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ASYMPTOTIC RESULTS IN PARAMETER ESTIMATION
FOR GIBBS RANDOM FIELDS1

Martin Janžura

Both the maximum likelihood estimate and a class of the maximum pseudo-likelihood
estimates for parameters of Gibbs random fields are introduced, and their asymptotic prop-
erties, namely the consistency, the asymptotic normality, and the asymptotic efficiency, are
studied, as well as the interrelations between the particular estimators and their respective
properties.

1. INTRODUCTION

The statistical inference for Gibbs distributions has been recently widely studied
because of its relevance for image processing and spatial statistics. The Gibbs dis-
tributions were originally used in frame of statistical physics to describe the equilib-
rium states of large systems. For the “statistical” purposes they seem to be rather
justified since they obey both the physical experience and the intuitive mathematical
assumption of maximum entropy and local dependence structure. They can be also
understood as an infinite-dimensional generalization of the usual exponential family
of distributions or the log-linear models for contingency tables data.

A natural parametrization, given by the system of interactions (the potential)
which underlies every Gibbs distribution, turns the problem of identification to
a standard parameter estimation problem. Parameter estimation for Gibbs dis-
tributions is usually based on the “maximum likelihood” (ML) approach, and its
“maximum entropy” or “minimum distance” modifications (cf. e. g. Geman and
Geman [6], Gidas [10], Younès [26], Janžura [17] for the general case, and Künsch
[21], Janžura [18] for the special Gaussian case). The ML estimate is theoretically
well understood, its consistency (see above and for the special Ising model case also
Janžura [16]) can be proved in general, while inside the uniqueness region (with no
phase transitions) also the asymptotic normality and efficiency is proven (cf. Gi-
das [10], Janžura [17]). Unfortunately, the numerical feasibility of the ML method
is strongly limited, therefore its implementation is rather intricate, and only some
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approximations (cf. e. g. Strauss [25], Janžura [16]) or sophisticated stochastic ap-
proximation methods (Younès [26] and [27]) are available.

The implementation problem enforced a search for some modified methods which
would keep, to some extend, the advantages of the ML method while avoiding its
disadvantages. This effort was initiated with the “coding method” (Besag [1]), and
finally led into the “maximum pseudo-likelihood” (MPL) method (Besag [2], Ge-
man and Graffigne [7], Gidas [9], Guyon [12]) which consists in replacing the multi-
dimensional joint distributions with the a product of conditional distributions which
can be easily evaluated for the Gibbs distributions, providing we mean a conditional
distribution of a rather small number (range) of variables with the all others being
given. The consistency of the estimate remains true (cf. Geman and Graffigne [7],
Gidas [9]).

In the present paper the major attention is paid to the problem of asymptotic nor-
mality and efficiency. After some preparatory sections with results adapted mostly
from Georgii [8] and Preston [24], a whole class (with various ranges of the particu-
lar conditional distributions under consideration, although only rather small ranges
are relevant for practical purposes) of MPL estimates together with the original ML
estimate are defined in Section 6. We prove the consistency of every particular esti-
mator (Theorem 6.1), and, moreover, we show that for every fixed sample size the
ML estimate could be approximated by a sequence of MPL estimates. As it will
be demonstrated, once the empirical distributions are introduced (Section 4) and
consequently used, all the proofs become rather straightforward.

In the following Section 7 we proceed from the “optimization” version of the
problem to the “normal equations” approach where the involvement of the phase
transitions in the problem of investigating finer asymptotic properties is more trans-
parent. Nevertheless, generalizing a central limit theorem obtained by Guyon and
Künsch [22] for the particular case of the Ising model, we obtain the asymptotic
normality of the MPL estimate, providing the true Gibbs distribution is ergodic,
i. e. for the “pure phases”. For a stationary Gibbs distribution, i. e. for a “mixture”
of the pure phases, we obtain the limiting distribution as a corresponding mixed
normal.

As the asymptotic efficiency is concerned, it is well known (cf. e. g. Hájek [14])
that a straightforward comparison of the asymptotic variances (cf. Guyon and
Künsch [13] for the Ising model and Gidas [10] in general) is not satisfactory without
some regularity conditions being satisfied. Thus, the problem of efficiency can be
properly studied only inside the uniqueness region where “everything is smooth”
and the central limit theorem holds in general for every finite range functional (Sec-
tion 8). Moreover, the parameter family of uniquely defined Gibbs distribution obeys
the regularity condition of local asymptotic normality (cf. Proposition 8.1 iii), and
the asymptotic efficiency of the ML estimate follows in a rigorous way.

Since the asymptotic normality of the MPL estimates has been already proved
(no mixtures here), we can directly observe a natural decrease of the asymptotic
efficiency. However, for growing range of the MPL estimator the maximum asymp-
totic efficiency is approached (Theorem 9.5). The proof of this result in Section 10
involves some necessary techniques which are adopted from Künsch [22]. A short



Asymptotic Results in Parameter Estimation for Gibbs Random Fields 135

remark on the infinitesimal robustness is also included (Section 11).

2. GIBBS RANDOM FIELDS

Considering a finite state space X with the σ-algebra of all its subsets F = expX, by
the random field (r. f.) we mean a probability measure µ on the product measurable
space (X,F)T where the index set T is given by the d-dimensional (d ≥ 1) discrete
lattice Zd.

We shall denote xA = ProjA(x) and B(A) = Proj−1
A (FA) for every x ∈ XT , A ⊂

T , where ProjA : XT → XA is the corresponding projection function. Sometimes
we shall not distinguish between xA and Proj−1

A (xA).
A r. f. µ is said to be stationary if it is translation invariant, i. e. µ τ−1

t = µ for
every shift τt, t ∈ T , defined through [τt(x)]s = xt+s for every x ∈ XT , s ∈ T . A
stationary r. f. µ is called ergodic if its restriction to the σ-algebra S = {F ∈ FT :
τtF = F for every t ∈ T} of invariant sets assumes only values zero or one, i. e. for
every F ∈ S it holds: if µ(F ) > 0 then µ(F ) = 1.

Let us denote k(T ; t) = {A ⊂ T ; A 3 t, 0 < |A| < ∞} for every t ∈ T, k(T ) =⋃
t∈T k(T ; t) (by |A| we mean the cardinality of A ⊂ T ).
For every W ⊂ T we denote by CW the set of B(W )-measurable bounded real-

valued functions. Note that CW ⊂ C(XT ) for every W ∈ k(T ), where C(XT ) is the
set of real-valued functions which are bounded and continuous with respect to the
usual product topology on XT .

The potential is a family U = {UA}A∈k(T ) with UA ∈ CA for every A ∈ k(T ),
every particular map UA being called the interaction corresponding to the set A ∈
k(T ).

We shall deal only with the potentials with are stationary:
UA(xA) = UA−t(τt(x)A−t) for every A ∈ k(T ), t ∈ T, x ∈ XT ; and bounded:
‖U‖ =

∑
A∈k(T ;0) |A| · ‖UA‖∞ <∞, where ‖UA‖∞ = supxA∈XA |UA(xA)|.

The set U of bounded stationary potentials is a Banach space with the norm ‖ ·‖.
A potential is of a finite range if the interactions vanish for large index sets, i. e.

there exists r ≥ 0 such that UA ≡ 0 for every A : diam(A) > r. Obviously, any
finite range potential is bounded. We denote by Ur the set of potentials with a fixed
range r ≥ 0.

For a fixed potential U ∈ U the specification ΠU is the family of maps

ΠU =
{

ΠU
A : XA ×XT\A → [0, 1]

}
A∈k(T )

,

each ΠU
A being defined through

ΠU
A

(
xA|xT\A

)
=

[
ZU

A (xT\A)
]−1 · exp

{
FU

A (xA|xT\A)
}

where
FU

A

(
xA|xT\A

)
=

∑

V ∈k(T ), V ∩A 6=∅
UV (xV )

and
ZU

A (xT\A) =
∑

yA∈XA

exp
{
FU

A (yA|xT\A)
}
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is the appropriate normalizing constant.
A r. f. µ is called Gibbs with respect to a potential U ∈ U , we write µ ∈ G(U), if

its family of finite-dimensional conditional distributions is given by the specification
ΠU , i. e. µ ∈ G(U) iff µ(xA|B(T \ A)) = ΠU

A(xA|·) a. s. holds for every A ∈ k(T )
and xA ∈ XA. (Here by µ(xA|B(T \A)) we mean the conditional probability of the
“set” xA ∈ B(A) under the σ-algebra B(T \A).)

3. PARAMETER FAMILY

On the Banach space (U , ‖ · ‖) there is an equivalence relation generated by the
specifications. For U, U ∈ U we shall write U ≈ U (saying the potentials are
equivalent) if the corresponding specifications ΠU , ΠU are equal. Thanks to basic
properties of conditional distributions we can observe that U ≈ U iff for some
A ∈ k(T ) there exists a function ρA : XT\A →R satisfying

ρA(xT\A) = FU
A (xA|xT\A)− FU

A (xA|xT\A)

for every x ∈ XT , i. e. FU
A − F Ū

A ∈ CT\A.
Potentials U1, . . . , UN ∈ U are said to be mutually non-equivalent if their linear

combination can be equivalent to the zero potential 0 = {0V ≡ 0}V ∈k(T ) only if it
is the zero one, i. e.

if
N∑

i=1

ci U
i ≈ 0 then c1 = . . . cN = 0.

Hence ∑
ciF

Ui

A (·|·) ∈ CT \ CT\A

for every fixed A ∈ k(T ) and nonzero (c1, . . . , cN )> ∈ RN .
Let us mention that the mutual non-equivalence is the regularity (identifiability)

condition here , which is a bit more complicated due to the infinite dimensional
space XT . This can be also seen from the preceding claim which is a generalization
of the standard regularity condition requiring simply a linearly independent basis in
exponential families.

For the sake of brevity we denote FA = (F 1
A, . . . , F

N
A )> where we write F i

A instead
of FUi

A for every A ∈ k(T ) and i = 1, . . . , N . Let us realize that for every U ∈ Ur

with fixed r > 0, we have FU
A (·|·) ∈ C∂A, where

∂A = A ∪
⋃

V ∩A 6=∅, diam(V )≤r

V.

Similarly, we denote g = (g1, . . . , gN )> where

gj(x) =
∑

V ∈k(T ;0)

|V |−1U j
V (xV )

for every x ∈ XT and j = 1, . . . , N .
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Now, suppose we are given a fixed collection U1, . . . , UN ∈ Ur of mutually non-
equivalent potentials of some fixed finite range r > 0.

Let us denote by L = Lin{U1, . . . , UN} the finite dimensional subspace of U
spanned by

U1, . . . , UN ∈ Ur.

Thus, there is a one-to-one correspondence between the potential U ∈ L and the
specification ΠU generated by U .

Moreover, there is the well-known isomorphism Φ : L → RN between the N -
dimensional Banach space L and the N -dimensional Euclidean space, i. e.

Φ(U) = θ = (θ1, . . . , θN )> ∈ RN iff U =
N∑

i=1

θi U
i ∈ L.

For every θ = Φ(U) ∈ RN we shall write Πθ and G(θ) instead of ΠU and G(U),
respectively, and we shall deal with the parameter family

{GI(θ)}θ∈RN ,

where GI(θ) is the class of stationary Gibbs r. f.’s with respect to the potential
U = Φ−1(θ).

Similarly, by GE(θ) we denote the class of ergodic Gibbs r. f.’s. Let us recall that
GE(θ) = exGI(θ), i. e. ergodic r. f.’s are the extremal measures in GI(θ), and by the
ergodic decomposition theorem (cf. e. g. Theorem 14.10 in Georgii [8]), for every
µ0 ∈ GI(θ0) we obtain

µ0(Ω) =
∫

GE(θ0)

ν(Ω) dP (ν)

for every Ω ∈ FT, where P is a uniquely defined probability measure on the set
GE(θ0) of the ergodic Gibbs r. f.’s with an appropriate σ-algebra.

Remark 3.1. The problem of equivalence of the potentials can be easily avoided
by considering only the so called “vacuum” potentials. A potential U ∈ U is a
vacuum potential, we write U ∈ Ub if for every A ∈ k(T ) it holds UA(xA) = 0
whenever xt = b for some t ∈ A. Here b ∈ X is a fixed stated called vacuum. Then
it can be easily observed that U ≈ 0 means U = 0, i. e. the equivalence relation
turns to the identity. For details cf. e. g. Dobrushin and Nahapetian [5].

Remark 3.2. Note that there may exist non-stationary Gibbs r. f.’s with respect
to a stationary potential U ∈ U , i. e. G(U) \GI(U) 6= ∅. This phenomenon is called
the breakdown of symmetry and makes the general study of Gibbs r. f.’s even more
intricate (cf. also Remark 6.4 below).

4. EMPIRICAL RANDOM FIELDS

Suppose a collection of data x̂Wn ∈ XWn obtained from an observation region Wn ∈
k(T ) to be generated by an unknown r. f. µ0 ∈ GI(θ0). We assume the observation
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region Wn to be large enough to contain the lattice cube Vn = [−n, n]d ∩ T , i. e.
Wn ⊃ Vn.

Thus, we may define the empirical r. f. µn
x̂ in a standard way, i. e.

∫
f dµn

x̂ = |Vn|−1
∑

t∈Vn

f ◦ τt(x̂n
per)

for every bounded measurable f , where x̂n
per is the periodic continuation of x̂Vn . (We

understand the empirical r. f. µn
x̂ to be defined for every x̂ ∈ XT , being identical

for all ŷ ∈ Proj−1
Vn

(x̂Vn).) This is the “stationary version” of the empirical r. f. since
really µn

x̂τ
−1
t = µn

x̂ for every t ∈ T , and it is uniquely defined.
For deriving the second order properties we need the “unbiased version” µ̃n

x̂ given
by ∫

f dµ̃n
x̂ = |Vn|−1

∑

t∈Vn

f ◦ τt(x̂)

for every f ∈ CV with
⋃

t∈Vn
(t + V ) ⊂ Wn. We can see that the actual knowledge

of x̂Wn is sufficient in this case but the r. f. is not determined completely. On the
other hand, the uniquely defined quantities

∫
f dµ̃n

x̂ , f ∈ CV , are usually sufficient
for our purposes. Moreover, since really∫ [∫

f dµ̃n
x̂

]
dµ(x̂) =

∫
f dµ

holds for every stationary r. f. µ, its name is fairly justified.
Further, we observe

∣∣∣∣
∫
f dµ̃n

x̂ −
∫
f dµn

x̂

∣∣∣∣ ≤ ‖f‖∞|Vn|−1 |{t ∈ Vn; (t+ V ) 6⊂ Vn}| −→ 0 for n→∞.

Therefore the two versions are asymptotically equivalent (uniformly for every x̂ ∈
XT ).

The following lemma could be strengthened, but this version is fully satisfactory
for our purposes.

Lemma 4.1. For every collection f1, . . . , fN ∈ CV , V ∈ k(T ), it holds

lim
n→∞

min
µ∈GI(θ0)

max
j=1,...,N

∣∣∣∣
∫
fjdµn

x̂ −
∫
fjdµ

∣∣∣∣ = 0 a. s. [µ0] for every µ0 ∈ GI(θ0).

P r o o f . Let us denote

Ω =
{
x̂ ∈ XT ; lim sup

n→∞
min

µ∈GI(θ0)
max

j=1,...,N

∣∣∣∣
∫
fjdµn

x̂ −
∫
fjdµ

∣∣∣∣ > 0
}
∈ FT.

Then ν(Ω) = 0 for every ν ∈ GE(θ0) by the multidimensional ergodic theorem (cf.
e. g. Theorem 14.A8 in Georgii [8]) which ensures for every j = 1, . . . , N

∫
fjdµn

x̂ −→
∫
fjdν a. s.[ν].

Thus µ0(Ω) = 0 by the ergodic decomposition (cf. Section 3). 2
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Remark 4.2. It is worth mentioning that under the topology of local convergence
(which here coincides with the usual weak topology – cf. e. g. Georgii [8] for details)
GI(θ0) is a compact convex set and the map ν 7→ ∫

f dν is continuous. Therefore
the minima in the preceding lemma are actually attained, although they are random
elements depending on the particular x̂.

5. SOME THERMODYNAMICS

We denote by
p(U) = lim

n→∞
|Vn|−1 logZU

Vn
(xT\Vn

)

the pressure corresponding to the potential U ∈ U . Note that the limit exists
uniformly for every x ∈ XT (cf. e. g. Theorem 15.30 in Georgii [8]).

Direct calculations can show that |Vn|−1 logZU
Vn

(xT\Vn
) is a convex function of

U ∈ U and, moreover, it satisfies

|Vn|−1
∣∣∣logZU1

Vn
(xT\Vn

)− logZU2

Vn
(xT\Vn

)
∣∣∣ ≤ ‖U1 − U2‖

for every U1, U2 ∈ U , uniformly for every positive integer n and x ∈ XT .
Therefore the same remains true also for the limiting function p.
In what follows, we shall deal with the restriction of p to the subspace L. We

shall write Zθ
Vn

and p(θ) instead of ZU
Vn

and p(U), respectively, for θ = Φ(U), U ∈ L,
and we shall understand p/L as a real-valued function on the space RN equipped
with the standard Euclidean norm ‖ · ‖2.

Let us also recall that the strong convexity is a stronger convex property ensuring
e. g. positive second derivative whenever it exists (see Section 8 below).

Lemma 5.1.

i) For every θ1, θ2 ∈ RN it holds

|Vn|−1
∣∣∣logZθ1

Vn
(xT\Vn

)− logZθ2

Vn
(xT\Vn

)
∣∣∣ ≤ const · ‖θ1 − θ2‖2

uniformly for every positive integer n and x ∈ XT and

|p(θ1)− p(θ2)| ≤ const · ‖θ1 − θ2‖2.

ii) The pressure p : RN → R is a strictly convex continuous function. On every
compact K ⊂ RN it is even strongly convex.

P r o o f . The assertion i) follows from the above considerations. The properties
of the pressure in ii) follow e. g. from Proposition 16.1 in Georgii [8] together with
Dobrushin and Nahapetian [5]. 2

Further important estimates are given in the following lemma.
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Lemma 5.2. For a sequence {An}∞n=1, An ∈ k(T ), with lim
n→∞

|Vn|−1|An4Vn| = 0
there exists a sequence of constants cn → 0 for n→∞ satisfying

i)
∣∣|An|−1 log Πθ

An
(xAn |yT\An

) + p(θ)− |Vn|−1
∑

t∈Vn
θ>g ◦ τt(x)

∣∣ ≤ ‖θ‖2 cn and

ii)
∣∣|An|−1 log µ(x̂An) + p(θ)− ∫

θ>g dµn
x̂

∣∣ ≤ ‖θ‖2 cn
for every x, x̂, y ∈ XT , θ ∈ RN , µ ∈ GI(θ).

P r o o f . The bounds can be deduced e. g. from results of Section 15.3 in Georgii
[8] together with the properties of the empirical r. f.’s given in Section 4. 2

The obtained results can be used to derive special forms of some important ther-
modynamic (or information theoretic – if prefered) characteristics, namely the en-
tropy rate

H(µ) = lim
n→∞

|Vn|−1

∫
[− log µ(xVn

)] dµ(x)

existing for every stationary r. f. µ, and the relative entropy rate (asymptotic I-
divergence, information gain) given for a pair ν, µ of stationary r. f.’s by

H(ν|µ) = lim
n→∞

|Vn|−1

∫
log

ν(xVn
)

µ(xVn)
dν(x)

whenever the expressions make sense and the limit exists.
Thus, for µ ∈ GI(θ) and a stationary ν it holds

H(µ) = p(θ)−
∫
θ>g dµ ≥ 0,

and
H(ν|µ) = p(θ)−

∫
θ>g dν −H(ν) ≥ 0

with equality in the latter expression iff ν ∈ GI(θ), this result being called the
variational principle.

For ν ∈ GI(θ1) we obtain

H(ν|µ) = p(θ)− p(θ1)−
∫

(θ − θ1)>g dν

with H(ν|µ) = 0 iff θ = θ1, since GI(θ)∩GI(θ1) = ∅ for θ 6= θ1 e. g. by Theorem 2.34
in Georgii [8].

Consequently,
min

θ∈RN

[
p(θ)−

∫
θ>g dν

]

is attained at the single point θ1. (For more detailed treatment cf. e. g. Georgii [8].)

We finish this section with an important general lemma. We denote σδ(θ0) =
{θ ∈ RN ; ‖θ − θ0‖2 ≤ δ} for every δ > 0.
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Lemma 5.3. Let {pn}∞n=1 be a sequence of real-valued continuous functions on
RN . Let Qθ0 be a class of functions satisfying

q(θ)− q(θ0) ≥ γδ‖θ − θ0‖2
with some γδ > 0 for every δ > 0, θ /∈ σδ(θ0), and q ∈ Qθ0 .

Let us suppose that for every ε > 0 and sufficiently large n ≥ nε there exists
qn ∈ Qθ0 with |pn(θ)− qn(θ)| ≤ ε‖θ‖2 for every θ ∈ RN .

Then for every δ > 0 and sufficiently large n ≥ nδ

min
θ∈RN

pn(θ)

is attained at some θn ∈ σδ(θ0), and therefore θn → θ0 for n→∞.

P r o o f . Let us choose δ > 0 and set ε = γδ·δ
2(δ+‖θ0‖2) .

Then for n ≥ nε and θ /∈ σδ(θ0) we have

pn(θ) ≥ qn(θ)− ε‖θ‖2 ≥ qn(θ0) + γδ‖θ − θ0‖2 − ε‖θ‖2 > qn(θ0) + ε‖θ0‖2 ≥ pn(θ0).

Since pn is continuous, its minimum must be attained at some θn inside σδ(θ0), and
θn → θ0 is obvious. 2

6. MAXIMUM LIKELIHOOD AND MAXIMUM PSEUDO–LIKELIHOOD
ESTIMATION

The maximum likelihood estimate θ
n

of the parameter θ0 ∈ RN based on the data
collection x̂Wn ∈ XWn should be in a rigid way defined by

θ
n

= argmax
θ∈RN

max
µ∈GI(θ)

{|Wn|−1 logµ(x̂Wn)
}
.

Here the maximum over GI(θ) is added in order to follow strictly the principle
of seeking for the parameter corresponding to the most likely distribution.

However, Lemma 5.2 ii) provides us with a convenient approximation, and there-
fore we shall understand under the maximum likelihood estimate (MLE) its approx-
imate version

θ̂n = argmax
θ∈RN

{∫
θ>g dµn

x̂ − p(θ)
}
.

This kind of estimate can be also derived from the “minimum distance principle”,
since it is obtained by minimizing the relative entropy

H(µn
x̂ |µ) = p(θ)−

∫
θ>g dµn

x̂ −H(µn
x̂)

of the empirical r. f. µn
x̂ with respect to the theoretical µ ∈ GI(θ), where the en-

tropy rate H(µn
x̂) does not depend on the unknown parameter and therefore can be

omitted.
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Further, for every A ∈ k(T ) we define the corresponding maximum pseudo-
likelihood estimate (MPLE) by

θ̂n
A = argmax

θ∈RN

{
|A|−1

∫
log Πθ

A(xA|xT\A) dµn
x̂(x)

}
.

This estimate may be also re-formulated in information theoretic terms, namely it
minimizes the “mean relative conditional entropy”

∫
H0

(
[µn

x̂ ]A(·|xT\A)
∣∣ Πθ

A(·|xT\A)
)
dµn

x̂(x)

where [µn
x̂ ]A(·|·) is the corresponding conditional distribution derived from the em-

pirical r. f. µn
x̂ , and H0 is the usual relative entropy. (Note that the empirical

distributions and their entropies are well defined because the state space X is finite.
For a general case we should proceed more carefully, but the idea would remain the
same.)

Theorem 6.1.

i) The MLE θ̂n is defined with probability tending to one and it is consistent,
i. e. for every µ0 ∈ GI(θ0)

µ0

(
x̂ ∈ XT ; max

θ∈RN

{∫
θ>g dµn

x̂ − p(θ)
}

is attained
)
−→ 1

and
θ̂n −→ θ0 a. s. [µ0] for n→∞.

ii) For every A ∈ k(T ) the MPLE θ̂n
A is defined with probability tending to one

and it is consistent, i. e. for every µ0 ∈ GI(θ0)

µ0

(
x̂ ∈ XT ; max

θ∈RN

{
|A|−1

∫
log Πθ

A(·|·)dµn
x̂

}
is attained

)
−→ 1

and
θ̂n

A −→ θ0 a. s. [µ0] for n→∞.

P r o o f . For i) we set

Qθ0 =
{
qµ(θ) = p(θ)−

∫
θ>g dµ

}

µ∈GI(θ0)

and
pn(θ) = p(θ)−

∫
θ>g dµn

x̂ for every n and fixed x̂ ∈ XT .

For a. e. x ∈ XT [µ0] the assumptions of Lemma 5.3 are satisfied since by Lemma 5.2
ii) together with Remark 4.2 and the variational principle in Section 6 we obtain

min
‖θ−θ0‖2=δ

min
µ∈GI(θ0)

(
qµ(θ)− qµ(θ0)

)
= δ · γδ > 0
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and therefore by convexity qµ(θ)−qµ(θ0) ≥ γδ‖θ−θ0‖2 for every θ /∈ σδ(θ0). Further
from Lemma 4.1 we obtain

|pn(θ)− qµ(θ)| < ‖θ‖2 · ε for some µ ∈ GI(θ0) and large enough n.

Moreover, the a. s. convergence in Lemma 4.1 yields the convergence in probability,
and therefore the latter estimate, which guarantees the existence of minima, holds
with probability tending to one.

For ii) we set

Qθ0 =
{
qµ(θ) = −

∫
|A|−1 log Πθ

A(·|·) dµ
}

µ∈GI(θ0)

and
pn(θ) = −

∫
|A|−1 log Πθ

A(·|·) dµn
x̂ .

Since
qµ(θ)− qµ(θ0) = |A|−1

∫
log

Πθ0

A (·|·)
Πθ

A(·|·) Πθ0

A (·|·) dµ > 0

for every θ 6= θ0 we obtain Qθ0 to be a collection of strictly convex continuous
functions with the minimum at θ0. Thus the assumptions on Qθ0 are satisfied.

Further it holds (note Π0
A(·|·) = const.)

|qµ(θ)− pn(θ)| =
∣∣∣∣
∫
|A|−1

[
log Π0

A(·|·)− log Πθ
A(·|·)] (dµ− dµn

x̂)
∣∣∣∣

≤ ‖θ‖2 · const · max
x∂A∈X∂A

|µ(x∂A)− µn
x̂(x∂A)| ≤ ε · ‖θ‖2

for large enough n and some µ ∈ GI(θ0) by Lemma 5.1 i), Lemma 4.1, and obvious
uniform bound ||A|−1FU

A (·|·)| ≤ ‖U‖. Thus the assumptions of Lemma 5.3 are
satisfied, and the proof is completed in the same way as for i). 2

Now let us fix the empirical r. f. µn
x̂ . We can study the behaviour of the MPLE θ̂n

A

for growing A. For this purpose let {Ak}∞k=1 satisfy the assumption of Lemma 5.2,
namely let |Vk|−1 |Ak4Vk| −→ 0 for k →∞.

Proposition 6.2. Let the MLE θ̂n exist. Then the MPLE θ̂n
Ak

exists for sufficiently
large k, and

θ̂n
Ak
−→ θ̂n for k →∞.

P r o o f . We set
Qθ̂n =

{
q(θ) = p(θ)−

∫
θ>g dµn

x̂

}

which is now a singleton since the empirical distribution µn
x̂ is uniquely defined, and

pk(θ) = −
∫
|Ak|−1 log Πθ

Ak
(·|·) dµn

x̂ for every k.

Then the statement follows from Lemma 5.3 and Lemma 5.2 i). 2
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Remark 6.3. From Lemma 5.3 ii) by Lemma 5.3 it even follows that the “true”
MLE θ

n
is also defined (in sense of existence of local maxima for sufficiently large

n) and consistent. We must only prove in addition that the multifunction

θ 7→ {µ(x̂Wn
)}µ∈GI(θ)

really attains its maximum in every ball σδ(θ0). But, by the “compactness” argu-
ments we obtain a sequence µj ∈ GI(θj) with θj −→ θ∗ ∈ σδ(θ0) and µj =⇒ µ∗

weakly for j →∞ for some stationary r. f. µ∗, satisfying

µj(x̂Wn
) −→ sup

θ∈σδ(θ0)

max
µ∈GI(θ)

µ(x̂Wn
) = µ∗(x̂Wn

).

Since the entropy rate H is upper semicontinuous (cf. e. g. Proposition 15.14 in
Georgii [8]) we obtain from the variational principle µ∗ ∈ GI(θ∗).

Remark 6.4. The weak consistency of the estimates (i. e. the convergence in
probability) can be proved with the aid of the appropriate large deviations theorems
for the non-stationary Gibbs r. f.’s as well (cf. Gidas [10] and Comets [4]). An
exponential rate of convergence consequently follows.

7. ASYMPTOTIC NORMALITY OF THE MAXIMUM
PSEUDO–LIKELIHOOD ESTIMATES

Since
− log Πθ

A(xA|xT\A) = logZθ
A(xT\A)− θ> FA(xA|xT\A)

is a smooth convex function of θ ∈ RN we obtain an equivalent definition of the
MPLE θ̂n

A, namely

θ̂n
A = argmin

θ∈RN

{
−

∫
|A|−1 log Πθ

A(·|·) dµn
x̂

}

iff
JA

µn
x̂
(θ̂n

A) = 0,

where for every stationary r. f. µ we define

JA
µ (θ) =

∫
Sθ

A dµ for every θ ∈ RN ,

and

Sθ
A =

[
d

dθj

{−|A|−1 log Πθ
A(·|·)}

]

j=1,...,N

= |A|−1
[
Eθ

A[FA](·)− FA(·|·)]

with
Eθ

A[F i
A](xT\A) =

∑

yA∈XA

F i
A(yA|xT\A)Πθ

A(yA|xT\A)

for every i = 1, . . . , N and xT\A ∈ XT\A.
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Further we define

Dθ
A(x) = ∇Sθ

A(x) =
(

d
dθj

[Sθ
A(x)]i

)

i,j=1,...,N

= |A|−1
[
covθ

A(F i
A, F

j
A)(xT\A)

]
i,j=1,...,N

≥ 0

for every θ ∈ RN and x ∈ XT , where

covθ
A(F i

A, F
j
A)(xT\A) =

∑

yA∈XA

F i
A(yA|xT\A)F j

A(yA|xT\A)Πθ
A(yA|xT\A)

−Eθ
A[F i

A](xT\A) · Eθ
A[F j

A](xT\A).

Lemma 7.1. Let µ be a positive stationary r. f. (i. e. µ(xB) > 0 for every xB ∈
B(B), B ∈ k(T )). Then JA

µ is a one-to-one regular mapping with positive definite
Jacobi matrix

∇ JA
µ (θ) =

(
d

dθj
[JA

µ (θ)]i
)

i,j=1,...,N

> 0

at every θ ∈ RN .

P r o o f . By definition it holds ∇ JA
µ (θ) =

∫
Dθ

A dµ where the matrix Dθ
A(x) is

in general positive semidefinite for every A ∈ k(T ), θ ∈ RN , and x ∈ XT . Since
U1, . . . , UN are mutually non-equivalent, for every 0 6= c = (c1, . . . , cN )> ∈ RN

there exists x ∈ XT with c>Dθ
A(x) c > 0 (cf. Section 3). But c>Dθ

A(x) c ∈ C∂A and
µ is positive, therefore

∫
Dθ

Adµ > 0. 2

Remark 7.2. Accordingly, the inverse mapping [JA
µ ]−1 exists with similar prop-

erties. (Note that every µ ∈ ⋃
θ∈RN GI(θ) and µn

x̂ for large enough n are positive.)
Therefore the MPLE θ̂n

A can be defined by

θ̂n
A =

[
JA

µn
x̂

]−1

(0),

whenever JA
µn

x̂
is regular and 0 is contained in the open set JA

µn
x̂
(RN ). Since Sθ

A ∈
C∂A are uniformly bounded for every θ ∈ RN we obtain JA

µj −→−→ JA
µ uniformly if

µj =⇒ µ weakly. Moreover, if every JA
µj

is regular, the pointwise convergence of the
inverse transforms can be concluded. We could follow this approach to prove the
existence and the consistency of the MPLE θ̂n

A.
Unfortunately, for the MLE estimate θ̂n we must proceed more carefully since

the problem of phase transitions (θ ∈ RN with |GI(θ)| > 1) can not be avoided.
Namely, it holds by the variational principle that the MLE

θ̂n = argmax
θ∈RN

[∫
θ>g dµn

x̂ − p(θ)
]
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is given iff there exists some µ ∈ GI(θ̂n) satisfying

J∞µn
x̂
(µ) =

∫ [
g −

∫
g dµ

]
dµn

x̂ = 0.

Hence the estimate exists iff
∫

g dµn
x̂ ∈

{∫
g dµ; µ ∈ GI(θ), θ ∈ RN

}
= G.

The proof of Theorem 6.1 shows that G is an open subset of RN . According to
Proposition 5.18 and Example 5.20 (1) in Georgii [8] the limit exists

lim
k→∞

JAk
µ (θ) = J∞µ (νθ(µ)) for every θ ∈ RN ,

where the particular νθ(µ) ∈ GI(θ) depends on the actual fixed stationary r. f. µ.
Obviously, J∞µn

x̂
(νθ(µn

x̂)) could be understood as a well-defined function of θ ∈ RN ,
but it may not be continuous at the points of phase transitions, etc., and therefore
this way seems useless. On the other hand, we can directly introduce the inverse
transform

J−1
µn

x̂
(λ) =

{
θ ∈ RN ; min

µ∈GI(θ)

∥∥∥∥
∫

g dµ−
∫

g dµn
x̂ − λ

∥∥∥∥
2

= 0
}
,

which is a well-defined continuous mapping, and finally we obtain J−1
µj

−→ J−1
µ for

µj =⇒ µ, and [JAk
µ ]−1 −→ J−1

µ for k →∞.

And this is in fact the definite essence of Theorem 6.1 and Proposition 6.2.

The main aim of the present section consists in proving the asymptotic (mixed-)
normality of the MPLE. Therefore we need an appropriate version of the central
limit theorem.

For f1, f2 ∈ C(XT ) and stationary r. f. µ we denote

Bµ(f1, f2) =
∑

t∈T

covµ(f1, f2 ◦ τt)

whenever the sum converges.
For f = (f1, . . . , fN )> and h = (h1, . . . , hN )> we denote

Bµ[f ;h] = (Bµ(f i, hj))i,j=1,...,N .

For T 1, T 2 ⊂ T we denote T 1 ª T 2 = {t− s; t ∈ T 1, s ∈ T 2}.

Lemma 7.3. Let µ ∈ GI(θ). Then

i) Bµ[Sθ
A; Sθ

A] =
∑

t∈∂Aª∂A

covµ[Sθ
A; Sθ

A ◦ τt] > 0,

and
ii) −Bµ[Sθ

A; g] =
∫
Dθ

Adµ = ∇ JA
µ (θ) > 0.
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P r o o f . For a fixed c 6= 0 we set Y = c> Sθ
A ∈ C∂A, and define the potential

UY = {UY
B }B∈k(T ), where UY

B = Y ◦τt for B = ∂A+t, t ∈ T , and UY
B ≡ 0 otherwise.

Let UY ≈ 0. Then by the variational principle in Section 5 we obtain
∫
Y dν = 0

for every stationary r. f. ν, and especially for some ν1 ∈ GI(θ1), θ1 = θ + c. Thus
0 =

∫
c>(Sθ1

A − Sθ
A) dν1 = c>

[∫
Dθ∗

A dν1
]
c where θ∗ = θ + γ c, γ ∈ [0, 1], which

contradicts Lemma 7.1. Therefore UY 6≈ 0.
Thus by Lemma 2 in Dobrushin and Nahapetian [5] we obtain a constant λ > 0

such that
|Vm|−1covθ

Vm

(
FUY

Vm
, FUY

Vm

)
(xT\Vm

) ≥ λ

for every x ∈ XT and some sequence of cubes {Vm}∞m=1 with Vm ↗ T as m→∞.
Finally, utilizing the standard inequality E[var(ξ|η)] ≤ var(ξ), we obtain

0 < λ ≤ |Vm|−1Eµ

[
covθ

Vm
(FUY

Vm
, FUY

Vm
) (·)

]

≤ |Vm|−1covµ

(
FUY

Vm
, FUY

Vm

)

=
∑

s∈∂Aª∂A

covµ(Y, Y ◦ τs) · |(Im
A + s) ∩ Im

A | · |Vm|−1

−→ c>Bµ[Sθ
A; Sθ

A] c as m→∞,

since |Vm|−1 |(Im
A + s) ∩ Im

A | −→ 1 asm→∞ where Im
A = {t ∈ T ; (∂A+t)∩Vm 6= ∅}

for every m, and

covµ(Y, Y ◦ τk) = 0 if ∂A ∩ (∂A+ t) = ∅.

Thus the statement i) is proved. The proof of ii) is a direct computation based on
the observation that covµ(Sθ

A, f) = 0 whenever f ∈ CT\A. 2

Theorem 7.4. (CLT) Let µ ∈ GE(θ). Then

|Vn|− 1
2

∑

t∈Vn

Sθ
A ◦ τt =⇒ NN (0, Bµ[Sθ

A;Sθ
A]) in distribution [µ] as n→∞.

P r o o f . Following Guyon and Künsch [13], for fixed c 6= 0 and every t ∈ T we
denote Yt = c> Sθ

A ◦ τt. We set ξn = a−1
n

∑
t∈Vn

Yt and ξs
n = a−1

n

∑
t∈(Ã+s)∩Vn

Yt for

every s ∈ Vn, where Ã = ∂Aª ∂A and a2
n = Eµ

[∑
t∈Vn

Yt

]2.
Then, due to e. g. Lemma 2 in Bolthausen [3], it is sufficient to verify

lim
n→∞

Eµ

[
(iλ− ξn) eiλ ξn

]
= 0 for every real λ.

Employing the decomposition (again by Bolthausen [3])

(iλ− ξn) eiλ ξn = Cn,1 + Cn,2 + Cn,3
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where

Cn,1 = −a−1
n

∑

t∈Vn

Yt e
iλ(ξn−ξt

n),

Cn,2 = −iλ eiλ ξn

(
a−1

n

∑

t∈Vn

Yt ξ
t
n − 1

)
,

and
Cn,3 = eiλ ξna−1

n

∑

t∈Vn

Yt

(
e−iλ ξt

n + iλ ξt
n − 1

)
,

we observe Eµ Cn,1 = 0 for every n, Eµ|Cn,2| −→ 0 as n→∞ by the mean ergodic
theorem (cf. e. g. Theorem 14.A5 in Georgii [8] – here the assumption µ ∈ GE(θ)
is needed), and Eµ|Cn,3| −→ 0 as n → ∞ by standard estimates. For details cf.
Guyon and Künsch [13] for the particular Ising model or Janžura and Lachout [20]
for the general case. 2

Now, we can prove the asymptotic normality of the MPLE.

We shall consider the “unbiased version” µ̃n
x̂ of the empirical r. f. Thanks to the

basic estimate
∣∣∣∣
∫
f dµn

x̂ −
∫
f dµ̃n

x̂

∣∣∣∣ ≤ ‖f‖∞ |Vn|−1 |{t ∈ Vn; t+ V ⊂Vn}| −→ 0 for n→∞

for every f ∈ CV with
⋃

t∈Vn
(t + V ) ⊂ Wn, the modification does not influence

the problem of consistency of both the MLE and the MPLE. We shall quote the
estimates based on the “unbiased version” µ̃n

x̂ of the empirical r. f. as the modified
MLE and the modified MPLE, respectively.

Denoting the modified versions by θ̃n and θ̃n
A for A ∈ k(T ), respectively, we could

replicate the proof of Theorem 6.1 to obtain

θ̃n −→ θ0 and θ̃n
A −→ θ0 a. s. [µθ0

] for n→∞ and every θ0 ∈ Θ.

We must only keep in mind the assumed relation between Vn and Wn so that the
empirical r. f. µ̃n

x̂ is defined for the particular g or Sθ
A, respectively. Such problem

does not occur with the “stationary version” µn
x̂ but its bias could break validity of

the central limit theorems.
For the sake of brevity we denote

BA
θ (µ) = Bµ[g; Sθ

A]
(
Bµ[Sθ

A; Sθ
A]

)−1
Bµ[Sθ

A; g]

for µ ∈ GI(θ).

Theorem 7.5. For every A ∈ k(T ) the modified MPLE θ̃n
A is asymptotically

normal, providing the generating Gibbs r. f. is ergodic, namely for every µ ∈
GE(θ0), θ0 ∈ RN , it holds

|Vn| 12 (θ̃n
A − θ0) =⇒ NN

(
0, (BA

θ (µ))−1
)

in distribution [µ] as n→∞.
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P r o o f . By definition it holds

0 =
∫
S

θ̃n
A

A dµ̃n
x̂ =

∫
Sθ0

A dµ̃n
x̂ +

[∫
D

γnθ0+(1−γn)θ̃n
A

A dµ̃n
x̂

]
(θ̃n

A − θ0)

with some γn ∈ [0, 1].
We observe

|Vn| 12
∫
Sθ0

A dµ̃n
x̂ =⇒ NN

(
0, Bµ[Sθ0

A ;Sθ0

A ]
)

by Theorem 7.4 since
∫ [∫

Sθ0

A dµ̃n
x̂

]
dµ(x̂) =

∫
Sθ0

A dµ = 0 thanks to the “unbiased
version” of the empirical r. f. µ̃n

x̂ .
Further, since Dθ

A is uniformly bounded, θ̃n
A is consistent estimate, and µ is an

ergodic r. f., we obtain
∫
D

γnθ0(1−γn)θ̃n
A

A dµ̃n
x̂ −→

∫
Dθ0

A dµ a. s. [µ].

The rest of the proof is standard. 2

Corollary 7.6. For a stationary generating µ ∈ GI(θ0) the modified MPLE θ̃n
A is

asymptotically mixed-normal, i. e.

|Vn| 12 (θ̃n
A−θ0) =⇒

∫

GE(θ0)

NN

(
0, (BA

θ (ν))−1
)
dPµ(ν) in distribution [µ] as n→∞,

where Pµ is the ergodic decomposition measure.

P r o o f . The result follows directly from the preceding Theorem 7.5 and the
ergodic decomposition. Namely, denoting ηn = c>

[
|Vn| 12 (θ̃n

A − θ0)
]
, we obtain

µ(ηn < α) =
∫

GE(θ0)
ν(ηn < α) dPµ(ν) for every n. By taking limit we obtain

the claimed statement. 2

8. DOBRUSHIN’S UNIQUENESS REGION

For every t ∈ T let us define

γt(U) =
1
2

sup

{ ∑

x0∈X

∣∣∣ΠU
{0}(x0|yT\{0})−ΠU

{0}(x0|zT\{0})
∣∣∣ ; ys = zs for s 6= t

}
.

If γ(U) =
∑

t∈T γt(U) < 1 the potential is said to satisfy Dobrushin’s condition.
Gross [11] proved that the Dobrushin’s uniqueness region D = {U ∈ U ; γ(U) < 1}
is an open subset of the space U .

Moreover, for every U0 ∈ D there exists an open neighborhood ∂U0 satisfying

γ(∂U0) =
∑

t∈T

γt(∂U0) < 1,
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where
γt(∂U0) = sup

U∈∂U0
γt(U) for every t ∈ T.

This is always possible, see the proof of Proposition 2 in Gross [11].
For every U ∈ D there is exactly one Gibbs r. f. µU (this is the famous Dobrushin’s

result – cf. e. g. Künsch [22], Corollary 2.3) which is, moreover, stationary and
ergodic (cf. Theorem 4.1 and Theorem 4.3 in Preston [24]), i. e. G(U) = GI(U) =
GE(U) = {µU} for every U ∈ D.

We denote E = D ∩ L, where again L = Lin(U1, . . . , UN ) with mutually non-
equivalent U1, . . . , UN ∈ Ur, r > 0.

For every θ ∈ Φ(E) = Θ we shall write µθ instead of µU , and we shall deal with
the parameter family

M = {µθ}θ∈Θ

of Gibbs r. f.’s with the open set of parameters Θ ⊂ RN .
Let us note that Θ always contains the zero vector 0 ∈ RN , and µ0 is in fact

simply the corresponding infinite power of the uniform distribution.
Further, we may write directly

Bθ(f1, f2) =
∑

t∈T

covθ(f1, f2 ◦ τt)

for every f1, f2 ∈ CW with W ∈ k(T ), and θ ∈ Θ, where covθ stands for the
covariance with respect to µθ. The sum is now absolutely convergent by Theorem
5.1 in Künsch [22].

Moreover, again by Theorem 5.1 in Künsch [22] it holds

d
dθi

p(θ) =
∫
gi dµθ

and
d

dθi

∫
f dµθ = Bθ(f, gi)

for every i = 1, . . . , N ; f ∈ CW with W ∈ k(T ), and θ ∈ Θ.
In particular we have

Bθ[g; g] =
(
Bθ(gi, gj)

)
i,j=1,...,N

=
(

d2

dθi dθj
p(θ)

)

i,j=1,...,N

,

and we observe Bθ[g; g] > 0, i. e. positive definite – by Lemma 5.1 ii) for every
θ ∈ Θ.

Finally, let us denote by

`θn(x) =
(
`θn(x)i =

d
dθi

logµθ(xVn)
)

i=1,...,N

the corresponding score function.
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Proposition 8.1.

i) For every f ∈ CW , W ∈ k(T ), and θ ∈ Θ it holds

|Vn|− 1
2

∑

t∈Vn

[
f ◦ τt −

∫
f dµθ

]
=⇒ NN (0, Bθ(f, f))

for n→∞ in distribution [µθ].

ii) For every θ ∈ Θ is holds

|Vn|− 1
2

{ ∑

t∈Vn

[
g ◦ τt −

∫
g dµθ

]
− `θn

}
−→ 0 for n→∞ in probability [µθ].

iii) The parameter family M obeys the regularity condition of local asymptotic
normality (LAN), namely it holds

log
µθ+|Vn|−

1
2 α(xVn

)
µθ(xVn)

= |Vn|− 1
2

∑

t∈Vn

αT

[
g ◦ τt(x)−

∫
g dµθ

]
− 1

2
αTBθ[g; g]α+Mθ

n(x)

for every θ, θ + |Vn|− 1
2α ∈ Θ, x ∈ XT and large enough positive integer n,

where
Mθ

n −→ 0 for n→∞ in probability [µθ].

P r o o f . The first statement is the central limit theorem for functionals of Gibbs
r. f.’s (cf. e. g. Theorem 4.1 in Künsch [22]).

The remaining statements can be obtained by appropriate expansions together
with the bounds following from Theorem 3.2 in Künsch [22]. For details cf. Janžura
[17] and [19]. 2

Remark 8.2. The crucial central limit theorem in Proposition 8.1 i) can be also
proved with replacing the assumption θ ∈ Θ by a rather technical condition (cf.
Theorem 2 in Gidas [10]) that guarantees the convergence of Bθ(f, f). Since for
θ ∈ Θ this condition is satisfied, the result seems to be more general. On the other
hand it is not completely clear where else the condition can be satisfied in addition,
and therefore we rather prefer the “uniqueness region” approach which will also
provide us with some usefull bounds (cf. Section 10 below).

Moreover, the problem of positive definiteness of the asymptotic variance matrix,
which is closely related to the strong convexity of the pressure (proved by Dobrushin
and Nahapetian [5]), is not discussed in Gidas [10].
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9. ESTIMATION IN THE UNIQUENESS REGION

We shall restrict our further considerations to the uniqueness region, namely to the
parameter family

M = {µθ}θ∈Θ

of Gibbs r. f.’s. Again as in Section 7 we shall deal with the “unbiased” empirical
r. f.’s and modified versions of the estimates.

Theorem 9.1. The modified MLE θ̃n is asymptotically normal and asymptotically
efficient, namely for every θ0 ∈ Θ it holds

|Vn| 12 (θ̃n − θ0) =⇒ NN

(
0, (Bθ0 [g; g])−1

)
for n→∞ in distribution [µθ0

]

and

|Vn| 12
[
θ̃n − θ0 − (Bθ0 [g; g])−1|Vn|−1`θ

0

n

]
−→ 0 for n→∞ in probability [µθ0

].

P r o o f . The statements follow from Proposition 8.1 i) and ii), and the regularity
properties of the transform θ 7→ ∫

f dµθ (cf. Janžura [17] for details). 2

Remark 9.2. The preceding theorem states that the MLE θ̃n is asymptotically lin-
early related to the score function. This yields, together with the regularity ensured
by the LAN condition (Proposition 8.1 iii)), the maximum possible concentration
about the true value (cf. e. g. Hájek [14] for details).

Proposition 9.3. For every A ∈ k(T ) it holds

[BA
θ0 ]−1 − [Bθ0 [g; g]]−1 ≥ 0,

i. e. the MPLE is asymptotically less efficient to compare with the MLE.

P r o o f . Since the “asymptotic covariance matrix”

(
Bθ0 [g; g] −Bθ0 [g;Sθ0

A ]

−Bθ0 [Sθ0

A ; g] Bθ0 [Sθ0

A ;Sθ0

A ]

)

is positive semidefinite, and the particular block submatrices are strictly positive
definite by Lemma 5.2 ii) and Lemma 7.3, the statement follows immediately. It
also naturally agrees with the well-known Rao–Cramér theorem. Note that Bθ0 [g; g]
plays the role of the asymptotic Fisher information matrix. 2
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Remark 9.4. There is an open problem under what reasonable conditions we
obtain a strict positive definiteness in the above statement. As a straightforward
counterexample we have the i.i.d. case, i. e. U1, . . . , UN ∈ U0. Then all the MPL
estimates coincide with the MLE, and thus we obtain even the equality of all the
asymptotic variance matrices. In general we can observe that the strict positive
definiteness occurs whenever the collection

Uθ0,A −Bθ0

[
Sθ0

A ; g
]
Bθ0 [g; g]−1

U,

where U = (U1, . . . , UN )>, and for every i = 1, . . . , N we set Uθ0,A,i
B = (Sθ0

A )i ◦ τt if
B = ∂A+ t, t ∈ T , and Uθ0,A,i

B ≡ 0 otherwise (cf. also the proof of Lemma 7.3), is
given by mutually non-equivalent potentials.

Now, we shall study the behaviour of the asymptotic efficiency for growing A.
Let again {Ak}∞k=1 satisfy the assumption of Lemma 5.2, namely let
limk→∞ |Vk|−1|Ak4Vk| = 0.

Theorem 9.5. For k →∞ the maximum asymptotic efficiency is attained, i. e.

lim
k→∞

BAk

θ0 = Bθ0 [g; g]

for every θ0 ∈ Θ.

The p r o o f is given in the following section. 2

Remark 9.6. Since |Ak|−1
∥∥FAk

−∑
t∈Ak

g ◦ τt
∥∥

2 −→−→ 0 uniformly for k → ∞
(cf. the proof of Lemma 10.1 for details) we could replace the term FAk

with∑
t∈Ak

g ◦ τt in the definition of the function Sθ
Ak

. Setting directly

S̃θ
k = |Ak|−1

[
Eθ

Ak

[ ∑

t∈Ak

g ◦ τk
]
−

∑

t∈Ak

g ◦ τk
]

we can follow this approach from Section 7 to obtain similar results, some of them
even in an easier way.

We can make another step and introduce an estimate defined through the function

˜̃Sθ
Ak

= Eθ
Ak

[g]− g.

Such kind of estimate obviously strongly imitates the original MLE which can be
defined in the same manner only with the “unconditional” Eθ[g]. For this particular
modifications there would occur some small differences in efficiency, but negligible
for k →∞ since all of them approach the MLE.

In general we can employ any function Sθ that ensures regular mapping θ 7→∫
Sθ dµ for every stationary r. f. µ and 0 =

∫
Sθdµθ for every θ ∈ Θ.
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Remark 9.7. The asymptotic results for growing Ak ↗ T as k → ∞ namely
Proposition 6.2 and Theorem 9.5, are naturally not much relevant for the practical
purposes since only the MPLE based on a fixed and “rather small” set A can be
calculated. Their importance consists in justifying the idea of the MPL estimation as
a natural generalization and extension of the ML estimation. We can conclude that
by a sequence of the MPL estimates we could approximate the optimum MLE both
for a fixed sample size (Proposition 6.2) and in the asymptotic sense (Theorem 9.5.).

10. PROOF OF THEOREM 9.5

For the fixed θ0 = Φ(U0) ∈ Θ we denote γ =
∑

t∈T γt where γt = γt(∂U0) as
defined in Section 8. Following Künsch [22] we further denote Γ = (γt−s)t,s∈T

and χ =
∑∞

n=0 Γn. Thus χ = (χab)a,b∈T is an infinite matrix with the property∑
a∈T χab =

∑
a∈T χba = (1− γ)−1 <∞ for every b ∈ T .

Moreover, for a continuous function f ∈ C(XT ) and s ∈ T we set

ϕs(f) = sup {|f(x)− f(y)|; xt = yt for t 6= s} .

Let us emphasize that

CW ⊂ C1 =

{
f ∈ C(XT ); ϕ(f) =

∑

s∈T

ϕs(f) <∞
}

for every W ∈ k(T ). Note that ϕs(f ◦ τt) = ϕs−t(f) for every t, s ∈ T and f ∈ C1.
For some fixed U ∈ Ur we again denote

g =
∑

V ∈k(T ;0)

|V |−1 UV , FAk
=

∑

V ∩Ak 6=∅
UV , and Sθ0

Ak
= Eθ0

Ak
[FAk

]− FAk
.

Lemma 10.1. It holds

i) |Ak|−1ϕ
(
Sθ0

Ak
+

∑
t∈Ak

g ◦ τt
)
−→ 0 for k →∞,

ii) |Ak|−1ϕ(Sθ0

Ak
) ≤ const. <∞ for every k.

P r o o f . Let us denote Vr = {V ∈ k(T ); diam(V ) ≤ r, minV = 0}, where the
minimum is taken with respect to some linear (e. g. the lexicographical) ordering.
Note that |Vr| <∞ and Vr does not contain any pair of “shift-similar” sets.

Further, denoting Ak ª V = {t ∈ T ; (V + t) ∩Ak 6= 0} for V ∈ Vr we observe

|Ak ª V | ≤ |Ak| · |V |,

and for fixed b ∈ T we obtain

|Ak|−1 |(Ak ª V ) ∩ (Ac
k − b)| −→ 0 for k →∞.
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Now, since FAk
=

∑
V ∈Vr

∑
t∈AªV

UV +t and
∑

t∈Ak

g ◦ τt =
∑

V ∈Vr

∑
t∈AªV

UV +t

|V | |(U + t)∩Ak|
we obtain

|Ak|−1ϕ

(
FAk

−
∑

t∈Ak

g ◦ τt
)
≤

∑

V ∈Vr

ϕ(UV )·|Ak|−1
∑

t∈AkªV

(
1− |(Ak − t) ∩ V |

|V |
)

=
∑

V ∈Vr

ϕ(UV ) |Ak|−1|V |−1
∑

s∈V

|(Ak ª V ) ∩ (Ac
k − s)| −→ 0 for k →∞.

Further, by Corollary 2.4 in Künsch [22] we obtain for b /∈ Ak

ϕb

(
Eθ0

Ak
[FAk

]
)
≤

∑

q∈T

χbqϕq(FAk
),

while for b ∈ Ak we have zero by definition, and therefore

|Ak|−1ϕ
(
Eθ0

Ak
[FAk

]
)
≤ |Ak|−1

∑

b/∈Ak

∑

q∈T

χbqϕb(FAk
)

≤
∑

V ∈Vr

|Ak|−1
∑

b/∈Ak

∑

t∈AkªV

∑

q∈T

χbqϕq−t(UV )

=
∑

V ∈Vr

∑

b,q∈T

χbqϕq(UV )|Ak|−1 |(Ak ª V ) ∩ (Ac
k − b)| −→ 0 for k →∞

by the dominated convergence arguments since |Ak|−1 |(Ak ª V ) ∩ (Ac
k − b)| ≤ |V |.

Hence, since ϕ
(
Sθ0

Ak
+

∑
t∈Ak

g ◦ τt
)
≤ ϕ(FAk

−∑
t∈Ak

g ◦ τt) + ϕ
(
Eθ0

Ak
(FAk

)
)

the
proof of i) is completed.

Further, since ϕ
(
Eθ0

Ak
(FAk

)
)
≤ (1−γ)−1 ϕ(FAk

) and |Ak|−1 ϕ(UV ) |AkªV | |Ak|−1

≤ ∑
V ∈Vr

|V |ϕ(UV ), the proof of ii) is straightforward. 2

Now for U i, i = 1, . . . , N , we shall denote by gi and [Sθ0

Ak
]i, respectively, the

corresponding terms.

Proposition 10.2. For every pair (i, j) it holds

|Ak|−1Bθ0

(
gi, [Sθ0

Ak
]j

)
+B(gi, gj) −→ 0 for k →∞

and

|Ak|−2Bθ0

(
[Sθ0

Ak
]i, [Sθ0

Ak
]j

)
+ |Ak|−1Bθ0

(
gi, [Sθ0

Ak
]j

)
−→ 0 for k →∞.

P r o o f . Since obviously

Bθ0(gi, gj) = |Ak|−1Bθ0

(
gi,

∑

t∈Ak

gj ◦ τt
)
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we may write
∣∣∣|Ak|−1Bθ0

(
gi, [Sθ0

Ak
]j

)
+Bθ0(gi, gj)

∣∣∣

= |Ak|−1

∣∣∣∣∣Bθ0

(
gi, [Sθ0

Ak
]j +

∑

t∈Ak

gj ◦ τt
)∣∣∣∣∣

≤ |Ak|−1
∑

s∈T

∑ ∑

a,b,c∈T

∑
χcaχcbϕa(gi ◦ τs)ϕb

(
[Sθ0

Ak
]j +

∑

t∈Ak

gj ◦ τt
)

= (1− γ)−2 ϕ(gi) |Ak|−1 ϕ

(
[Sθ0

Ak
]j +

∑

t∈Ak

gj ◦ τt
)

by Corollary 3.4 in Künsch [22].
Similarly

∣∣∣|Ak|−2Bθ0

(
[Sθ0

Ak
]i, [Sθ0

Ak
]j

)
+ |Ak|−1Bθ0

(
gi, [Sθ0

Ak
]j

)∣∣∣

≤ (1− γ)−2|Ak|−1 ϕ
(
[Sθ0

Ak
]j

)
|Ak|−1 ϕ

(
[Sθ0

Ak
]i +

∑

t∈Ak

gi ◦ τt
)
.

Thus both the terms tend to zero by Lemma 10.1. 2

Corollary 10.3. It holds

lim
k→∞

BAk

θ0 = Bθ0 [g; g].

P r o o f . Since all the involved matrices are positive definite, the assertion follows
from the “term-wise” convergence ensured by Proposition 10.2. 2

11. INFINITESIMAL ROBUSTNESS

Finally, we shall briefly discuss the problem of robustness, which is understood as a
sensitiveness of the estimator to the data.

For fixed θ0 ∈ Θ and A ∈ k(T ) we set

θA(ε, ν) =
[
JA

(1−ε)µθ0+εν

]−1

(0)

i. e. ∫
S

θA(ε,ν)
A d

[
(1− ε)µθ0

+ εν
]

= 0

for every stationary r. f. ν and ε > 0. By direct differentiating and proper substi-
tuting we obtain

θ′A(0, ν) =
dθA(ε, ν)

dε

∣∣∣∣
ε=0

= Bθ0

[
g;Sθ0

A

]−1
∫
Sθ0

A dν.
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Since for every ν and large enough n we have
∫
Sθ0

A dν =
∫ [∫

Sθ0

A dµ̃n
x̂

]
dν(x̂), we

can understand in general

θ′A(0, µ̃n
x̂) = Bθ0

[
g;Sθ0

A

]−1
∫
Sθ0

A dµ̃n
x̂

as the influence function for the MPLE θ̃n
A, i. e.

θA(ε, ν) ≈ θ0 + ε

∫
θ′A(0, µ̃n

x̂) dν(x̂)

for “small” ε > 0, and for ν “not too far” from µθ0
we obtain

θA(1, ν) ≈ θ0 +
∫
θ′A(0, µ̃n

x̂) dν(x̂).

Analogously from Remark 7.2, for the MLE θ̃n we obtain the influence function

θ′(0, µ̃n
x̂) = Bθ0 [g; g]−1

∫ [
g −

∫
g dµθ0

]
dµ̃n

x̂ .

Proposition 11.1. The influence functions θ′A(0, µ̃n
x̂) and θ′(0, µ̃n

x̂), respectively,
are zero mean random variables under µθ0

, satisfying

θ′A(0, µ̃n
x̂) −→ 0, θ′(0, µ̃n

x̂) −→ 0 a. s. [µθ0
] for n→∞,

and

|Vn| 12 θ′A(0, µ̃n
x̂) =⇒ NN (0, [BA

θ0 ]−1), |Vn| 12 θ′(0, µ̃n
x̂) =⇒ NN (0, Bθ0 [g; g]−1)

in distribution [µθ0
] for n→∞.

P r o o f . The statements follow from the properties of the unbiased version em-
pirical r. f. µ̃n

x̂ , ergodicity of µθ0
, and Proposition 8.1. i). 2

Corollary 11.2. The every MPLE θ̃n
A is “less robust” than the MLE θ̂n since

[BA
θ0 ]−1− [Bθ0 [g, g]]−1 ≥ 0, i. e. under the true model µθ0

the asymptotic covariance
matrix of the influence function θ′A(0, µ̃n

x̂) is “greater” than the asymptotic covariance
matrix of θ′(0, µ̃n

x̂),

P r o o f . The statement follows directly from the preceding proposition and Re-
mark 9.4. 2

Note that the above results are rather natural since all the considered estimators
belong to the class of the so-called M -estimators with bounded ψ-function which
are, also from the robustness point of view, deeply studied and well understood in
mathematical statistics. For general treating cf. e. g. Hampel et al [15], and for the
case of autoregressive processes cf. Künsch [23].
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[23] H. Künsch: Infinitesimal robustness for autoregressive processes. Ann. Statist. 12
(1984), 843–863.

[24] C. Preston: Random Fields (Lecture Notes in Mathematics 534). Springer, Berlin
1976.

[25] D. J. Strauss: Analysing binary lattice data with the nearest–neighbor property. J.
Appl. Probab. 12 (1975), 702–712.

[26] L. Younès: Estimation and annealing for Gibbsian fields. Ann. Inst. H. Poincaré Sect.
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