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JAROSLAV HÁJEK AND ASYMPTOTIC THEORY
OF RANK TESTS

Jana Jurečková

We characterize basic Hájek’s results in the asymptotic theory of rank tests. As one of
many extensions of his ideas, we mention an extension of Hájek’s rank score process to the
linear model.

1. INTRODUCTION

In the series of papers [1 – 3, 5, 6, 8, 9, 11, 12] (papers [11] and [12] were written jointly
with V. Dupač), Hájek systematically investigated the asymptotic properties of lin-
ear rank statistics under null hypotheses, under local (contiguous) and some nonlocal
alternatives. Besides that, in [4] he derived the rank test of independence in a bi-
variate distribution, locally most powerful against specific dependence alternatives.
The results published before 1967 were then included, unified and elaborated, in the
monograph [10], written jointly with Z. Šidák. Hájek’s textbook [7] of rank tests
also deserves your attention.

This collection of papers, though not of a great size, represents a substantial
contribution to the asymptotic theory of rank tests; it was a starting point of a
research of many authors and it is a rich source of ideas even today. Each of these
papers not only brings new original results, but these results are proved by new,
original methods which were later frequently used also in many other contexts. Let
us briefly characterize the main Hájek’s asymptotic results on rank tests.

2. LINEAR RANK STATISTICS UNDER HYPOTHESIS H0

Let (RN1, . . . , RNN ) be a random vector, uniformly distributed over the set of N !
permutations of {1, . . . , N} and let (cN1, . . . , cNN ) and (aN1, . . . , aNN ) be given
triangular arrays of real numbers. Consider the statistic

SN =
n∑

i=1

cNiaN (RNi), (1)
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where aN (i) = aNi, i = 1, . . . , N , and

aN (1) ≤ . . . ≤ aN (N) (2)

which holds without loss of generality. Hájek [1] proved a necessary and sufficient
condition of the Lindeberg type for the asymptotic normality of SN as N → ∞; it
extends the results of Wald and Wolfowitz [32], Noether [27], Hoeffding [23], Dwass
[17, 18], and Motoo [26].

For simplicity, we shall formulate the result under the standardization

cN = N−1
N∑

i=1

cNi = 0, aN = N−1
N∑

i=1

aNi = 0 (3)

N∑

i=1

c2Ni = 1, lim
N→∞

max
1≤i≤N

c2Ni = 0 (4)

and
N∑

i=1

a2
Ni = 1, lim

N→∞
max

1≤i≤n
a2

Ni = 0. (5)

Theorem 2.1. (Permutational CLT) Under (1) – (5),

(SN − ESN )/(varSN )1/2 D→ N(0, 1) (6)

as N →∞ if and only if

lim
N→∞

∑

i

∑

j |cNiaNj |>ε

c2Nia
2
Ni = 0 (7)

for every ε > 0.

Permutational CLT is applicable not only to linear rank statistics, but also, e. g.,
in sampling from finite population. If RN1, . . . , RNN are ranks of XN1, . . . , XNN

where the XNi are independent, XNi distributed according to a d. f. FNi, i =
1, . . . , N , then the theorem implies the asymptotic normality of SN under the hy-
pothesis of randomness

H0 : FN1 = . . . = FNN = F, (8)

where F is a continuous d. f., otherwise unspecified.
Moreover, under (8), (RN1, . . . , RNN ) could be also interpreted as the vector of

ranks of the random sample (U1, . . . , UN ) from the uniform R(0, 1) distribution. The
following result of Hájek is an asymptotic representation of SN by means of a sum
of independent summands.
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Theorem 2.2. (Asymptotic representation) Under (1) – (3) and (5),

SN = TN + rN , (9)

where

TN =
N∑

i=1

cNiaN ([NUi] + 1), (10)

[Nu] denotes the integer part of Nu and

Er2N/varTN → 0 as N →∞. (11)

Among various possible choices of the aNi, Hájek also considered

aNi = E(ϕ(U1)|RN1 = i) = Eϕ(UN :i), (12)

where ϕ : (0, 1) → R1 is a nondecreasing, square- integrable score function and
UN :1 ≤ . . . ≤ UN :N are the order statistics corresponding to U1, . . . , UN . Hájek
showed that the conditions of Theorem 2.2 for the scores (12) are guaranteed by the
martingale property of (aN (RN1), . . . , aN (RNN )).

3. LINEAR RANK STATISTICS UNDER LOCAL ALTERNATIVES

Making use of LeCam’s concept of contiguity, Hájek [2] proved the asymptotic nor-
mality of SN under the contiguous alternatives. More precisely, if RN1, . . . , RNN are
the ranks of independent XN1, . . . , XNN , Hájek proved the asymptotic normality of
SN under the model

P (XNi ≤ x) = F ((x− β0 − βcNi)/σ), i = 1, . . . , N, (13)

where β > 0 and β0 ∈ R1, σ ≥ 0 are nuisance parameters, F has an absolutely
continuous density f and finite Fisher’s information,

0 < I(f) =
∫ ∞

−∞

(
f ′(x)
f(x)

)2

dF (x) <∞ (14)

and {(cN1, . . . , cNN )}∞N=1 satisfy the conditions

C2
N = I(f)

N∑

i=1

(cNi − cN )2 → C2 <∞ as N →∞ (15)

and
lim

N→∞
max

1≤i≤N
(cNi − cN )2 = 0. (16)

The linear rank statistic is written in the form

SN =
N∑

i=1

(cNi − cN )ϕ
(
RNi

N + 1

)
, (17)



242 J. JUREČKOVÁ

where ϕ : (0, 1) → R1 is assumed being nondecreasing and square-integrable; other
choices of scores are also considered.

Hájek [2] showed that the choice of ϕ

ϕ(u) = ϕ(u, f) = −f
′(F−1(u)
f(F−1(u)

, 0 < u < 1 (18)

leads to an asymptotically efficient test of H0 : β = 0 against K : β > 0 in model (13)
in the sense of Pitman efficiency; more precisely, he proved the following theorem:

Theorem 3.1. (Asymptotically most powerful rank test) Let SN be defined as in
(17) with ϕ given in (18). Then, under (13) – (16), the test with the critical region

SN ≥ CNτα, τα = Φ−1(1− α), 0 < α < 1 (19)

has the asymptotic power

Pβ(SN ≥ CNτα) ∼= 1− Φ(τα − (β/σ)CN ) (20)

and hence it is the asymptotically optimal test of size α for H0 against K in model
(13).

Moreover, under β0 = 0 and σ=1, the test is asymptotically equivalent to the
score test with the criterion

MN = −
N∑

i=1

(cNi − cN )
f ′(XNi)
f(XNi)

. (21)

A similar treatment is made for the signed-rank tests of the hypothesis of sym-
metry (or the paired comparisons).

In the same paper [2], Hájek constructed a histogram-type estimator ϕ̂(u) of
the optimal score function ϕ(u, f) and showed that the rank test based on ϕ̂(u) is
uniformly asymptotically efficient (notice that the paper appeared only in 1962 ! ).

4. LINEAR RANK STATISTICS UNDER GENERAL ALTERNATIVES

Chernoff and Savage [13] and Govindarajulu, LeCam and Raghavachari [19] proved
the asymptotic normality of two-sample linear rank statistics under some non-local
alternatives and for some classes of score-generating functions.

Hájek [6] gave a far-reaching extension of these results. Typically for him, he
developed new pioneering methods to prove these results, and these methods were
later used by many authors in various contexts: He derived a general variance in-
equality for linear rank statistics and proved their asymptotic normality by means
of L2-projection of SN on the space of sums of N independent summands.
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Theorem 4.1. (Variance inequality) Let X1, . . . , XN be independent random
variables with the ranks R1, . . . , RN and arbitrary continuous distribution functions
F1, . . . , FN . Let (c1, . . . , cN ) and (a1, . . . , aN ) be arbitrary vectors, a1 ≤ . . . ≤ aN .
Then

var

[
N∑

i=1

cia(Ri)

]
≤ 21 max

1≤i≤N
(ci − c)

N∑

i=1

(ai − a)2, (22)

where c = N−1
∑N

i=1 ci, a = N−1
∑N

i=1 ai, a(i) = ai, i = 1, . . . , N.

The variance inequality enables to study the asymptotic behavior of the statistics
SN =

∑N
i=1 cNiaN (RNi) with the scores of the form

aN (i) = ϕ

(
i

N + 1

)
(23)

or
aN (i) = Eϕ(UN :i), (24)

i = 1, . . . , N , generated by a nondecreasing, square-integrable, possibly unbounded
function ϕ : (0, 1) → R1. On the other hand, the L2-projection applies to scores gen-
erated by possibly non-monotone function ϕ which has a bounded second derivative
in (0, 1); this leads to the following approximation of SN :

Theorem 4.2. (Projection approximation of SN ) Let ϕ : (0, 1) → R1 have a
bounded second derivative in (0, 1). Then there exists a constant M = M(ϕ) such
that for any N , (c1, . . . , cN ) and continuous F1, . . . , FN ,

E

(
SN − ESN −

N∑

i=1

Zi

)2

≤MN−1
N∑

i=1

(ci − c)2 (25)

and

E(SN − µN )2 ≤MN−1
N∑

i=1

c2i , (26)

where

Zi = N−1
N∑

j=1

(cj − ci)
∫ ∞

−∞
(I[Xi ≤ x]− Fi(x))ϕ′(H(x)) dFj(x), i = 1, . . . , N

(27)

µN =
N∑

i=1

ci

∫ ∞

−∞
ϕ(H(x)) dFi(x) (28)

and

H(x) = HN (x) = N−1
N∑

i=1

Fi(x). (29)
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Using the fact that, to any function ϕ being a difference of two nondecreasing,
square-integrable functions, absolutely continuous inside (0, 1), and to any α > 0,
there exists a decomposition

ϕ(t) = ψ(t) + ϕ1(t)− ϕ2(t), 0 < t < 1, (30)

where ψ is a polynomial and ϕ1, ϕ2 are nondecreeasing functions satisfying
∫ 1

0

ϕ2
1(t) dt+

∫ 1

0

ϕ2
2(t) dt < α, (31)

a combination of Theorems 1 and 2 leads to the following final result:

Theorem 4.3. (Asymptotic normality of SN under general alternatives)
Assume that the scores of SN =

∑N
i=1 cNiaN (i) are generated by ϕ, being a dif-

ference of two square-integrable functions, absolutely continuous inside (0, 1), either
by (23) or by (24). Then to every ε > 0, η > 0, there exist N0 and δ > 0 such that,
for N > N0 and for any (c1, . . . , cN ), F1, . . . , FN satisfying

N∑

i=1

(cNi − cN )2 > Nη max
1≤i≤N

(cNi − cN )2 (32)

and
sup

x∈R1

|Fi(x)− Fj(x)| < δ, i, j = 1, . . . , N (33)

it holds
sup

x∈R1

|P (SN − ESN < xσ)− Φ(x)| < ε (34)

with

σ2 =
N∑

i=1

(cNi − cN )2
∫ 1

0

(ϕ(t)− ϕ)2 dt, (35)

ϕ =
∫ 1

0
ϕ(t) dt and Φ being the distribution function of N(0, 1).

Hájek and Dupač [11], using the projection method and a more elaborated treat-
ment of the residual variance, extended the above results to possibly discontinuous
score functions, under slightly more restrictive conditions on the distributions. The
same authors then in [12] specialized the results to the two-sample Wilcoxon statistic
under various alternatives.

5. NONLINEAR RANK TESTS

In paper [3] Hájek extended the Kolmogorov–Smirnov test to verify the hypothesis
of randomness against the regression alternative stating that the vector XN =
(XN1, . . . , XNN ) is distributed according to the density

H+
β : qβ(x1, . . . , xN ) =

N∏

i−1

f(xi − cNiβ), β > 0, (36)
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where f is an arbitrary one-dimensional density.
Hájek attacked this problem using the weak convergence of empirical processes

which was a pioneering method in 1965. He considered the rank-scores process

XN =

{
XN (t) =

N∑

i=1

cNiâNi(t), 0 ≤ t ≤ 1

}
, (37)

where the scores âNi(t) depend on the ranks RN1, . . . , RNN of XN1, . . . , XNN in the
following way:

âNi(t) =





1 . . . 0 ≤ t ≤ (RNi − 1)/N

RNi −Nt . . . (RNi − 1)/N < t ≤ RNi/N

0 . . . RNi/N < t ≤ 1,

(38)

i = 1, . . . , n. XN is a process with trajectories in C[0, 1]. Hájek proved that,
under H0 : β = 0 and under the standardization

∑N
i=1 cNi = 0,

∑N
i=1 c

2
Ni = 1,

max1≤i≤N |cNi| = o(1), XN converges to the Brownian bridge in the Prochorov
topology on C[0, 1]. To prove the tightness of the sequence of distributions of {XN},
Hájek extended the Kolmogorov inequality to dependent summands Y1, . . . , Yn which
are a realization of a simple random sampling of size n without replacement from the
population {c1, . . . , cN}; this inequality has an interest of its own. The Kolmogorov–
Smirnov type test criterion of H0 against H+

β is then defined as

K+
N = sup{XN (t) : 0 ≤ t ≤ 1} (39)

and hence it is a continuous functional of XN . The tests against two-sided alterna-
tives β 6= 0 are based on the criterion

K+
N = sup{|XN (t)| : 0 ≤ t ≤ 1}. (40)

The weak convergence and the Prochorov theorem imply that the asymptotic dis-
tributions of K+

N and KN under H0 coincide with those of the classical Kolmogorov–
Smirnov criteria.

Not only the Kolmogorov–Smirnov test, but many other rank tests, linear and
non-linear, can be expressed as functionals of XN . Monograph [10] also describes
the tests of Cramér–von Mises and of Rényi types. The linear rank statistics can be
expressed as the following functionals of X :

SN = −
∫ 1

0

ϕ(t) dXN (t) =
N∑

i=1

cNiaN (RNi) (41)

with the scores aN (i) = N
∫ i/N

(i−1)/N
ϕ(t) dt, i = 1, . . . , N , representing another

alternative form of the scores.
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6. FURTHER ASYMPTOTIC PROPERTIES OF RANKS

Hájek [9] demonstrated that not only the best Pitman efficiency but also the best
exact Bahadur slope is attainable by rank statistics; otherwise speaking, that the
vector of ranks is sufficient in the Bahadur sense.

Consider the two-sample model with independent samples X1, . . . , Xn and Y1, . . .
. . . , Ym with the respective densities and d. f.’s f , g, F , G; let limN→∞ n

m+n = λ ∈
(0, 1) and denote

H(x) = λF (x) + (1− λ)G(x), x ∈ R1, (42)

f(u) =
d
du
F (H−1(u)), g(u) =

d
du
G(H−1(u)), 0 < u < 1. (43)

Let R1, . . . , Rn+m be the ranks of (Z1, . . . , Zn+m) = (X1, . . . , Xn, Y1, . . . , Ym) and

SN =
n∑

i=1

aN (Ri), N = m+ n (44)

with the scores aN (i) generated by an integrable function ϕ : (0, 1) → R1. Then:

(i) SN satisfies the law of large numbers, i. e.

N−1SN → λ

∫ 1

0

ϕ(u) f(u) du a. s. as N →∞ (45)

and

(ii) the score function

ϕ(u) = log
f(u)
g(u)

, 0 < u < 1 (46)

is optimal in the Bahadur sense; the limit in (45) is equal to λK(f, g) (Kullback–
Leibler information number) and, under the hypothesis of randomness H0 : F ≡ G,

lim
N→∞

logP{N−1SN > λK(f, g)} = −J(f, g, λ), (47)

where

2J(f, g, λ) =
∫ 1

0

(λf log f + (1− λ)g log g) du (48)

is the best attainable exact slope.

(iii) The best Bahadur slope is also attainable by the Neyman–Pearson rank test
with the criterion

N !QN{(R1, . . . , RN ) = (r1, . . . , rN )} (49)

where QN is the distribution of the vector of ranks under the alternative.

Among various other Hájek’s results concerning the ranks, let us mention partially
adaptive procedures which Hájek proposed in [8]. The procedures select one of a
finite set of scores functions and hence one of the corresponding rank tests by means
of a decision rule depending on the ranks of observations or of residuals.
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7. EXTENSION OF RANK–SCORES PROCESS TO REGRESSION MODEL

Hájek’s results and methods were used and extended by a host of statisticians;
it is impossible to characterize all this work as a whole. Among many possible
extensions, let us briefly describe a recent extension of Hájek’s rank-scores process
to linear regression model, which in turn has further interesting applications.

Consider the linear regression model

Yi = x′iβ + Ei, i = 1, . . . , n (50)

with xi ∈ Rp, xi1 = 1, i = 1, . . . , p and with independent errors E1, . . . , En. Koenker
and Bassett [25] introduced the α-regression quantile β̂(α) (0 < α < 1) for model
(50) as a solution of the minimization

n∑

i=1

ρα(Yi − x′ib) := min, b ∈ Rp, (51)

where
ρα(x) = x(α− I[x < 0]), x ∈ R1. (52)

Koenker and Bassett [25] and Ruppert and Carroll [31] showed that the asymptotic
properties of regression quantiles are in correspondence with those of the sample
quantiles in the location model with xi = 1, i = 1, . . . , n. More precisely, the latter
authors proved, under some regularity conditions on the matrix Xn = (x′1,. . . ,x

′
n)′

and on the joint d. f. F of the errors E1, . . . , En, the Bahadur-type representation
of regression quantiles,

n1/2(β̂(α)− β(α)) = n−1/2[f(F−1(α))]−1Q−1
n

n∑

i=1

xiϕα(Eiα) + op(1) (53)

with
β(α) = (β1 + F−1(α), β2, . . . , βp)′

Qn = n−1
n∑

i−1

xix
′
i

ϕα(x) = α− I[x < 0], x ∈ R1

and
Eiα = Ei − F−1(α), i = 1, . . . , n.

(53) immediately implies that

n1/2Q1/2
n (β̂(α)− β(α)) D→ Np

(
0,

α(1− α)
f2(F−1(α))

Ip

)
(54)

which is in the correspondence with the asymptotic distribution of location sample
quantiles.

Koenker and Bassett [25] characterized β̂(α) as the component β̂ of the optimal
solution (β̂, r+, r−) of the linear programming problem
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α

n∑

i=1

r+i + (1− α)
n∑

i=1

r−i = min

p∑

j=1

xijβj + r+i − r−i = Yi, i = 1, . . . , n (55)

βj ∈ R1, j = 1, . . . , p; r+i ≥ 0, r−i ≥ 0, i = 1, . . . , n; 0 < α < 1.

The dual program to (55) can be written as follows

n∑

i=1

Yiai := max

n∑

i=1

xij(ai − (1− α)) = 0, j = 1, . . . p (56)

0 ≤ ai ≤ 1, i = 1, . . . , n; 0 < α < 1.

By the duality of (55) and (56), the optimal solution of (56),

ân(α) = (ân1(α), . . . , ânn(α))′

satisfies the inequalities

âni(α)) =





1 . . . Yi > x′i
∧
β (α)

0 . . . Yi < x′i
∧
β (α),

(57)

i = 1, . . . , n. Moreover, the âni(α) are continuous piecewise linear functions of α,
âni(0) = 1, âni(1) = 0. In the location model with xi = 1, i = 1, . . . , n, the âni

coincide with Hájek’s rank-scores (38). Hence, the linear programming duality of
(55) and (56) also extends the stochastic duality of order statistics and ranks from
the location to the linear regression model. This gives us a justification to call
ân1(α), . . . , ânn(α), 0 ≤ α ≤ 1, the regression rank scores of the model (50). Their
most interesting property is the invariance to the regression under the model (50),
i. e.,

ân(α,Y + Xb) = ân(α,Y ) ∀ b ∈ Rp (58)

which is in correspondence with the fact that Hájek’s scores (38) (and the ranks)
are invariant to the translation. Naturally, ân(α) is also scale-invariant.

The regression rank scores process

X ∗n =

{
X∗

n(t) =
n∑

i=1

cniâni(t) : 0 ≤ t ≤ 1

}
(59)

is a natural extension of the rank-scores process (37) and, under some regularity
conditions, it is asymptotically equivalent to (37) with the Rni in (38) being the
(unobservable) ranks of the errors E1, . . . , En. The properties of the regression
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rank scores process are studied in Gutenbrunner and Jurečková [20], Gutenbrunner,
Jurečková, Koenker and Portnoy [21] and Jurečková [23]. [21] and [24] construct the
linear and nonlinear tests of the hypothesis H : δ = 0 in the extended linear model

Y = Xβ + Zδ + E (60)

with X of order (n × p), xi1 = 1, i = 1, . . . , n, Z of order (n × q) and where β is
considered as a nuisance parameter. Tests based on regression rank scores calculated
via (56) under the hypothesis H, i. e. under Y = Xβ + E, are invariant to the X-
regression and therefore invariant to the nuisance β. Their structure is analogous
to that of ordinary rank tests, and so is their Pitman efficiency. More details could
be found in the papers mentioned above where other papers, also concerning the
pertaining computional algorithms, are cited. The research is still in the progress;
our ultimate goal is to establish the asymptotics of regression rank-scores tests under
the weakest possible regularity conditions, keeping in mind that their counterpart
tests, based solely on the ordinary ranks, are practically universal.
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[5] J. Hájek: Some new results in the theory of rank tests. In: Studies in Math. Statist.
(K. Sarkadi and I. Vincze, eds.), Akadémiai Kiadó, Budapest 1968, pp. 53–55.
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[7] J. Hájek: A Course in Nonparametric Statistics. Holden-Day, San Francisco 1969.
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