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ON CALCULATION OF STATIONARY DENSITY
OF AUTOREGRESSIVE PROCESSES

Jiř́ı Anděl and Karel Hrach

An iterative procedure for computation of stationary density of autoregressive processes
is proposed. On an example with exponentially distributed white noise it is demonstrated
that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed
in detail.

1. INTRODUCTION AND PRELIMINARIES

Let {Xt} be a stationary autoregressive process of the first order defined by

Xt = bXt−1 + et, 0 6= b ∈ (−1, 1) (1)

where {et} are i.i.d. random variables with a finite second moment. From (1.1) we
have

Xt = et + bet−1 + b2et−2 + . . . (2)

and the series converges in the quadratic mean. It is clear from (1.2) that {Xt} is
strictly stationary. We are interested in the stationary distribution of the process
{Xt}. The following assertions show that this distribution is continuous.

Theorem 1.1. Let {ξt} be i.i.d. random variables. If the series X =
∑∞

t=−∞ ktξt
converges almost surely and infinite many kt are different from 0 then X has a
continuous distribution.

P r o o f . See [10]. 2

Theorem 1.2. Let {ηt} be independent random variables such that Eη2
t <∞ and∑

var ηt <∞. Then the series
∑

(ηt − Eηt) converges almost surely.

P r o o f . See [15], § 16.2 and § 17.2, or [18], Theorem IV.1.4, p. 241. 2



312 J. ANDĚL AND K. HRACH

Theorem 1.3. The stationary distribution of the process {Xt} defined by (1.1) is
continuous.

P r o o f . The assertion is a direct consequence of Theorems 1.1 and 1.2. 2

For example, if b = 0.5 and et is a discrete random variable such that P (et =
0.5) = P (et = −0.5) = 0.5 then Xt has the continuous rectangular distribution
R(−1, 1). A review of some results of this kind can be found in [2].

However, in many cases stronger assumptions about et are made.

Theorem 1.4. If et has a density, then Xt has also a density.

P r o o f . Using (1.2) we can write Xt = et + Zt where Zt = bet−1 + b2et−2 + . . .
Since et and Zt are independent and et has a density, their sum et + Zt = Xt has
an absolutely continuous distribution (see [16], p. 196). 2

Now, we introduce a known equation for the stationary distribution of Xt and a
formula for the characteristic function of Xt.

Theorem 1.5. Let et have a density f . Then the density h of Xt satisfies the
equation

h(x) =
∫
f(x− bu)h(u) du. (3)

P r o o f . The equation follows from (1.1), since Xt−1 has also the density h and
Xt−1 and et are independent. 2

Theorem 1.6. Let ψ(t) be the characteristic function of et and let ρ(t) be the
characteristic function of Xt. Then

ρ(t) =
∞∏

n=0

ψ(bnt).

P r o o f . Define
Yt,n = et + bet−1 + · · ·+ bnet−n. (4)

Then Yt,n → Xt in the quadratic mean as n → ∞. Thus Yt,n → Xt also in the
distribution. It implies that the characteristic functions of the variables Yt,n converge
pointwise to ρ(t). But the characteristic function of Yt,n is ψ(t)ψ(bt) . . . ψ(bnt). 2

If et has normal distribution then it is well known that Xt is also normally
distributed. One of the first attempts to find a connection between the distributions
of Xt and et in a non-normal case was published in [9]. For some special non-
normal distributions of et (continuous and discrete rectangular distributions, Laplace
distribution) the stationary distribution of Xt is calculated in [2]. It is also known
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that if et has a stable distribution of exponent θ, (0 < θ ≤ 2) then Xt also has a
stable distribution of the same exponent (e. g., see [19], p. 208, Ex. 11).

By the way, the opposite problem was more popular, viz. to find a distribution
of et for a given stationary distribution of Xt. The famous paper [12] contains the
cases when Xt has exponential or gamma distributions. A review of such results can
be found in [1] and [2].

The methods mentioned above were applicable only to some special distributions
of Xt and et. Another approach was proposed in [3]. The goal of this paper was to
find a distribution of et such that the stationary distribution of Xt has given mo-
ments. This method was derived for general linear processes so that autoregressive
models form only a special class. Detailed results for AR(1) models are published
in [4]. A different method based on Hermite polynomials can be found in [17].

The problem how to calculate stationary distribution of a process from the dis-
tribution of a white noise seems to be even more popular in non-linear models. The
method of moments was applied in [6]. Exact explicit results are quite rare. One
of them can be found in [7] but formulas for stationary density of the absolute au-
toregression published in [8] and [5] became more familiar (cf. [19], pp. 140–142 and
p. 205). Numerical procedures suggested for computation of stationary density in
non-linear models (see [19], p. 152) can be, of course, also used in the model (1.1).
It corresponds to numerical solution of the equation (1.3).

Quite recently (see [13]) some theoretic results for the stationary density of Xt

in the model (1.1) were derived in the case that et has the rectangular distribution
on (0, 1). It was proved that the stationary density belongs to the class C∞ and
some bounds for tails of this stationary distribution were derived. The derivation
was based on investigation of asymptotic properties of et + bet−1 + · · · + bnet−n as
n→∞.

2. AN ITERATIVE METHOD FOR AR(1) PROCESSES

An explicit formula for h satisfying (1.3) given f is known only in a few cases. Here
we propose an iterative method for its computation. Let h0 be an arbitrary density.
For n ≥ 1 define

hn(x) =
∫
f(x− bu)hn−1(u) du. (5)

It is obvious that every function hn defined by (2.1) is a density.

Theorem 2.1. Let h0 be a density. Define hn by (2.1). Assume that there exists
an integer m ≥ 0 such that

∫ ∞

−∞
|ψ(t)ψ(bt) . . . ψ(bmt)| dt <∞. (6)

Then hn(x) → h(x) for all x as n→∞.
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P r o o f . Let λn be the characteristic function corresponding to hn. Using (2.1)
we obtain

λn(t) =
∫
eitxhn(x) dx =

∫
eitx

[∫
f(x− bu)hn−1(u) du

]
dx

=
∫
hn−1(u)

[∫
eitxf(x− bu) dx

]
du =

∫
hn−1(u)

[∫
eitbu+ityf(y) dy

]
du

= ψ(t)
∫
eitbuhn−1(u) du = ψ(t)λn−1(bt).

Thus
λn(t) = ψ(t)ψ(bt)ψ(b2t) . . . ψ(bn−1t)λ0(bnt).

From the continuity of the characteristic function we have

λ0(bnt) → λ0(0) = 1 as n→∞.

Using Theorem 1.6 we get λn(t) → ρ(t) as n→∞. Assume that n > m. Because

hn(x) =
1
2π

∫ ∞

−∞
e−itxλn(t) dt (7)

and |e−itxλn(t)| ≤ |ψ(t)ψ(bt) . . . ψ(bmt)|, Lebesgue theorem gives

lim
n→∞

hn(x) =
1
2π

∫ ∞

−∞
e−itx

[
lim

n→∞
λn(t)

]
dt =

1
2π

∫ ∞

−∞
e−itxρ(t) dt = h(x). 2

Of course, speed of the convergence and complexity of formulas for hn depend
heavily on the choice of h0.

3. AN EXAMPLE

Sometimes it is easy to derive speed of convergence hn(x) → h(x). From (2.3) we
have

|hn+1(x)− hn(x)| ≤ 1
2π

∫ ∞

−∞
|λn+1(t)− λn(t)| dt.

Define
∆n+1 = sup

x
|hn+1(x)− hn(x)|.

Then we get

∆n+1 ≤ 1
2π

∫ ∞

−∞

∣∣ψ(t)ψ(bt) . . . ψ(bn−1t)[ψ(bnt)λ0(bn+1t)− λ0(bnt)]
∣∣ dt. (8)

Consider the process {Xt} given by (1.1) such that b ∈ (0, 1) and et ∼ Ex(1),
i. e., f(x) = e−x for x > 0. For simplicity, choose h0(x) = f(x). Then

ψ(t) = λ0(t) =
1

1− it
.
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Since
|ψ(t)| = 1√

1 + t2
, (9)

the assumption (2.2) is fulfilled for m = 1. The inequality (3.1) can be written in
the form

∆n+1 ≤
∫ ∞

−∞

∣∣∣∣∣

[
n∏

s=0

ψ(bst)

]
[ψ(bn+1t)− 1]

∣∣∣∣∣ dt. (10)

Assume that n ≥ 3. Then (3.3) and (3.2) yield

∆n+1 ≤ 1
π

∫ ∞

−∞
|ψ(t)ψ(bt)|.|ψ(b2t)ψ(b3t)|.|ψ(bn+1t)− 1| dt

≤ 1
π

∫ ∞

−∞

1
1 + b2t2

1
1 + b6t2

bn+1t√
1 + b2n+2t2

dt

≤ bn+1 1
π

∫ ∞

−∞

1
1 + b2t2

1
1 + b6t2

dt.

Since
t

1 + b6t2
≤ 1

2b3
,

1
π

∫ ∞

−∞

dt
1 + b2t2

=
1
2b
,

we have
∆n+1 ≤ 1

4
bn−3.

In this case the iterative procedure converges to the limit density geometrically fast.
For small values of n we write (3.3) in the form

∆n+1 ≤ bn+1

π

∫ ∞

0

t

n+1∏
s=0

(1 + b2st2)−1/2 dt.

Especially,

∆2 ≤ b2

π

∫ ∞

0

t
1√

1 + t2
1√

1 + b2t2
1√

1 + b4t2
dt

≤ b2

π

∫ ∞

0

t

(1 + b4t2)
√

1 + t2
dt =

b2

2π

∫ ∞

0

dx
(1 + b4x)

√
1 + x

=
π − 2 arctg b2√

1−b4

2π
√

1− b4
= D2(b).

Similarly,

∆3 ≤ b3

π

∫ ∞

0

t√
1 + t2

1√
1 + b2t2

1√
1 + b4t2

1√
1 + b6t2

dt

≤ b3

π

∫ ∞

0

1
1 + b2t2

1
1 + b6t2

dt = − 2b ln b
π(1− b4)

= D3(b).

Some values of D2(b) and D3(b) are introduced in Table 3.1.
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Fig. 3.1.

Table 3.1.

b 0.01 0.1 0.5 0.9 0.99

D2(b) 0.50 0.50 0.43 0.34 0.32
D3(b) 0.03 0.15 0.24 0.18 0.16

Explicit formulas for hn(x) can be written down if n is small. For example,

h1(x) =
e−x

1− b

(
1− ex−x/b

)
,

h2(x) =
e−x

(1− b)2

[
1− ex−x/b − b− ex(b2+b−1)/b−1/b

1 + b

]

and so on. However, it is easier to use a program package for calculating and
processing the functions hn(x). We used Mathematica. Figure 3.1 shows functions
h0(x), . . . , h5(x) in the case b = 0.5.

4. A GENERALIZATION TO AR PROCESSES OF HIGHER ORDER

The iterative method for calculating stationary density can be generalized to autore-
gressive processes of higher order. Here we present a derivation for AR(2) model.
Let Xt be a stationary AR(2) process defined by

Xt = b1Xt−1 + b2Xt−2 + et (11)
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where et is a strict white noise with a density f and a finite second moment. Let ψ
be the characteristic function of et and

F =
(
b1 b2
1 0

)
.

It is known that

Xt =
∞∑

j=0

ajet−j

where aj is the (1,1)-element of the matrix F j (see [14], p. 57). It follows from
the assumption of stationarity that all roots of F lie inside the unit circle and thus
the series (4.1) converges in the quadratic mean. If we define c = (1, 0)′ then
aj = c′F jc = c′F ′jc and the characteristic function λ of Xt is given by

λ(v) =
∞∏

j=0

ψ(vaj) =
∞∏

j=0

ψ(vc′F ′jc). (12)

Since we assume that et has a density, it follows from (4.1) that the random vec-
tor (Xt, Xt−1)′ has a joint density, say q(x, y). The stationary density of {Xt} is∫
q(x, y) dy. Because {Xt} is stationary, the vector (Xt−1, Xt−2)′ has also the den-

sity q. The joint density of (Xt, Xt−1, Xt−2)′ is q(xt−1, xt−2) f(xt− b1xt−1− b2xt−2)
and so we have an integral equation

q(xt, xt−1) =
∫
q(xt−1, xt−2) f(xt − b1xt−1 − b2xt−2) dxt−2. (13)

Let q0(y, z) be a density. Formula (4.3) suggests that a method for calculating q can
be based on the recurrent relation

qn(x, y) =
∫
qn−1(y, z)f(x− b1y − b2z) dz. (14)

We prove that under some conditions concerning q0 the functions qn converge point-
wise to q.

Theorem 4.1. Let λn be the characteristic function corresponding to qn. Then
for arbitrary t = (t1, t2)′ we have λn(t) → λ(t).
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P r o o f . Using (4.4) we get

λn(t1, t2) =
∫∫

eit1x+it2yqn(x, y) dxdy

=
∫∫∫

eit1x+it2yqn−1(y, z)f(x− b1y − b2z) dz dxdy

=
∫∫∫

eit1(w+b1y+b2z)+it2yqn−1(y, z)f(w) dz dw dy

=
∫∫

ei(t1b1+t2)y+it1b2zqn−1(y, z) dy dz
∫
eit1wf(w) dw

= λn−1(t1b1 + t2, t1b2)ψ(t1)
= λn−1(F ′t)ψ(c′t).

This gives
λn(t) = ψ(c′t)ψ(c′F ′t) . . . ψ(c′F ′n−1t)λ0(F ′nt).

Since F n → 0 as n→∞, we have λ0(F ′nt) → 1 and in view of (4.2) it follows that
λn(t) → λ(t). 2

Theorem 4.2. Let q0 be a density. Assume that there exists an integer m ≥ 0
such that ∫∫

|ψ(c′t)ψ(c′F ′t) . . . ψ(c′F ′mt)| dt1 dt2 <∞.

Then qn(x, y) → q(x, y) for all (x, y) as n→∞.

P r o o f . For n ≥ m we have

|λn(t1, t2)| ≤ |ψ(c′t)ψ(c′F ′t) . . . ψ(c′F ′mt)|

and thus
∫∫ |λn(t1, t2)| dt1 dt2 <∞. Then qn(x, y) is bounded, continuous, and

qn(x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(xt1+yt2)λn(t1, t2) dt1 dt2

(see [11], formula 7.12). Theorem 4.1 and Lebesgue theorem imply

lim
n→∞

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(xt1+yt2)λn(t1, t2) dt1 dt2 = q(x, y). 2
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[7] J. Anděl, M. Gómez and C. Vega: Stationary distribution of some nonlinear AR(1)
processes. Kybernetika 25 (1989), 453–460.
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