ∈ ML such that D(f) ⊂ D(G) and P (D(f)) = 1, P (D(G)) = 1,
(b) there is no f ∈ G such that f ≺ G,
(c) if g ∈ G and S ∈ D(G), then (19) holds.

P r o o f . The theorem just cumulates the assertions proved above. 2

5. RECURSION–THEORETICAL PROPERTIES OF CLASSES D(G)

The ideas and results of this chapter take profit of the classical theory of recursive
functions and can be easily relativized by introducing an oracle A.

Let us denote by MLR the set of recursive rational-valued functions possessing
the Martin–Löf property. The following two assertions are evident.

Lemma 8. MLR is a d-closed and countable subset of ML.

Corollary 2. All the three assertions of Theorem 4 hold for G = MLR.

A short reconsideration of the result just achieved from the viewpoint of the
theory of Martin–Löf tests seems to be useful. A more detailed insight into our
model shows, that this model is equivalent to a generalized notion of Martin–Löf
test resulting when the condition P (Vm) < 2−m for each component Vm of the test
is replaced by a more general condition P (Vm) < 2−f(m). An analysis of the proof
of the assertion claiming the existence of a universal Martin–Löf test [1] yields that
under the generalization just introduced such a universal test exists, if the function
f belongs to the class MLRE of functions which will be defined below. Theorem 4
and Corollary 2 express the fact just mentioned in the terms used in this paper.
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A function f ∈ Fsum is called effectively summable if there exists a recursive func-
tion ascribing to each positive rational number r an integerm such that

∑∞
n=m f(n) <

r. For each f ∈ F define the function Cf by Cf (n) = c−f(n). By MLRE denote the
class of all recursive rational-valued functions f such that Cf is effectively summable.
As can be easily seen, if f ∈ MLRE, then f possesses the Martin–Löf property. The
following two assertions are obvious.

Lemma 9. MLRE is a countable and d-closed subset of ML.

Corollary 3. All the three assertions of Theorem 4 hold for G = MLRE.

Theorem 5. Let G ⊂ MLRE be an indexed set of functions, let there exist a
recursive function G(·, ·) such that, for each g ∈ G, there exists i ∈ N with the
property
G(i, ·) = g. Then a function f ∈ MLRE such that f ≺ G can be effectively found.

P r o o f . For each g ∈ G an integer-valued recursive function g̃ can be effectively
found such that |g(n) − g̃(n)| ≤ 2 for each n ∈ N . Evidently, each g̃ is effectively
summable. The set {Cg̃ : g ∈ G} is a recursive set of effectively summable functions
and we may apply the proof of Lemma 5 above to this set and to the function
h0(n) = c−n−1; all steps of this proof are effective. So we construct a function
k ∈ Fsum such that Cg̃ ≺ k for each g ∈ G, k is a recursive and effectively summable
rational-valued function and, for each n ∈ N, k(n) = c−ξ(n) where ξ is a recursive
function. Setting f = ξ−̇d2 we can easily see that f is a recursive function such that
Cf is effectively summable and f ≺ G. 2

Corollary 4. Let G be as in Theorem 5. Then a function f ∈ MLRE can be
effectively found such that D(f) ⊂ D(G) and P (D(f)) = 1, P (D(G)) = 1.

(Received February 6, 1991.)
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(Institute of Information and Computer Science – Czechoslovak Academy of
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