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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in October 2003.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2003.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/395.html


KY BERNET I K A — V OL UME 3 9 ( 2 0 0 3 ) , N UM B ER 5 , PAGE S 5 4 7 – 5 6 0

NON–MONOTONEOUS PARALLEL ITERATION FOR
SOLVING CONVEX FEASIBILITY PROBLEMS

Gilbert Crombez

The method of projections onto convex sets to find a point in the intersection of a finite
number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of
the constructed sequence. Such slow convergence depends both on the choice of the starting
point and on the monotoneous behaviour of the usual algorithms. As there is normally no
indication of how to choose the starting point in order to avoid slow convergence, we present
in this paper a non-monotoneous parallel algorithm that may eliminate considerably the
influence of the starting point.

Keywords: inherently parallel methods, convex feasibility problems, projections onto con-
vex sets, slow convergence

AMS Subject Classification: 65Y05, 65B99, 47H09

1. INTRODUCTION

The method of projections onto convex sets (abbreviated as POCS) is often very
well suited to solve the so-called “convex feasibility problem”. In the m-dimensional
Euclidean space Rm, this problem may be described as follows: given a finite number
of closed convex sets {Cj}n

j=1 in Rm with nonempty intersection C∗ ≡ n∩
j=1

Cj , find

a point in C∗. When the individual sets Cj are such that for each of them its
corresponding shortest-distance projection operator Pj (j = 1, . . . , n) is explicitly
known, by the POCS-method a sequence is constructed that converges to a point
in C∗; depending on the number r (1 ≤ r ≤ n) of projections used at each step
to construct such sequence, sometimes one speaks of a sequential method (r = 1),
or a block-iterative method (1 < r < n), or a (fully) parallel method (r = n). An
overview of general problems and methods may be found in [1], and in the books
[12] and [4]. More specific sequential, block-iterative and parallel methods have
been described in [9], [2], [5], [6] and [10]. Examples of the use of convex feasibility
problems in applied domains (as for instance in image processing) may be found in
[12].

As often has been remarked, however, the sequence that is constructed by the
POCS-methods sometimes converges very slowly. The following combined facts
may be responsible for this slow convergence: the mutual position of the involved
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convex sets (i.e., the given problem), and the algorithm used to reach a feasible
point. Usually we can only interfere into the used algorithm. To see what facts
in a common iteration algorithm may be responsible for slow convergence, we refer
to Table 1 accompanying Example 1 at the end of this paper. In this example,
12 disks (having nonempty intersection) with corresponding projection operators
P1, P2, . . . , P12 are given; we use the sequential algorithm indicated as PP, in which
we put T ≡ P12P11 . . . P2P1, and in which the iteration sequence {xk}+∞k=0 is con-
structed by xk+1 = Txk. From Table 1 we see that, for some starting points, a point
in the intersection is obtained after one application of T , while for other starting
points the same method leads to a very slowly converging sequence (the same is
true in the parallel case, although for different starting points). The following expla-
nation for this different speed of convergence seems acceptable : for some starting
points, the converging sequence {xk}+∞k=0 may enter some narrow “corridor” between
two or more convex sets; the monotoneous way of convergence that is present by
using a common algorithm is then responsible for very small steps towards the limit
point, leading to slow convergence. This monotoneous behaviour for the constructed
sequence {xk}+∞k=0 in Rm that converges to a point of the intersection C∗ is expressed
as |xk+1 −w| ≤ |xk −w|,∀w ∈ C∗, for all k.

The observations explained above lead to the following conclusions. First of all
(and certainly for nonlinear projections), applicable theoretical results about the
rate of convergence may be difficult to find. But what is even more important is
that the real way out of the difficulties is not situated in finding some algorithm
that in all circumstances is the fastest (as such algorithm probably does not exist),
but in finding an algorithm that, independent of the starting point, leads to an
acceptable speed of convergence. Otherwise said, returning to Example 1, it is well
acceptable that for some starting points algorithm PP leads to a faster convergence
than the new algorithm we want to construct, but the new algorithm should not
lead to extremely slow convergence, although this last fact can only be observed
experimentally.

Again from our observations, we see that a possible way out of slow convergence
could be by allowing (and provoking) nonmonotoneous behaviour of the iteration
sequence, because we then have the possibility to leave the small corridor by taking
big steps at several iteration points. In a recent paper [8], we already elaborated this
idea, and we constructed a parallel algorithm that at different steps in the iteration
caused an interruption of the monotoneous behaviour of convergence, and that led
to a much faster convergence in those cases where the monotoneous procedure was
slow, while keeping an acceptable speed of convergence in the other cases. There
was, however, one less desirable fact in the method: part of the computations had
to be done in the space (Rm)n instead of in Rm.

In this paper, we present a new algorithm that may interrupt the monotoneous
behaviour of the iteration sequence {xk}+∞k=0, but such that all computations may
be done in Rm. In Section 2, we explain the theoretical background and in Section
3 we prove convergence of the constructed sequence to a point of C∗. For ease
of presentation, we give the construction in the fully parallel case, although the
method seems to be equally valid in the block-iterative case. At the end of Section



Non-Monotoneous Parallel Iteration for Solving Convex Feasibility Problems 549

3 we also give some comments on the fact that the constructed algorithm should be
seen as a prototype, but that more flexibility can be incorporated in it. In Section
4, we present two examples to compare the number of iterations needed to obtain
convergence for different algorithms.

2. CONSTRUCTION OF THE ALGORITHM

2.1. For ease of reference, we start with a short description of the Pierra method
[11] for viewing a parallel iterative projection method in some space as a (semi-)
sequential one in a suitable product space.

Let Rm be the m-dimensional Euclidean space with standard inner product 〈 , 〉
and norm | | derived from 〈 , 〉; denote (Rm, 〈 , 〉 , | |) for short by H. Elements
of H are denoted by boldface letters.

Suppose that in H, n closed convex sets {Cj}n
j=1 are given, having nonempty

intersection C∗ ≡ n∩
j=1

Cj . Projection onto Cj is denoted as Pj . We want to obtain

a point in C∗ by a parallel iterative procedure.
Consider the n-fold product (Rm)n of Rm; elements of (Rm)n are denoted by capi-

tal letters. We introduce an inner product 〈〈 , 〉〉 and norm ‖ ‖ on (Rm)n, as follows:
when V ≡ (v1,v2, . . . ,vn) and W ≡ (w1,w2, . . . ,wn) are elements of (Rm)n, put

〈〈V, W 〉〉 = 1
n

n∑
j=1

〈vj ,wj〉, ‖V ‖2 = 1
n

n∑
j=1

|vj |2. We denote ((Rm)n, 〈〈 , 〉〉 , ‖ ‖) for

short by H.
In H, we consider the subsets D and F , defined as follows. D is the set of all

n-tuples with equal components, i.e., for v ∈ H we have that (v,v, . . . ,v) ∈ D ⊂ H.
D is the image of H under the canonical imbedding q : H → H, where for v ∈ H
we put q(v) ≡ (v,v, . . . ,v). D is a closed linear subspace of H. Projection onto D
is denoted as PD.

The subset F of H is defined as the n-fold cartesian product of the convex sets
{Cj}n

j=1 in H, i.e., F = C1 × C2 × · · · × Cn. It is a closed convex set of H, with
corresponding projection operator PF .
Clearly, C∗ 6= ∅ is equivalent to F ∩ D 6= ∅, and, moreover, q(C∗) = F ∩ D. Hence,
obtaining a point in C∗ ⊂ H is equivalent to obtaining a point in F∩D. In particular,
when we construct a sequence {Xk}+∞k=0 in D ⊂ H that converges in H to a point
in F ∩ D, the corresponding sequence {xk}+∞k=0 in H with xk = q−1(Xk) will be
convergent in H to a point in C∗.

Use of the Pierra method mentioned above is based on the properties given in
Lemma 1, and may be resumed as in Lemma 2. For proofs we refer to [11, Lemma
1.1] and [8, Lemma 1].

Lemma 1. Let V ≡ (v1,v2, . . . ,vn) ∈ H. Then

(i) PFV = (P1v1, P2v2, . . . , Pnvn).

(ii) PDV = q( 1
n

n∑
j=1

vj).
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Lemma 2. Suppose that, starting from some point x0 in H, a sequence {xk}+∞k=0

in H is constructed by a parallel method, as follows

xk+1 = xk + λk+1

n∑

j=1

1
n

(Pjxk − xk), (1)

where λk+1 denotes a (positive) variable relaxation coefficient. Then, under the
natural imbedding q of H into H, the sequence {xk}+∞k=0 in H is equivalent to the
sequence {Xk}+∞k=0 in D ⊂ H constructed as follows:

X0 = q(x0)
Xk+1 = Xk + λk+1(PD(PFXk)−Xk). (2)

Hence, the parallel method in H, given by (1), is equivalent to a semi-sequential
method in H, given by (2) (we use the word semi-sequential to stress the fact that
no relaxation with respect to the projection onto D is allowed). The procedure in
(2) may also be split into two separate steps, as follows:

Yk+1 = Xk + λk+1(PFXk −Xk) (3i)
Xk+1 = PD(Yk+1). (3ii)

We also remark that in (1) the same equal weight factors 1
n for each projection

operator Pj have been used; the procedure works equally well for fixed but different
weight factors. For the value of the variable relaxation coefficient λk+1 used at
each step in (1) or (2) to obtain convergence, several possibilities are available. In
particular, when in going from Xk to Xk+1 (or from xk to xk+1), the following value
of λk+1 is used

λk+1 =
‖PFXk −Xk‖2

‖PD(PFXk)−Xk‖2 =

n∑
j=1

1
n |xk − Pjxk|2

|xk −
n∑

j=1

1
nPjxk|2

, (4)

it has been shown in [7, Formulas (8) and (9)] that the following inequalities are
true for each V in F ∩ D:

〈〈Xk+1 − V, Xk+1 −Xk〉〉 ≤ 0, (5)

‖Xk+1 − V ‖2 ≤ ‖Xk − V ‖2 − ‖Xk −Xk+1‖2. (6)

It is also true that λk+1 ≥ 1, for each k.
Moreover, again from [7] we deduce that the following orthogonality relation is true:

‖Xk −Xk+1‖2 = ‖Xk − PFXk‖2 + ‖PFXk −Xk+1‖2. (7)
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2.2. Inequality (6) implies in particular that, when at each iteration step the
value of λk+1 given in (4) is used, the resulting sequence {Xk}+∞k=0 will have a mono-
toneous behaviour. We now present an algorithm that, by using suitable values
of the relaxation coefficients at regular steps, may lead to a non-monotoneous be-
haviour, but still will result in a sequence that is convergent to a point of F ∩ D.
We first explain the method for one possible interruption point with index k + 1;
afterwards we enumerate all possible interruption points.

Let N be a given positive integer (N > 2). Suppose that, starting from some point
X0 in D ⊂ H, we obtained by using procedure (2) with the corresponding relaxation
coefficients as given in (4), the points X1, X2, . . . , Xk with k ≥ N (in particular, for
those intermediate points up to and including Xk the properties corresponding to
(5) and (6) are true). Now, in order to find Xk+1, we will use a relaxation coefficient
such that, although it may no longer be true that ‖Xk+1 − V ‖ ≤ ‖Xk − V ‖ for all
V ∈ F ∩D, it will nevertheless be true that ‖Xk+1−V ‖ < ‖Xk+1−N −V ‖, for each
V ∈ F ∩D. Put another way, the monotoneous behaviour of the sequence {Xk}+∞k=0

that we are going to construct may be interrupted at Xk+1 with respect to Xk, but
it is repaired with respect to Xk+1−N .

To this end, with γk+1 denoting a positive but not yet determined number and
with λk+1 as given by (4), put

Xk+1 = Xk + (λk+1 + γk+1)(PD(PFXk)−Xk). (8)

Putting
Wk+1 = Xk + λk+1(PD(PFXk)−Xk), (9)

we know that for the couple (Wk+1, Xk) the properties corresponding to (5) and (6)
are true (replacing in (5) and (6) Xk+1 by Wk+1), and moreover we see that (8) may
be rewritten as

Xk+1 = Wk+1 + γk+1(PD(PFXk)−Xk). (10)

For any V in F ∩ D, we derive from (10)

‖Xk+1 − V ‖2 = ‖Wk+1 − V ‖2 + γ2
k+1‖PD(PFXk)−Xk‖2

+ 2γk+1〈〈Wk+1 − V, PD(PFXk)−Xk〉〉.
In view of (9), we may replace PD(PFXk) − Xk in the right-hand-side of the

foregoing equality by 1
λk+1

(Wk+1−Xk). Hence, the former equality may be rewritten
as

‖Xk+1 − V ‖2 = ‖Wk+1 − V ‖2 +
γ2

k+1

λ2
k+1

‖Wk+1 −Xk‖2

+ 2
γk+1

λk+1
〈〈Wk+1 − V, Wk+1 −Xk〉〉.

As we already remarked, the inner product in the last term is non-positive (cor-
responding to (5)). We conclude that, irrespective of the positive value of γk+1, we
have that

‖Xk+1 − V ‖2 ≤ ‖Wk+1 − V ‖2 +
γ2

k+1

λ2
k+1

‖Wk+1 −Xk‖2. (11)
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The inequality (6), in which we replace Xk+1 by Wk+1, is valid. Taking into
account this new inequality in the first term on the right-hand-side of (11) we obtain:

‖Xk+1 − V ‖2 ≤ ‖Xk − V ‖2 − ‖Xk −Wk+1‖2 +
γ2

k+1

λ2
k+1

‖Wk+1 −Xk‖2,

which leads to

‖Xk+1 − V ‖2 ≤ ‖Xk − V ‖2 +
(

γ2
k+1

λ2
k+1

− 1
)
‖Wk+1 −Xk‖2. (12)

Now, the inequality (6) is also always true for the following couples of points:
(Xk, Xk−1), (Xk−1, Xk−2), . . . , (Xk+1−(N−1), Xk+1−N ). Hence, repeatedly bounding
(by using the inequalities corresponding to (6)) each new first term on the right-hand-
side of the expressions obtained from (12), we get

‖Xk+1 − V ‖2
≤ ‖Xk−1 − V ‖2 − ‖Xk−1 −Xk‖2 + ( γ2

k+1

λ2
k+1

− 1)‖Wk+1 −Xk‖2

≤ ‖Xk−2 − V ‖2 − ‖Xk−2 −Xk−1‖2 − ‖Xk−1 −Xk‖2 + ( γ2
k+1

λ2
k+1

− 1)‖Wk+1 −Xk‖2
≤ . . .
≤ ‖Xk+1−N − V ‖2 − ‖Xk+1−N −Xk+1−(N−1)‖2 − · · · − ‖Xk−2 −Xk−1‖2

−‖Xk−1 −Xk‖2 + ( γ2
k+1

λ2
k+1

− 1)‖Wk+1 −Xk‖2.
Putting for short

Mk+1 ≡ ‖Xk+1−N −Xk+1−(N−1)‖2 + · · ·+ ‖Xk−2−Xk−1‖2 + ‖Xk−1−Xk‖2, (13)

the obtained inequality may be written as

‖Xk+1 − V ‖2 ≤ ‖Xk+1−N − V ‖2 −Mk+1 +
(

γ2
k+1

λ2
k+1

− 1
)
‖Wk+1 −Xk‖2. (14)

Now let α be a given positive number, 0 < α < 1. In order to be sure that the
newly obtained point Xk+1 is closer to each point V of F ∩ D than Xk+1−N (i.e.,
in order to repair the monotony when considering Xk+1 and the points with indices
preceding and including k + 1 − N), it is sufficient to choose γk+1 such that the
following is true: (

γ2
k+1

λ2
k+1

− 1
)
‖Wk+1 −Xk‖2 = αMk+1,

which leads to

γk+1 = λk+1

√
1 +

αMk+1

‖Wk+1 −Xk‖2 . (15)

The just described procedure to construct a single possible interruption point
Xk+1 will now be applied for a specific subsequence of indices, as follows. Let
J be a positive integer with J > N . Suppose that, starting from some point
X0 in D and up to the index J , we determine the points X1, X2, . . . , XJ accord-
ing to the procedure (2) with λk+1 as given by (4). However, for determining
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XJ+1, XJ+1+N , XJ+1+2N , . . . , XJ+1+pN , . . . (p a nonnegative integer) we use proce-
dure (8) with the corresponding γ-value as given by (15), while for all intermediate
points between XJ+1+pN and XJ+1+(p+1)N (for all nonnegative integers p) again
procedure (2) is used. Then we obtain in D the sequence {Xk}+∞k=0, having the
subsequence {XJ+1+pN}+∞p=0 for which it is true that:

‖XJ+1+pN−V ‖2 ≤ ‖XJ+1+(p−1)N−V ‖2−(1−α)MJ+1+pN , for all V ∈ F∩D. (16)

We want to stress the fact that, contrary to the algorithm in [8], all computations
now are done in D (and hence in H). The only supplementary computational effort,
when comparing to a monotoneous parallel method, is to keep a list of the N − 1
intermediate points between XJ+1+pN and XJ+1+(p+1)N , together with the point
XJ+1+pN itself; these points are needed in order to compute XJ+1+(p+1)N .

Before giving the proof of convergence of the constructed sequence, we resume
the former result in the following algorithm, stated in the space H.

Algorithm.

Let H be some Euclidean space with inner product 〈〈 , 〉〉 and norm ‖ ‖ derived
from it, D a closed linear subspace of H and F a closed convex subset of H such
that F ∩ D 6= ∅. Let N and J be positive integers with J > N , and let α be a real
number between 0 and 1. Starting from some point X0 in D, construct the sequence
{Xk}+∞k=0 in D as follows:

(i) When Xk has been obtained, and k 6∈ {J + mN}+∞m=0, let

λk+1 =
‖PFXk −Xk‖2

‖PD(PFXk)−Xk‖2 , and compute Xk+1 by

Xk+1 = Xk + λk+1(PD(PFXk)−Xk).

(ii) When Xk has been obtained, and k ∈ {J + mN}+∞m=0, let λk+1 be determined
as before; put

Wk+1 = Xk + λk+1(PD(PFXk)−Xk),
Mk+1 = ‖Xk−1 −Xk‖2 + ‖Xk−2 −Xk−1‖2 + · · ·+ ‖Xk+1−N −Xk+1−(N−1)‖2,
γk+1 = λk+1

√
1 + αMk+1

‖Wk+1−Xk‖2 ,

and compute Xk+1 by

Xk+1 = Wk+1 + γk+1(PD(PFXk)−Xk).

Then the constructed sequence {Xk}+∞k=0 converges to a point of F ∩ D.

3. CONVERGENCE OF THE CONSTRUCTED SEQUENCE

In this section we prove that the sequence {Xk}+∞k=0, constructed in D ⊂ H as
described in the algorithm, is convergent to a point A ∈ D ∩ F . By construction,
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the sequence {Xk}+∞k=0 contains in particular the subsequence {XJ+1+pN}+∞p=0, that
we often will denote shortly as {Xnp

}+∞p=0. The proof of convergence of the sequence
{Xk}+∞k=0 consists of the following three parts:

(i) The subsequence {Xnp}+∞p=0 contains a subsequence, denoted (for simplicity)
as {X ′

s}+∞s=0, that converges to a point A ∈ D ∩ F .

(ii) Each converging subsequence of {Xnp
}+∞p=0 converges to the same point A.

(iii) The sequence {Xk}+∞k=0 converges to A.

P r o o f of (i).
As a consequence of inequality (16), the subsequence {Xnp

}+∞p=0 has the Fejér
monotony property, i.e., ‖XJ+1+pN −V ‖ ≤ ‖XJ+1+(p−1)N −V ‖, for all V in F ∩D.
In particular, this leads to the conclusion that the subsequence {Xnp}+∞p=0 is bounded,
and hence it contains a subsequence, denoted as {X ′

s}+∞s=0, that converges to some
point A ∈ H. As the original sequence {Xk}+∞k=0 belongs to D and as D is closed,
the point A certainly belongs to D. We now show that A also belongs to F .
Again from the inequality (16) we deduce recursively that, when Xnp and Xnq with
q > p denote successive terms appearing in the subsequence denoted as {X ′

s}+∞s=0,
then the following inequality is also true for all V in F ∩ D

‖Xnq − V ‖2 ≤ ‖Xnp − V ‖2 − (1− α)[Mnp+1 + Mnp+2 + · · ·+ Mnq ]. (17)

Hence, letting np and nq both tend to infinity, we conclude that the sequence
{‖Xnq − V ‖}+∞nq=0 tends to some nonnegative number d(V ), and that the expres-
sion Mnp+1 tends to zero when np → +∞. In particular, we see from (13) that
the expression Mnp+1 contains the part ‖Xnp − Xnp+1‖2, that also tends to zero
when np → +∞. This result, combined with the orthogonality relation (7) which
states that ‖Xnp −Xnp+1‖2 = ‖Xnp −PFXnp‖2 + ‖PFXnp −Xnp+1‖2, leads to the
conclusion that ‖Xnp − PFXnp‖2 → 0 when np → +∞. Finally, when Xnp again is
used as the general term X ′

s of the subsequence {X ′
s}+∞s=0 that converges to A, and

when we write:

‖PFXnp −A‖ ≤ ‖PFXnp −Xnp‖+ ‖Xnp −A‖,

we know that both terms on the right-hand-side tend to zero when np (or s) tends
to infinity. Hence, also the subsequence {PFXnp}np (also denoted as {PFX ′

s}+∞s=0)
tends to A. As the sequence {PFX ′

s}+∞s=0 belongs to F , and as F is closed, also A
belongs to F . Hence, A ∈ F ∩ D.
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P r o o f of (ii).
Let us suppose that the subsequence {Xnp

}+∞p=0 contains another converging sub-
sequence, denoted (again for simplicity) as {X ′

t}+∞t=0 , but that this subsequence con-
verges to a point A′. With a proof as in (i) above it will follow that also A′ belongs
to F ∩ D. We now prove that A′ = A.

The subsequence {X ′
s} is convergent to the point A. Writing X ′

s − A′ as X ′
s −

A + A−A′, and developing, leads to:

‖X ′
s −A′‖2 − ‖X ′

s −A‖2 = 2 < X ′
s −A,A−A′ > +‖A−A′‖2. (18)

In the same way, we obtain:

‖X ′
t −A‖2 − ‖X ′

t −A′‖2 = 2 < X ′
t −A′, A′ −A > +‖A′ −A‖2. (19)

As remarked in the proof of (i) above, taking into account that both A and A′

belong to F ∩ D, the number sequences {‖Xnp −A′‖}+∞p=0 and {‖Xnp −A‖}+∞p=0 are
convergent, with respective limits d(A′) and d(A), and of course the same is true for
their respective subsequences {‖X ′

s −A′‖}+∞s=0, {‖X ′
t −A′‖}+∞t=0 ,

{‖X ′
s −A‖}+∞s=0 and {‖X ′

t −A‖}+∞t=0 . Taking in (18) and (19) the limit, respectively
for s → +∞ and for t → +∞, we obtain:

d(A′)2 − d(A)2 = 0 + ‖A−A′‖2

and
d(A)2 − d(A′)2 = 0 + ‖A′ −A‖2.

Hence, d(A) = d(A′), and from this it easily follows that A = A′.

P r o o f of (iii).
The complete sequence {Xk}+∞k=0 contains the specific subsequence {Xnp}+∞p=0 that

already converges to the point A in F ∩D. Let now j be any index of the sequence
{Xk}+∞k=0, i.e., j ∈ Z+. Then there exist successive indices np and nq of the sub-
sequence {Xnp}+∞p=0 (with np < nq) such that np < j ≤ nq. For j ≡ nq, there is
nothing to prove. For j < nq, we know from the way of construction that for the
successive points Xnp , Xnp+1, . . . , Xj−1, Xj the Fejér monotony property is valid; in
particular, we have that ‖Xj−A‖ ≤ ‖Xj−1−A‖ ≤ · · · ≤ ‖Xnp+1−A‖ ≤ ‖Xnp−A‖,
and we know that ‖Xnp − A‖ → 0 when np → +∞. Hence, when j → +∞ we also
have that Xj → A. 2

We summarize the foregoing convergence result of the algorithm in the following
theorem, stated in the original space H ≡ (Rm, 〈 , 〉 , | | ).

Theorem. Suppose that in H, n closed convex sets {Ci}n
i=1 with corresponding

projection operators {Pi}n
i=1 and with nonempty intersection

n∩
i=1

Ci are given. Let

N and J be positive integers, N > 2 and J > N , and let α be a real number
with 0 < α < 1. Suppose that, starting from some point x0 in H, the point xk of
the sequence {xk}+∞k=0 has been obtained, and that the next iteration point xk+1 is
constructed according to the following rule:
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(i) When k 6∈ {J + mN}+∞m=0, put :

λk+1 =

n∑
j=1

1
n |xk − Pjxk|2

|xk −
n∑

j=1

1
nPjxk|2

,

and construct xk+1 by:

xk+1 = xk + λk+1

n∑

j=1

1
n

(Pjxk − xk).

(ii) When k ∈ {J + mN}+∞m=0, determine λk+1 as in (i). Put:

wk+1 = xk + λk+1

n∑

j=1

1
n

(Pjxk − xk),

Mk+1 = |xk−1 − xk|2 + |xk−2 − xk−1|2 + · · ·+ |xk+1−N − xk+1−(N−1)|2,

γk+1 = λk+1

√
1 +

αMk+1

|wk+1 − xk|2 ,

and construct xk+1 by:

xk+1 = wk+1 + γk+1

n∑

j=1

1
n

(Pjxk − xk).

Then, although for the sequence {xk}+∞k=0 the monotoneous behaviour may be inter-
rupted at some (or all) indices k ∈ {J +mN}+∞m=0, the sequence converges to a point
of

n∩
i=1

Ci.

Remark concerning the flexibility of the algorithm.

As stated in the introduction, the algorithm as described above should be seen
as a prototype of a class of algorithms allowing more flexibility. Without going into
details, the following extensions seem to be possible:

a. Instead of using equal weight factors 1
n in the Pierra method, a family of fixed

but non-equal weight factors {ωi}n
i=1 with 0 < ωi < 1 for each i and

n∑
i=1

ωi = 1 may

be used.
b. In the given algorithm, we try to provoke an interruption of the monotony

at every a priori fixed number of N iterations, by taking a well-determined big step
at each of these a priori fixed moments. The algorithm could also be adapted such
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that a big step is taken after each “variable” number Np of iterations, where Np

changes between two fixed integers M1 and M2 (e.g., M1 = 5 and M2 = 100), and
where Np plays the role of N above. From a practical point of view, the explanation
is as follows: it seems necessary to take a big step when in a number of foregoing
iterations very small steps have been taken; hence, the user of the algorithm keeps
record of the distances |xk − xk−1| of successive iteration points. From some index
k on, we proceed as follows : when the sum of M1 such distances is “too small”,
the algorithm should provoke an interruption of the monotoneous behaviour; on
the other hand, if this sum of M1 distances is “big enough”, then for each number
of steps between M1 and M2 the user decides whether and where an interruption
has to be created, by comparing the sum of each number (between M1 and M2) of
distances with a list of thresholds; at the number Np between M1 and M2 where
the sum of the distances is for the first time smaller than the wanted threshold, the
algorithm should force an interruption of the monotoneous behaviour; and finally,
when no interruption has been forced “between M1 and M2”, and when the sum of
M2 distances is still big enough, the user provokes nevertheless an interruption at
M2.

4. EXAMPLES AND CONCLUDING REMARKS

In this last section we consider two examples to compare the results of the algorithm
given in Section 2 with the ones corresponding to some classical methods.

In our first example, we take twelve disks in the plane as closed convex sets
{Cj}12j=1; these disks are given by the following expressions (with respect to an
orthonormal system of axes):

(
x− cos

(
jπ

12

))2

+
(

y − sin
(

jπ

12

))2

≤ 1, for j = 1, . . . , 12.

(here, (x, y) denotes a generic point in the plane).
Clearly, their intersection (in fact determined by C1 and C12) is nonempty; in

particular, (0,0) is a point in their intersection, but it contains more points. Explicit
expressions for the associated projection operators {Pj}12j=1 may be found in [3].
Starting from some given point in the plane, and using those projection operators,
we want to find a point in the intersection. We use the following algorithms:

PP: The method of pure projections in a sequentially composed manner, i.e.,
when xk is the current iteration point, and when we put T ≡ P12P11 · · ·P2P1, then
the update xk+1 is given by xk+1 = Txk. It is a monotoneous procedure.

PAR: The parallel projection method given in (1) and (2), with fixed equal weights(
1
n ≡ 1

12

)
at each step, and with λk+1 as given by (4). Again, this leads to a mono-

toneous way of convergence.

NMPAR (0.9,5,10): The non-monotoneous parallel procedure developed in this
paper. As in PAR, use has been made of fixed equal weights at each step and of
the value of λk+1 as given by (4). Besides, it contains the following parameters as
explained in the Algorithm:
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α: The real number between 0 and 1 that may be responsible for interrupting
the monotoneous behaviour; in the example we put α = 0.9.

N : The number that determines the period to repeat the use of the adapted
relaxation coefficient; we took N = 5 in the example.

J : The first index where the adapted relaxation coefficient is used; in the example
we put J = 10.

In Table 1 at the end of this paper we have given, for eight different starting
points ((-3,0),. . .) either the number of iterations needed to obtain a point in the
intersection (this is a positive integer), or the sum of the distances of the current
iteration point to the twelve sets Cj after 25 and 50 iterations respectively. From
this table the following conclusions may be made.

– PP: the influence of the choice of the starting point on the speed of convergence
is very clear; sometimes convergence is obtained after one step, while in other cases
there is a very slow way of convergence. This completely unpredictable behaviour of
convergence makes it rather unlikely to obtain practical useful results in a theoretical
manner. In applied problems it is not at all clear what guess of starting point to
make in order to assure fast convergence. Together with a bad choice of starting
point, the monotoneous behaviour of the iteration sequence seems to be responsible
for slow convergence.

– Method PAR: the same remarks as for PP can be made; for some starting points
there is a quick convergence, in other cases convergence is slow.

– Method NMPAR (0.9,5,10): the results of this method seem to confirm what had
already been observed by use of another non-monotoneous method in [8]: for those
cases where the monotoneous parallel method gives a fast convergence, the same is
true for the non-monotoneous method (in our example, the number of iterations in
those cases is equal, due to the choice of our parameters); but, for those cases where
either PP or PAR lead to slow convergence, NMPAR leads to convergence in an
acceptable number of steps. The explanation for this phenomenon seems to be that,
by interruption of the monotoneous behaviour, the newly obtained iteration point
has left some small corridor which is responsible for small steps in the iteration,
and as a consequence the intersection of the convex sets is approached from another
direction.

Finally, we want to mention the influence of the parameter α on the speed of
convergence. From the theoretical investigation in the construction of the algorithm
it is clear that, as α becomes closer to 1, the corresponding step length in the
iteration is bigger, and this increases the probability of interrupting the monotoneous
behaviour.

In our second example, we consider 15 sets Ci in R2 (i = 1, . . . , 15) having the
following form:

Ci = {x ∈ R2 : bi,1 ≤ 〈ai,x〉 ≤ bi,2},
with {bi,1}15i=1 and {bi,2}15i=1 sets of real numbers, and with {ai}15i=1 a set of 15 given

points in R2. These data are chosen such that
15∩

i=1
Ci 6= ∅.

The following algorithms have been used:
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PP1RO: the sequential iteration scheme where at each iteration step only one
pure projection onto a set Cj , chosen at a Random Order, has been used; i.e., when
xk is the current iteration point, then xk+1 = Pjxk, where Pj is the projection
operator onto a set Cj choosen at random. Moreover, for this algorithm and for
each given starting point, the algorithm was run 30 times. The number appearing
in Table 2, corresponding to algorithm PP1RO and to a given starting point, is the
average number of iterations needed to obtain convergence.

Table 1.

Starting point (-3,0) (10,-10) (3,4)

PP 1 3.279208× 10−3 3.661634× 10−3

5.000838× 10−4 5.49556× 10−4

PAR 9.972098× 10−3 4 1.129448× 10−2

3.128052× 10−3 3.427267× 10−3

NMPAR (0.9,5,10) 22 4 22

Starting point (-17,12) (-2,1) (-100,-50)

PP 3.601907× 10−3 3.202676× 10−3 1
5.419265× 10−4 4.89951× 10−4

PAR 1.185358× 10−2 9.768488× 10−3 8.859039× 10−3

3.548027× 10−3 3.080129× 10−3 2.859947× 10−3

NMPAR (0.9,5,10) 22 22 24

Starting point (2,-4) (0,2)

PP 3.005983× 10−3 3.694175× 10−3

4.637248× 10−4 5.537283× 10−4

PAR 5 9.757404× 10−3

3.077506× 10−3

NMPAR (0.9,5,10) 5 25

PP1λRO: the sequential iteration scheme where at each iteration step one relaxed
projection onto a randomly chosen set Cj is used; i.e., when Tj = 1+λj(Pj−1) with
1 the identity operator on H and with λj a positive real number, then xk+1 = Tjxk.
In the example, each λj had the value 1.5. As in PP1RO, the number appearing
in Table 2 corresponding to PP1λRO and to a given starting point is the average
number of iterations needed to obtain convergence.

PAR: the common parallel algorithm as in example 1, but now for 15 sets (n=15).
NMPAR (0.9,5,10) and NMPAR (0.9,20,25): the non-monotoneous parallel pro-

cedures developed in this paper, but with parameters α = 0.9, N = 5, J = 10 and
α = 0.9, N = 20, J = 25 respectively.

For PAR and for NMPAR ( , , ), the numbers figuring in Table 2 give the number
of iterations that was necessary to obtain convergence. From Table 2, we may
conclude that, also for this example, the new algorithm has better convergence
properties than the traditional ones.
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Table 2.

Starting point (0,0) (-10,10) (9,2)

PP1RO 1046 1565 398
PP1λRO 395 716 236

PAR 884 888 3
NMPAR (0.9,5,10) 82 89 3
NMPAR (0.9,20,25) 187 69 3

Starting point (-3,6) (5,-1) (7,8)

PP1RO 769 1347 775
PP1λRO 398 574 400

PAR 329 923 326
NMPAR (0.9,5,10) 40 142 30
NMPAR (0.9,20,25) 50 89 51

(Received February 3, 2003.)
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