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ROBUST CONTROL OF
A CLASS OF NONLINEAR SYSTEMS

Vojtech Veselý

In this paper we deal with robust control of a class of nonlinear systems with partially
known uncertainties. A new class of adaptive continuous algorithm is proposed to guarantee
stability of uncertain nonlinear and linear systems without matching conditions.

1. INTRODUCTION

Dynamic systems with bounded uncertainties have been widely used to model physi-
cal systems. During the last two decades, numerous papers dealing with design of
robust control schemes to stabilize such systems have been published. For overviews
we refer the reader to Corless [2], Leitmann [8], [9], Zhihua Qu [11] and the numerous
references therein. Various approaches have been studied for nonlinear systems, the
Lyapunov function method being of central importance. This paper focuses on the
problem of robust design by the Lyapunov direct method.

The robust controller studies have been generally based on three main assump-
tions [1]

– the system state variable is available for measurement,

– the so-called matching conditions are verified, and

– the uncertain part of the system are assumed to belong to a known compact
set.

Under these assumptions, it is shown that there exists a class of controllers that en-
sure the stability of uncertain systems. Recently, several authors have proposed new
control laws which partially allow relaxation of the above assumptions [1], [6], [10],
[11], [13].

In this paper we pursue the idea of Corless and Leitmann [3] and Brogliato and
Neto [1]. We assume that the system is described by a generalized dynamical model
[7] without matching conditions, where the input uncertainties upper bounds are
known and system uncertainties upper bounds are partially known, i. e. they are
linear in some unknown parameters. The above unknown parameters are updated
by a special adaptive algorithm. Further, the proposed design procedure guaran-
tees the stability of uncertain nonlinear or linear systems with any value of system
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uncertainties. To overcome the unstability of the controlled system which would be
due to the adaptive control [14] a special approach has been proposed which ensures
a finite operator gain of adaptive algorithm.

The paper is organized as follows. In Section 2 the mathematical model of in-
vestigated uncertain systems with deterministic uncertainties is given. Main results
are in Section 3. In Section 4, a simple pendulum has been used as an example to
prove the theoretical results and, finally, conclusion is given in Section 5.

2. MATHEMATICAL MODEL OF UNCERTAIN SYSTEMS

The following generalized uncertain dynamic systems will be considered in this pa-
per:

ẋ = f(x, t) + δf(x, t) + (B(x, t) + δB(x, t))u (1)

where t ∈ R is time, u ∈ Rm is the control, x ∈ Rn is the available state vector, and
the origin is an equilibrium point. δf(x, t), f(x, t) : Rn ×R → Rn, δB(x, t), B(x, t) :
Rn ×R → Rn×m are Caratheodory functions in all their arguments [4].

The corresponding system without uncertainty, called the nominal model, is de-
scribed by

ẋ = f(x, t) + B(x, t)u (2)

where f(x, t) and B(x, t) are supposed to be known.
The following definitions form the necessary foundation for the analysis presented

in this paper (cf. [12], [13]).

Definition 1. A solution of (1), x(·) : [t0, t1] → Rn, x(t0) = x0, is said to be
uniformly bounded if there is a positive constant h(xo) < ∞, possibly dependent on
x0 but not on t0, such that

‖x(t)‖ ≤ h(x0) ∀ t ∈ [t0, t1].

Denote a set Rρ as

Rρ = {x ∈ Rn : ‖x‖ < ρ} ρ > 0.

Definition 2. A solution of (1), x(·) : [t0, t1] → Rn, x(t0) = x0, is said to be
uniformly ultimately bounded with respect to a set Rρ if there is a non-negative
constant T (x0, Rρ) ≤ ∞, possibly dependent on x0 and Rρ but not on t0, such that
x(t) ∈ Rρ for all t ≥ t0 + T (x0, Rρ).

It is assumed that the reader is familiar with the basic concepts of the stability
of dynamic systems, and with definitions of stability, uniform stability, asymptotic
stability, uniformly bounded stability, and uniformly ultimately bounded stability.
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Definition 3. The system (1) is P-stabilizable if there exist in the set Rρ both the
Lyapunov function Vb(x, t) : Rn × R → R+ and the continuous control algorithm
u = qb(x, t) : Rn × R → Rm such that on the neighbourhood of the origin the
following condition holds:

dVb

dt
=

∂Vb

∂t
+∇T

x Vb[f(x, t) + δf(x, t) + (B(x, t) + δB(x, t))u] ≤ 0 (3)

where

∇T
x Vb =

[
∂Vb

∂x1
· · · ∂Vb

∂xn

]
.

Let us introduce the following assumptions:

A1. There exist both a known parameter ϑ and an unknown matrix F (x, t) ∈ Rm×m

such that for all x ∈ Rn and t ∈ R we have

δB(x, t) = B(x, t) F (x, t) (4)

‖F (x, t)‖ ≤ ϑ < 1.

A2. There exist both a known vector function ϕ(x) : Rn → Rp and unknown vector
of parameters θ ∈ Rp such that for all x ∈ Rn and t ∈ R the following inequality
holds

‖δf(x, t)‖ ≤ ϕ(x)T θ (5)

with ϕi > 0 for all x and t such that x 6= 0, i = 1, 2, . . . , p.

A3. There exists in the neighbourhood of the origin, i. e. in the set Rρ, a function
V (x, t) : Rn×R → R+ as a candidate Lyapunov function of the uncontrolled nominal
model

ẋ = f(x, t) (6)

with
γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖) (7)

where γi() : R+ → R+, i = 1, 2, γi(0) = 0 is strictly increasing.

Remark. In opposite of [8], [9], [12], [13] we do not suppose that the uncontrolled
nominal model (6) is stable.

A4. The system (1) is P-stabilizable.

The control problem is to design the control algorithm

u = q(x, θ, t) (8)

and the adaptive control law
θ̇ = g(x, θ, t) (9)
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which practically stabilize [9] the following closed-loop uncertain system

ẋ = f(x, t) + δf(x, t) + (B(x, t) + δB(x, t)) q(x, θ, t) (10)

θ̇ = g(x, θ, t)

where for δB(x, t) and δf(x, t) the inequalities (4) and (5) are met. Ideally, we wish
to choose the functions q : Rn × Rp × R → Rm and g : Rn × Rp × R → Rp so
that the system (10) has the property of global uniform asymptotic stability for all
uncertainties. Practically, we relax the problem to that of obtaining a family of
controllers which guarantee that the behaviour of (10) can be made arbitrarily close
to above mentioned stability. Such a family of controllers are called a practically
stabilizing family [9].

3. ROBUST CONTROL OF UNCERTAIN DYNAMIC SYSTEMS

Let us choose in the set Rρ the function V (x, t) : Rn × R → R+ as a candidate
Lyapunov function of the uncontrolled nominal dynamic system (6). The candidate
Lyapunov function of the system (10) is given as follows

Va = V + .5(θ − θ∗)T Z(θ − θ∗) (11)

where Z = ZT > 0, θ ∈ Rp is the vector of robust controller parameter which will
be adapted, and

θ∗ = lim
t→∞

θ ∈ Rs

where
Rs = {θ ∈ Rp : system (10) is stable in Lyapunov sense}.

Hence, by assumptions A1 and A2 for the time derivative of the Lyapunov func-
tion (11) one can get

V̇a ≤ ∇T
x V f(x, t) + ‖∇xV ‖ϕT (x) θ +∇T

x V B(x, t)u (12)

+‖∇T
x V B(x, t)‖ ‖F (x, t)‖ ‖u‖+

∂V

∂t
+ θ̇T Z(θ − θ∗)

Let the robust control law be given by

u = u1 + u2 (13)

where

u1 = −BT∇xV
‖∇xV ‖

µ
ϕT θα ∀ (x, t) 6∈ N

u2 = −BT∇xV
‖∇xV ‖

ε
ϕT θα ∀ (x, t) ∈ N

α > 0 is a positive constant, the set N be defined by

N = {(x, t) : µ ≤ ε} ε > 0 (14)



Robust Control of a Class of Nonlinear Systems 225

ε is chosen to be small, and

µ = ∇T
x V BBT∇xV. (15)

The proposed algorithm (13) belongs to the class of functions with a finite number
of discontinuity points. The control algorithm is well defined at all points in the
set N and the complement set of N . A lower bound for ε ≥ 0 can be obtained by
determining a maximum value of the control input. The proposed control algorithm
guarantees the existence of a unique solution for the system (1) with (13), as required
in [4]. By substituting (13) into (12), we then have

V̇a ≤ ∇T
x V f(x, t) +

∂Va

∂t
− ‖∇xV ‖ϕT θ(−1 + α(1− ϑ)) + θ̇T Z(θ− θ∗) ∀ (x, t) 6∈ N ,

(16)
and

V̇a ≤ ∇T
x V f(x, t)+

∂Va

∂t
−‖∇xV ‖ϕT θ

(
−1 + α

µ

ε
(1− ϑ)

)
+θ̇T Z(θ−θ∗) ∀ (x, t) ∈ N .

(17)
From the conditions for the change of the V̇a as a function of controller parameter
θ, see [5], [15] one can determine the adaptive control algorithm as follows

θ̇ = Z−1ϕ(x) ‖∇xV ‖ (−1 + α(1− ϑ)) (18)

θ(t0) = θ0.

The proposed adaptive control algorithm (18) ensures that the time derivative of
Lyapunov function (16), (17) will decrease in the time if θ̇ is not identically equal
to zero. If the system (1) is P-stabilizable with the proposed controller, there exists
such value of θ∗, that the solution of the system (10) will be uniformly ultimately
bounded. The sufficient stability conditions of the investigated system are given by
the following theorem.

Theorem 1. The solution x(t) : [t0, t1] → Rn, x(t0) = x0 of the system (1) with
controller (13) and (18) is locally uniformly ultimately bounded on the set Rρ, if the
following sufficient conditions hold.

– The assumptions A1 – A4 hold.

– The following inequality holds for the constant α in (13)

α >
1

1− ϑ
. (19)

P r o o f . By substituting (18) into (16) and (17) for the time derivative of the
Lyapunov function Va one can get

V̇a ≤ ∇T
x V f +

∂Va

∂t
− (−1 + α(1− ϑ)) ‖∇xV ‖ϕT θ∗ ∀ (x, t) 6∈ N (20)
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and

V̇a≤∇T
x V f+

∂Va

∂t
−‖∇xV ‖ϕT

{
θ∗(−1+ α(1− ϑ))− θα(1−ϑ)

(
1− µ

ε

)}
∀ (x, y)∈N .

(21)
Because of conditions of Theorem 1 and because ‖∇xV ‖ is a positive definite function
and (19), one can conclude that there exists a vector θ∗ with positive entries such
that for (20) and (21) the following inequality holds

V̇a ≤ −γ3(‖x‖) ∀ (x, t) 6∈ N (22)

V̇a ≤ −γ3(‖x‖) + φ(x) ∀ (x, t) ∈ N (23)

where γ3(‖x‖) : R+ → R+ is strictly increasing with γ3(0) = 0 and

∇xV f +
∂Va

∂t
− (−1 + α(1− ϑ))‖∇xV ‖ϕT θ∗ ≤ −γ3(‖x‖)

‖∇xV ‖ϕT θα(1− ϑ)
(
1− µ

ε

)
≤ φ(x).

Note that the Lyapunov function Va is monotonous with respect to ‖x‖. This means
that ‖x‖ keeps decreasing as long as V̇a ≤ 0. Thus, choosing a corresponding ε it
is possible to make the region of stability or complement set of N as large as it is
necessary. There are different categories of stability that one can obtain. Let us
suppose that one of the following is true [13]:

1. γ3(‖x‖) > φ(x) for ∀ (x, t) ∈ N , then the system (1) with (13) and (18) in the
region Rρ is asymptotically stable with respect to x.

2.

lim
‖x‖→∞

inf
γ3(‖x‖)

φ(x)
≥ 1 (24)

for ∀ (x, t) ∈ N . The investigated system is in the region Rρ globally uniformly
ultimately bounded and

3.
γ3(‖x‖) > φ(x) (25)

with
η1 ≤ ‖x‖ < η2, ∀ (x, t) ∈ N

where
η2 > γ−1

1 ◦ γ2(η1) and η2 > γ−1
1 ◦ γ2(‖x0‖)

the investigated system is locally uniformly ultimately bounded.

This completes the proof. 2

It should be stressed that the proposed adaptive control algorithm (18), in real
time operation of a system, can keep the entries value of vector θ very large. The
algorithm (18) ensures that entries of θ will increase in the time if θ̇ is not identically
equal to zero.
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The operator gain G[d(t)] under the input d(t) is defined as follows [14]

‖G[d(t)]‖ = sup
d(t)∈L2

‖G[d(t)]‖T
L2

‖d(t) ‖T
L2

(26)

where
T ∈ 〈0,∞)

‖d(t)‖T
L2

=

(∫ T

0

d2(τ) dτ

) 1
2

.

Hence, owing to (26) the operator gain of (18) is infinite, i. e.

‖G[d(t)]‖ → ∞

and therefore in practical operation of the system the “Rohrs phenomenon” may
occur, and the proposed adaptive system may not be suitable for practical applica-
tions. To overcome these difficulties, instead of the adaptive algorithm (18) one can
use the following one

θ̇a = Z−1ϕ(x) ‖∇xV ‖ (−1 + α(1− ϑ))− γθa (27)

where γ > 0 is a rather small positive number.
The entries of vector θ are given as follows

θj = θaj , if θaj > θamj

θj = θamj , if θaj ≤ θamj (28)

where θam is the vector whose entries are the maximum achieved values of θaj , j =
1, 2, . . . , p, under the practical operation of the system.

Hence, in the adaptive control algorithm (27) and (28) the entries of θa will
change in time keeping the equilibrium of equation (27). The operation of system
can be effective in two ways. First, the system (1) operates with controller (13), (18)
and sufficient stability conditions are given by Theorem 1. Second, the system (1)
cooperates with controller (13), (27) and (28) with a constant value of θ∗. For the
above case the time derivative of Lyapunov function on the solution of (1) and (13)
with A1 – A2 is given as follows

V̇ ≤ −γ3(‖x‖) ∀ (x, t) 6∈ N

V̇ ≤ −γ3(‖x‖) + φ(x) ∀ (x, t) ∈ N.

The sufficient stability conditions of system (1) with controller (13), (27) and (28)
with constant value of θ∗ are the same as given by Theorem 1.
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4. EXAMPLE

Consider a single-link manipulator or a simple pendulum. The simple pendulum of
mass M and length l subjected to a control moment u and an unknown bounded
disturbance v(t) in the form of horizontal acceleration of its point of support. This
example was used by Corless [2], Zhihua Qu [11] to illustrate the class of robust
controllers. Here we use the same example to illustrate the new theoretical results
of design of the adaptive robust controller. We recall that our model (1) need not
satisfy the matching or generalized matching conditions and the other conditions
given by Corless [2] (mainly Assumptions 6.1 and 6.2), Zhihua Qu and Dorsey [13]
(Assumption 3.3 and Condition 4.1) and Leitman [9] (Assumption C.1). As shown
by Corless [2], the dynamics of the pendulum is described by

ẋ1 = x2 (29)

ẋ2 = −a sinx1 + bu− v(t)
l

cosx1

where
a =

Ml

J
b =

1
J

J is the moment of inertia of the link with respect to its axis of rotation.
Owing to uncertainty v(t), the uncontrolled uncertain system has no known equi-

librium point. It has been shown by Corless [2] and Qu [11] that a control law
guaranteeing uniform and ultimate boundedness can be chosen in the form

u = u1 + u2

where u1 is the proportional derivative controller to guarantee the stability of the
nominal model and u2 is the one which ensures the stability and demanded quality
of uncertain system (1). In this paper only one controller is designed. The design
procedure of the adaptive robust controller is given by eqs. (7), (13), (19) and (27).
Let us choose the Lyapunov candidate function V : R2 → R+ as follows

V = x2
1 + cx1x2 + x2 (30)

where 0 < c < 2.
The (1) is given by

f(t)T = [x2 − a sin x1] δf(x)T =
[
0 − v(t)

l
cosx1

]

BT = [0 b] δBT = [0 δb] = FBT

where F ∈ R is unknown scalar with |F | < ϑ < 1.
The control algorithm is given by (13), where

BT∇xV ‖∇xV ‖ = b(cx1 + 2x2)
√

(2x1 + cx2)2 + (cx1 + 2x2)2 (31)

µ = b2(cx1 + 2x2)2
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ϕ(x) =
√

x2
1 + x2

2

and for adaptive control law

θ̇a = ρϕ(x)
√

(2x1 + cx2)2 + (cx1 + 2x2)2 (−1 + α(1− ϑ))− γθa (32)

where ρ = Z−1 is a positive constant.
Simulation results with the parameters a = b = 1, δb = 0.55, γ = 0.01, ε =

0.05, ρ = 15 c = 1.99 α = 3 and initial state [x1 x2] = [1.5 0] are given in Figure 1.
Within the simulation time t ∈ 〈0, 5) sec the value of parameter uncertainty has
been chosen as v = 1, and for t ≥ 5 sec the value of parameter uncertainty has been
change drastically, v = 100. Simulation results show that the system in the region
Rρ is uniformly ultimately bounded with respect to state variable x and this verifies
the proposed theoretical analysis.

Fig. 1. Simulation results of pendulum with the proposed adaptive robust controller.

5. CONCLUSION

Local stabilization of general uncertain systems with an adaptive robust controller
without matching conditions is considered. We have assumed that both the input
uncertainty matrix is bounded with a known norm of uncertainty and the system
uncertainty is bounded by a scalar product of a known positive function and an
unknown constant vector with positive entries. The above vector is updated by
the proposed adaptive algorithm. To overcome the “Rohrs phenomena” in adaptive
control a special approach has been proposed which ensures a finite operator gain of
the adaptive algorithm. Simulation results verify the proposed theoretical analysis,
although the parameter of system uncertainty changes very drastically.

(Received August 21, 1995.)
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