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A NOTE ON ASYMPTOTIC LINEARITY
OF M–STATISTICS IN NONLINEAR MODELS

Asunción Mária Rubio and Jan Ámos V́ı̌sek

For a smooth nonlinear regression model the conditions for the uniform second order
asymptotic linearity of the M -statistics in the regression parameters are given. The exist-
ence of the

√
n-consistent estimator of the regression parameters and the role of the rescaling

residuals in the M -estimation are briefly discussed.

1. INTRODUCTION

Recently more and more attention has been paid to nonlinear models. Some results,
as e. g. testing the differences between models or the study of the subsample stability
of models (see [16], [18] and [19]), were established for the linear models using as
a key tool the Bahadur representation of the estimators. For the nonlinear models
this representation has been derived in [17] and used for constructing a test of
the differences of estimates. Due to the importance of the rescaling residuals in
the statistical inference, earlier or later there will be a need of a version of this
representation with rescaled residuals.

This note derives it by generalizing the results of Jurečková and Sen [9] for linear
models. To facilitate reading for a reader who is familiar with the paper [9] we have
preserved the structure of it so far as possible (moreover, the generalization follows
very closely all steps from [9] and the whole matter is mainly a technical one). So,
it seems that more important are some related problems which were raised by Jana
Jurečková. First of all, in the nonlinear setup we know much less about consistency
of M -estimators than in the linear setup. Although there are already some results
(see [11]), they were not established for the case when the residuals are assumed to
be rescaled. Moreover we need even

√
n-consistency. Similar situation is with the

rescaling of residuals. That is why we shall at first consider these questions.
So the plan of the present paper is as follows. At first we shall give a basic

notation and conditions on the regression model. Secondly, we will briefly discuss
some problems which were mentioned a few lines above. We shall give ideas how to
cope with them. Without this discussion the next generalization would be only a
theoretical game, may be without any consequences from the practical point of view.
Then we shall present the promised asymptotic linearity of M -statistics in nonlinear
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setup, and finally, we shall pay attention to the discontinuous ψ-functions.

2. NOTATION AND CONDITIONS ON REGRESSION MODEL

Let (Ω,B, P ) be a probability space. (In what follows the all “op(·)” as well as
“Op(·)” are understood with respect to this P .) We shall consider the nonlinear
regression model

Yi(ω) = g(Xi(ω), β0) + ei(ω), i = 1, 2, . . . (1)

where the sequence {Yi(ω)}∞i=1, Yi(ω) : Ω → R represents responses of the model,
{Xi(ω)}∞i=1, Xi(ω) → Rp, the carriers of model, are assumed to be a sequence
of independent and identically disributed random variables (i.i.d.r.v.) and β0 =
(β0

1 , β
0
2 , . . . , β

0
p)

T is the vector of the regression parameters (coefficients) (“T” indi-
cates the transposition). Further, {ei(ω)}∞i=1, ei(ω) : Ω → R is another sequence of
i.i.d.r.v., independent from {Xi(ω)}∞i=1. We shall also assume that varP (ei) ∈ (0,∞).
Finally, let the two times differentiable function g fulfill the following conditions:

CONDITIONS A

i) ∃ (κ > 0) ∀ (
∥∥β − β0

∥∥ < κ, x ∈ R and j, k = 1, 2, . . . , p)
∃(g′j(x, β) = ∂

∂βj
g(x, β) and g′jk(x, β), g′′jk(x, β) = ∂2

∂βj∂βk
g(x, β)).

ii) ∃ (J <∞)

max
1≤j,k≤p

sup
x∈R, ‖β−β0‖<κ

max
{|g(x, β)|, |g′j(x, β)|, |g′′jk(x, β)|} < J.

iii) ∃ (L > 0) ∀(β ∈ Rp, ‖β − β0‖ < κ)

max
1≤j,k≤p

sup
x∈S

|g′′jk(x, β)− g′′jk(x, β
0)| < L · ‖β − β0‖.

Recalling that ei(ω) = Yi(ω)−g(Xi(ω), β0), let us put δin(t) = g
(
Xi, β

0 + n−
1
2 t

)

−g(Xi, β
0). Further, denote q = EP g

′′(x, β0), Q = EP
{
g′(x, β0)

[
g′(x, β0)

]T}
and

for any finite set A = {a1, . . . , as} and ν > 0 put A(ν) =
⋃s
i=1 [ai − ν, ai + ν] .

Moreover, let F (z) and G(x, z) denote the distribution function of eiσ−1 and of
(XT

i , eiσ
−1)T, respectively.

The behaviour of the sum

Sn(t, u)=
n∑

i=1

[
ψ

(
[ei−δin(t)]σ−1e−n

− 1
2 u

)
g′(Xi, β

0+n−
1
2 t)−ψ(eiσ−1) g′(Xi, β

0)
]

(2)
for max {‖t‖ , |u|} < C will be studied under various conditions on the ψ-function.

Finally, let Sn1(t, u) denote the first coordinate of the sum Sn(t, u) and IB the
indicator of a set B. We shall assume that EPψ(e1σ−1) < ∞. Then, taking ψ̃(t) =
ψ(t) − EPψ(e1σ−1), if necessary, we have EP ψ̃(e1σ−1) = 0. Hence if it will not be
said something else, we shall assume that EPψ(e1σ−1) = 0.
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3. CONSISTENCY AND THE RESCALING OF RESIDUALS

As it was already mentioned in Introduction the applicability of the results which
will be established requires a discussion of several questions, namely:

• Is there, under the Conditions A (and possibly some additional ones, e. g. on
ψ-function), any

√
n-consistent M -estimator on which we can then apply our

results?
• What is the role of rescaling in the nonlinear regression where the scale-

invariance of theM -estimators has no (or at least considerably modified) sense?
• Can we hope that the equation

n∑

i=1

ψ

(
Yi − g(Xi, β)

σ̂n

)
g′(Xi, β) = 0 (3)

can be (approximately) fulfilled also for noncontinuous ψ-functions (as e. g. in
[15])?

We shall briefly discuss now the first two problems and we shall leave the last one
to the end of paper.

3.1. Consistency of the M-estimators

In this subsection we shall assume that the ψ-function can be decomposed as

ψ(z) = ψa(z) + ψc(z) (4)

where ψa(z) is absolutely continuous with the absolutely continuous derivative and
ψc(z) is continuous with the derivative which is a step function (with finite number
of jumps, say at the points r1, r2, . . . , rk) and let us define γ1 and γ2 by

γ1 = EP
{
σ−1ψ′(e1σ−1)

}
and γ2 = EP

{
(e1σ−1)ψ′(e1σ−1)

}
.

Moreover, let Conditions A hold and let F have a bounded derivative f in neigh-
borhoods of the points r1, r2, . . . , rk. Finally, putting for any δ > 0

ψ′′δ (y) = sup {|ψ′′(y + z)| : |z| ≤ δ}
and

ψ
′′
δ (y) = sup {|ψ′′(exp(w) (y + z))| : {|z|, |w|} ≤ δ} ,

let for some δ0 > 0 and ν > 1

EP
{
|tψ′′δ0(t)|ν

}
<∞ and EP

{|t2ψ′′δ0(t)|ν
}
<∞

for all δ ∈ (0, δ0] and γ1 as well as γ2 are finite.
Then we shall show that under these conditions for any ε>0 there is K1>0, K2>

0 and n0 ∈ N such that for any n > n0 there is a set Bn such that P (Bn) > 1− ε
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and for any ω ∈ Bn and any u ∈ R+, |u| < K1 there is a solution β̂(n)(u, ω) of the
equation

n∑

i=1

ψ

(
Yi − g(Xi, β)

u

)
g′(Xi, β) = 0 (5)

such that we have
√
n ‖β̂(n)(u, ω) − β0‖ < K2. The basic step of the proof will be

the utilization of the fix-point theorem (similarly as in [8]) in a form which we shall
now recall.

Assertion 1. Let U be an open, bounded set in Rp and assume that Q(z) : U ⊂
Rp → Rp (U is the closure of U) is continuous and satisfies (z − z0)TQ(z) ≥ 0 for
some z0 ∈ U and all z ∈ U \ U . Then the equation Q(z) = 0 has a solution in U .

For the proof see [13], Assertion 6.3.4 on the page 163.
Now using (18) and (26) we arrive at

n−
1
2

n∑

i=1

ψ

(
[ei − δin(t)]σ−1e−n

− 1
2 u

)
g′

(
Xi, β

0 + n−
1
2 t

)

= n−
1
2

n∑

i=1

ψ(eiσ−1) g′(Xi, β
0)− γ1Qt− γ2qu+Op

(
n−

1
2

)
. (6)

Due to Conditions A and the assumptions on the functions ψa and ψc it is pos-
sible to verify that the assumptions of Feller–Lindeberg theorem are fulfilled for the
sequence of random variables

{
ψ(eiσ−1) g′(Xi, β

0)
}∞
i=1

and due to the fact that we have assumed that EPψ(e1σ−1) = 0,

n−
1
2

n∑

i=1

ψ(eiσ−1) g′(Xi, β
0)

is bounded in probability (independently on t and u). It means that for any ε > 0
there is a constant K3 > 0 and n0 ∈ N so that for any n > n0 we have for

Bn =

{
ω ∈ Ω :

∥∥∥∥∥n
− 1

2

n∑

i=1

ψ(eiσ−1) g′(Xi, β
0)

∥∥∥∥∥ < K3

}

P (Bn) > 1− ε.
However it implies that for any K1 > 0 and any u ∈ (0,K1), due to the linearity

in t of
tTn−

1
2

n∑

i=1

ψ(eiσ−1) g′(Xi, β
0)

and of
tTγ2qu,
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there is K2 > 0 so that for any n > n0 and ω ∈ Bn we have for any t ∈ Rp such
that ‖t‖ = K2

−tTn− 1
2

n∑

i=1

ψ

(
[ei − δin(t)]σ−1e−n

− 1
2 u

)
g′

(
Xi, β

0 + n−
1
2 t

)

= −tTn− 1
2

n∑

i=1

ψ(eiσ−1) g′(Xi, β
0) + tTγ1Qt+ tTγ2qu+Op

(
n−

1
2

)
≥ 0.

Applying Assertion 1 we find that there is t ∈ Rp such that ‖t‖ ≤ K2, t = t(u, ω)
which solves

n∑

i=1

ψ

(
Yi − g(Xi, β

0 + n−
1
2 t)

u

)
g′

(
Xi, β

0 + n−
1
2 t

)
= 0.

Writing
t(u) =

√
n

(
β̂(n)(u, ω)− β0

)
,

we conclude the proof of the promised assertion.

3.2. The role of rescaling residuals in the regression analysis

Now let us discuss the problem for what is useful the rescaling of residuals in the
nonlinear regression setup. One may find that the residuals were studentized in linear
regression to make the M -estimators scale invariant. But in nonlinear regression
this reason seems to be problematic (anyway, the group of functions for which we
would like to have the invariance, would be surely different from the group of linear
functions). But let us look on the situation more carefully.

The rescaling has been used generally to avoid difficulties with unknown scale
parameter. Do we need it also in the regression analysis? Let us return to the
history of building up the robust methods to clarify the question.

On the base of theoretical results (see [5], [6]) we use forM -estimation the families
of optimal ψ-functions. E. g. when the central model (i. e. the distribution of the
bulk of residuals) is assumed to be standard normal one, then we use {ψk(z)}k>0

where ψk(z) = sign(z) · min{|z|, k}. In both approaches, presented in [5] and [6],
the optimality is reached when the underlying model which generated bulk of data
is the same as the model which was used to determine ψ-function, and when the
“tuning” constant was properly selected. Let us discuss at first the selection of the
“tuning” constant.

According to the first approach (see [5]) the “tuning” constant k should be selec-
ted so that the estimator attains a required gross error sensitivity. Although the
value which we assign to the gross error sensitivity seems to be rather arbitrary
(depending only on our taste how much we admit that the estimator may react on
the gross errors), implicitly it is related to the contamination level of data and to
the variance of data, see [20].

On the other hand, according to the second approach, as we may see from the
pioneering paper of Huber [6], the “tuning” constant should be found so that the
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asymptotic variance of the corresponding estimator is minimal (under an assumed
contamination level). The contamintion level of data is of course unknown but it
does not mean that we should not try to adapt the estimator to this unknown level.
As it was shown in [20] the effect of selection of k(ε) on the asymptotic variance (i. e.
on efficiency) of the M -estimator is small (or at least very “smooth”). However the
effect in the sense whether we obtain the estimate (i. e. numerical values which
we obtain when applying the estimator on given data) near to the “true” model is
unfortunately considerable (because one may easy find examples of data for which,
with varying tuning constant, the estimate of regression parameters varies much
more than we would expect and than it is acceptable for applications, see e. g.
[21]). So the selection of the tuning constant which is appropriately adapted to the
contamination level of given data and their variance is crutial.

Of course, we reach the full optimality only when for former approach the model
which generated bulk of data is the same as the model which generated ψ-function,
and for the latter when the ψ-function is the derivative of the logarithm of the
density of data-generating model (which is nearly the same).

Anyway, in both [5] and [6] (and also in others, e. g. [4]) we assume that the
variance of the residuals is not very far from the variance given by the central model.
Naturally, instead of rescaling the residuals we may use e. g. the family

{
ψ(σ)(z)

}
k>0

where ψ(σ)
k (z) = sign(z) ·σ−1 ·min{|z|, k(σ)}. However the employment of the latter

possibility may lead to some numerical difficulties, and hence the practitioners are
used to utilize the families of ψ-functions which assume a fix variance of residuals (see
[12] and the library ROBETH; but a rescaling of data before evaluating estimates
(and not only the estimates of regression parameters) is performed practically by
any software).

So, the rescaling of residuals (both in linear and nonlinear models but of course
anywhere else) allows us to rid of dependence of the procedure on the scale par-
ameter, i. e. it allows us to use standartized families of the criterial functions (con-
sequence of which is that we avoid computational difficulties and in the theoretical
reflection we may use one fix criterial function instead of a sequence of them). In
M -estimation, it means some standartized families of ψ-functions. It simplifies selec-
tion of the proper ψ-function, sometimes reducing it on selection of a proper tuning
constant.

4. SECOND ORDER ASYMPTOTIC LINEARITY

4.1. Step-function ψ

Let ψ(x) = αj , for x ∈ (rj , rj+1] , j = 0, 1, . . . , k (please, read (rk,∞] as (rk,∞))
where α0, . . . , αk are real distinct numbers and −∞ = r0 < r1 < . . . < rk <
rk+1 = ∞, k being a positive integer. Put γ1 =

∑k
j=1(αj − αj−1) f(σrj) and

γ2 =
∑k
j=1 rj(αj − αj−1) f(σrj).
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Theorem 1. Let Conditions A hold. Moreover, let F has in neighborhoods of the
points r1, r2, . . . , rk bounded derivatives f and f ′. Then for any C > 0

sup
{∥∥∥n− 1

2Sn(t, u) + γ1Qt+ γ2qu
∥∥∥ : max {‖t‖, |u|} < C

}
= Op

(
n−

1
4

)
.

P r o o f . (The proof mimics the steps of the proof of Theorem 2.2.in [9].) Without
loss of generality we may assume σ = 1 and k = 1, and write r instead of r1. Let n0

be the smallest integer such that C2 < κ2n0 (see A.i), and let us consider throughout
the proof only n ≥ n0. Denote

Ain(r) =
{
t̃ ∈ Rp, ũ ∈ R : δin(t̃) + ren

− 1
2 ũ ≥ r

}

and
∆(i, n, t) = g′1

(
Xi, β

0 + n−
1
2 t

)
− g′1(Xi, β

0).

Then we have

Sn1(t, u)− EPSn1(t, u) (7)

=
n∑

i=1

{
α1∆(i, n, t)

[
I
δin(t)+ren

− 1
2 u<ei

ff−1+F
(
δin(t)+ren

− 1
2 u

)]
IAin(r)(t, u)

+ α1∆(i, n, t)
[
I{r<ei} − 1 + F (r)

]
IAc

in(r)(t, u)

+
[
α0 g

′
1

(
Xi, β

0 + n−
1
2 t

)
− α1g

′
1(Xi, β

0)
]

×
[
I
r≤ei≤δin(t)+ren

− 1
2 u

ff(t, u)− F

(
δin(t) + ren

− 1
2 u

)
+ F (r)

]
IAin(r)(t, u)

+
[
α1g

′
1

(
Xi, β

0 + n−
1
2 t

)
− α0 g

′
1(Xi, β

0)
]

×
[
I
δin(t)+ren

− 1
2 u≤ei≤r

ff(t, u)− F (r) + F

(
δin(t) + ren

− 1
2 u

)]
IAc

in(r)(t, u)

+ α0 ∆(i, n, t)
[
I{ei<r} − F (r)

]
IAin(r)(t, u)

+ α0 ∆(i, n, t)

[
I
ei<δin(t)+ren

− 1
2 u

ff − F

(
δin(t) + ren

− 1
2 u

)]
IAc

in(r)(t, u)

}
.

Similarly as Jurečková, Sen [9] let us consider first of all the sum

S
(1)
n1 (t, u) =

n∑

i=1

{ [
α0 g

′
1(Xi, β

0 + n−
1
2 t)− α1g

′
1(Xi, β

0)
]

(8)

×
[
I
r≤ei≤δin(t)+ren

− 1
2 u

ff(t, u)−F
(
δin(t)+ren

− 1
2 u

)
+F (r)

]
IAin(r)(t, u)

+
[
α1g

′
1(Xi, β

0 + n−
1
2 t)− α0 g

′
1(Xi, β

0)
]

×
[
I
δin(t)+ren

− 1
2 u≤ei≤r

ff(t, u)−F (r)+F
(
δin(t)+ren

− 1
2 u

)]
IAc

in(r)(t, u)

}
.
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Following [9] and [14] let us denote W = {W (s), s ∈ R} a Wiener process, and
define

τi(t, u) = time for W (s) to exit the interval
(
c
(1)
i , d

(1)
i

)
, i ≥ 1

where

c
(1)
i =min

{[
α0 g

′
1

(
Xi, β

0+n−
1
2 t

)
−α1g

′
1(Xi, β

0)
][

1+F (r)−F
(
δin(t)+ren

− 1
2 u

)]
,

[
α0 g

′
1

(
Xi, β

0+n−
1
2 t

)
−α1g

′
1(Xi, β

0)
][
F (r)−F

(
δin(t)+ren

− 1
2 u

)]}
IAin(r)(t, u)

+min
{[
α1g

′
1

(
Xi, β

0+n−
1
2 t

)
−α0 g

′
1(Xi, β

0)
][

1+F
(
δin(t)+ren

− 1
2 u

)
−F (r)

]
,

[
α1g

′
1

(
Xi, β

0+n−
1
2 t

)
−α0 g

′
1(Xi, β

0)
][
F

(
δin(t)+ren

− 1
2 u

)
−F (r)

]}
IAc

in(r)(t, u)

and

d
(1)
i =max

{[
α0 g

′
1

(
Xi, β

0+n−
1
2 t

)
−α1g

′
1(Xi, β

0)
][

1+F (r)−F
(
δin(t)+ren

− 1
2 u

)]
,

[
α0 g

′
1

(
Xi, β

0+n−
1
2 t

)
−α1g

′
1(Xi, β

0)
][
F (r)−F

(
δin(t)+ren

− 1
2 u

)]}
IAin(r)(t, u)

+max
{[
α1 g

′
1

(
Xi, β

0+n−
1
2 t

)
−α0 g

′
1(Xi, β

0)
][

1+F
(
δin(t)+ren

− 1
2 u

)
−F (r)

]
,

[
α1g

′
1

(
Xi, β

0+n−
1
2 t

)
−α0 g

′
1(Xi, β

0)
][
F

(
δin(t)+ren

− 1
2 u

)
−F (r)

]}
IAc

in(r)(t, u).

Using the Skorokhod embedding of the Wiener process, we have

n−
1
4S

(1)
n1 (t, u) =D n−

1
4W

(
n∑

i=1

τi(t, u)

)
=D W

(
n−

1
2

n∑

i=1

τi(t, u)

)
, ∀(t, u),

where “ =D ” denotes the equality in distribution. Since the embedding is in fact
constructed on the space (Ω,B, P ) (see e. g. [3]) it is undertood with respect to
G(x, z). For max {‖t‖, |u|} < C

max
{
|α1g

′
1

(
Xi, β

0+n−
1
2 t

)
−α0 g

′
1(Xi, β

0)|, |α0 g
′
1

(
Xi, β

0+n−
1
2 t

)
−α1g

′
1(Xi, β

0)|
}

×
∣∣∣∣F

(
δin(t) + ren

− 1
2 u

)
− F (r)

∣∣∣∣

≤ 2|α0 − α1|J ·
{∣∣∣∣F

(
δin(t) + ren

− 1
2 u

)
− F

(
ren

− 1
2 u

)∣∣∣∣ +
∣∣∣∣F

(
ren

− 1
2 u

)
− F (r)

∣∣∣∣
}

≤ 2n−
1
2 |α0 − α1| · J ·K1(‖t‖+ |u|) ≤ 4n−

1
2 |α0 − α1| · J ·K1 · C

where K1 is a positive constant. So denoting for j = 0, 1

Vji(C) = time for W (s) to exit the interval (aji, bji), j = 0, 1 (9)
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with
aji = min

{
(−1)j+14n−

1
2 |α0 − α1| · J ·K1 · C, (−1)j2|α0 − α1| · J

}

and
bji = max

{
(−1)j+14n−

1
2 |α0 − α1| · J ·K1 · C, (−1)j2|α0 − α1| · J

}
,

we have τi(t, u) ≤ V0i(C) + V1i(C) ∀ (i = 1, . . . , n). Hence

sup

{∣∣∣∣∣W
(
n−

1
2

n∑

i=1

τi(t, u)

)∣∣∣∣∣ : max {‖t‖, |u|} < C

}

≤ sup

{
|W (s)| : 0 ≤ s ≤ n−

1
2

n∑

i=1

(V0i(C) + V1i(C))

}
.

Notice that while τi(t, u) still depends onXi(ω), V0i and V1i already do not depend on
it, and they are the same for all i. Using (9) we find EP

[
n−

1
2

∑n
i=1(V0i(C)+V1i(C))

]

≤ 8|α0 − α1| · J ·K1 · C < K2 for all n starting with some n1, where K2 is a finite
(positive) constant. Hence for a given ε > 0 there is a constant T > 0 such that (for
n ≥ n2 and j = 0, 1)

P

{
n−

1
2

n∑

i=1

Vji(C) > T

}
<
ε

2
.

Moreover, for these ε > 0 and T > 0 there is a positive constant K3 such that

P {sup {|W (s)|, 0 ≤ s ≤ T} > K3} < ε

2
and hence

sup
{
n−

1
4

∣∣∣S(1)
n1 (t, u)

∣∣∣ : max {‖t‖, |u|} < C
}

= Op(1). (10)
Now, recalling that

∆(i, n, t) = g′1
(
Xi, β

0 + n−
1
2 t

)
− g′1(Xi, β

0)

and keeping in mind A.iii, let us write

|∆(i, n, t)| = n−
1
2

∣∣∣∣∣∣

p∑

j=1

g′′1j(Xi, β̃
(j))tj

∣∣∣∣∣∣

≤ n−
1
2





p∑

j=1

[g′′1j(Xi, β̃
(j))]2





1
2

‖t‖ ≤ n−
1
2 · p 1

2 · J · C (11)

where β̃(j) are appropriate points from the neighborhood of β0 such that ‖β̃(j)−β0‖
< κ. Considering now

S
(2)
n1 (t, u) =

n∑

i=1

α1∆(i, n, t)

{[
I
δin(t)+ren

− 1
2 u<ei

ff − 1

+ F

(
δin(t) + ren

− 1
2 u

) 
 IAin(r)(t, u) +

[
I{r<ei} − 1 + F (r)

]
IAc

in(r)(t, u)
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let us put similarly as above

c
(2)
i = min

{
α1∆(i, n, t)

[
F

(
δin(t) + ren

− 1
2 u

)
− 1

]
,

α1∆(i, n, t)F
(
δin(t) + ren

− 1
2 u

)}
IAin(r)(t, u)

+ min {α1∆(i, n, t)F (r), α1∆(i, n, t) [F (r)− 1]} IAc
in(r)(t, u)

and

d
(2)
i = max

{
α1∆(i, n, t)

[
F

(
δin(t) + ren

− 1
2 u

)
− 1

]
,

α1∆(i, n, t)F
(
δin(t) + ren

− 1
2 u

)}
IAin(r)(t, u)

+ max {α1∆(i, n, t)F (r), α1∆(i, n, t) [F (r)− 1]} IAc
in(r)(t, u).

Repeating the steps from the previous part of proof and making use of (11) we obtain

sup
{
n−

1
4

∣∣∣S(2)
n1 (t, u)

∣∣∣ : max {‖t‖, |u|} < C
}

= Op(1). (12)

Modifying slightly the previous lines we may also find that

sup
{
n−

1
4

∣∣∣S(3)
n1 (t, u)

∣∣∣ : max {‖t‖, |u|} < C
}

= Op(1) (13)

where

S
(3)
n1 (t, u) =

n∑

i=1

α0∆(i, n, t)





[
I{ei<r} − F (r)

]
IAin(r)(t, u)

+

[
I
ei<δin(t)+ren

− 1
2 u

ff − F

(
δin(t) + ren

− 1
2 u

)]
IAc

in(r)(t, u)

}
,

and hence
sup

{
n−

1
4 ‖Sn1(t, u)− EPSn1(t, u)‖ : max {‖t‖, |u|} < C

}
= Op(1). (14)

Now, let us estimate n−
1
4 EPSn1(t, u). At first, let us consider

n−
1
4

n∑

i=1

∆(i, n, t)
{
α1

[[
1−F

(
δin(t)+ren

− 1
2 u

)]
IAin(r)(t, u)+[1−F (r)]IAc

in(r)(t, u)
]

+ α0

[
F (r)IAin(r)(t, u) + F (δin(t) + ren

− 1
2 u)IAc

in(r)(t, u)
]}

. (15)

which may be rewritten as

n−
1
4

n∑

i=1

∆(i, n, t)
{
α1

[
F (r)− F

(
δin(t) + ren

− 1
2 u

)]
IAin(r)(t, u)

+α1(1−F (r))+α0F (r)+α0

[
F

(
δin(t)+ren

− 1
2 u

)
−F (r)

]
IAc

in(r)(t, u)
}
. (16)
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Recalling that we have assumed EPψ(ei) = 0, we have

EPψ(ei) = α1 (1− F (r)) + α0 F (r) = 0. (17)

Taking into account the assumption that the density f is bounded we easy find
a positive constant K4 such that

∣∣∣∣F
(
δin(t) + ren

− 1
2 u

)
− F (r)

∣∣∣∣ ≤ n−
1
2 ·K4 · C,

which together with (17) implies that (16) (and hence also (15)) is of order O
(
n−

1
4

)
.
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Finally, we may write

n−
1
4

∣∣∣∣∣
n∑

i=1

{[[
α1g

′
1(Xi, β

0)− α0 g
′
1

(
Xi, β

0 + n−
1
2 t

)]
IAin(r)(t, u)

+
[
α1g

′
1

(
Xi, β

0 + n−
1
2 t

)
− α0 g

′
1(Xi, β

0)
]
IAc

in(r)(t, u)

]

×
[
F

(
δin(t) + ren

− 1
2 u

)
− F (r)

]}

− n−
1
2

n∑

i=1

{
γ1g

′
1(Xi, β

0) · [g′(Xi, β
0)

]T
t+ γ2g

′
1(Xi, β

0)u
}∣∣∣∣∣

= n−
1
4

∣∣∣∣∣
n∑

i=1

{[[
α1g

′
1(Xi, β

0)− α0 g
′
1

(
Xi, β

0 + n−
1
2 t

)]
IAin(r)(t, u)

+
[
α1g

′
1

(
Xi, β

0 + n−
1
2 t

)
− α0 g

′
1(Xi, β

0)
]
IAc

in(r)(t, u)

]

×
[
F

(
δin(t)+ren

− 1
2 u

)
−F

(
ren

− 1
2 u

)
−n− 1

2

[
g′

(
Xi, β

0+n−
1
2 t

)]
Ttf

(
ren

− 1
2 u

)]}

+ n−
1
2

n∑

i=1

{[[
α1g

′
1(Xi, β

0)− α0 g
′
1

(
Xi, β

0 + n−
1
2 t

)]
IAin(r)(t, u)

+
[
α1g

′
1

(
Xi, β

0 + n−
1
2 t

)
− α0 g

′
1(Xi, β

0)
]
IAc

in(r)(t, u)

] [
g′(Xi, β

0 + n−
1
2 t)

]T

t

− (α1 − α0 ) g′1(Xi, β
0)

[
g′1(Xi, β

0)
]T
t

}
· f

(
ren

− 1
2 u

)

+ n−
1
2 (α1 − α0 )

n∑

i=1

g′1(Xi, β
0)

[
g′(Xi, β

0)
]T
t

{
f

(
ren

− 1
2 u

)
− f(r)

}

+
n∑

i=1

(α0+α1)
{
g′1

(
Xi, β

0+n−
1
2 t

)
−g′1(Xi, β

0)
}
IAc

in(r)
(t, u)

[
F

(
ren

− 1
2 u

)
−F (r)

]

+ α1

n∑

i=1

[
g′1(Xi, β

0)−g′1
(
Xi, β

0+n−
1
2 t

)]{
F (ren

− 1
2 u)−F (r)−n− 1

2 ruf(r)
}

+ (α1 − α0)
n∑

i=1

g′1(Xi, β
0)

{
F

(
ren

− 1
2 u

)
− F (r)− n−

1
2 ruf(r)

}∣∣∣∣∣

=
6∑

j=1

Aj .
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Since

F (a+ n−
1
2 b)− F (a)− n−

1
2 bf(a) =

∫ n−
1
2 b

0

[f(a+ t)− f(a)] dt,

using A.i and A.ii, and the assumption that f as well as f ′ are bounded, we find that
uniformly in max {‖t‖, |u|} < C for j = 1, . . . , 6 we have |Aj | < K5n

− 1
4 where K5

does not depend on Xi’s. Finally, keeping in mind that ‖g′(Xi, β)‖ < p
1
2 J , which

implies that the variances varP g′i(Xi, β) and varP [g′i(Xi, β) g′j(Xi, β)] are finite and
using the Lindeberg-Feller central limit theorem we find that

n−
1
2

n∑

i=1

{
g′(Xi, β

0) · [g′(Xi, β
0)

]T −Q
}

= Op(1)

as well as
n−

1
2

n∑

i=1

{
g′(Xi, β

0)− q
}

= Op(1)

which concludes the proof. 2

4.2. Absolutely continuous ψ-function with ψ′ step-function

Let ψ′(z) = αj for z ∈ (rj , rj+1] , j = 0, 1, . . . , k− 1, and ψ′(z) = αk for z ∈ (rk,∞)
where α0 = −∞ < α1 < . . . < αk. Following Jurečková and Sen let us change from
here the meaning of γ1 and γ2 so that

γ1 = EP
{
σ−1ψ′(e1σ−1)

}
and γ2 = EP

{
(e1σ−1)ψ′(e1σ−1)

}
.

Theorem 2. Let Conditions A hold. Moreover, let F have a bounded derivative
f in neighborhoods of the points r1, r2, . . . , rk. Then for any C > 0

sup
{∥∥∥Sn(t, u) + n

1
2 [γ1Qt+ γ2qu]

∥∥∥ : max {‖t‖, |u|} < C
}

= Op(1). (18)

P r o o f . (The proof again mimics the steps of the proof of Theorem 3.2 of [9].)
Without any loss of generality let us assume that there are just two steps of ψ′(t)
(due to fact that we have assumed that ψ is bounded we cannot assume only one
step), let us say at the points r1 and r2. Let n0 be the smallest integer such that
C < n0 · |r1 − r0|, and hereafter consider only n > n0. First of all observe that

ψ

(
[ei − δin(t)] e−n

− 1
2 u

)
= ψ

((
1− n−

1
2u

)
ei − δin(t)

)

+
{
ei

(
e−n

− 1
2 u − 1 + n−

1
2u

)
+ δin(t) (1− e−n

− 1
2 u)

}
ξi (19)

where ξi lies between ψ′
(
[ei − δin(t)] e−n

− 1
2 u

)
and ψ′

(
[1− n−

1
2u]ei − δin(t)

)
. Since∣∣∣e−n−

1
2 u − 1 + n−

1
2u

∣∣∣ ≤ 2n−1C2 (for |u| < C ) and
∣∣∣δin(t)

(
1− e−n

− 1
2 u

)∣∣∣ ≤ K6 ·



366 A.M. RUBIO AND J. Á. VÍŠEK

n−1C for some positive constant K6 and ‖t‖ < C, there is a positive constant K7

such that

sup

{∣∣∣∣∣
n∑

i=1

g′1
(
Xi, β

0+n−
1
2 t

)[
ψ

(
[ei−δin(t)]e−n

− 1
2 u

)
−ψ

([
1− n−

1
2u

]
ei−δin(t)

)]∣∣∣∣∣ :

max {‖t‖, |u|} < C

}
≤ K7n

−1
n∑

i=1

{|ei|+ 1} , (20)

and hence using the Markov law of large numbers we find that (20) is of order Op(1).
So, let us consider instead of sum (2) the sum

SMn (t, u) =
n∑

i=1

[
ψ

([
1− n−

1
2u

]
ei − δin(t)

)
g′

(
Xi, β

0 + n−
1
2 t

)
− ψ(ei)g′(Xi, β

0)
]

and let us denote

Hn1(t, u) =
{
i ∈ N :

[
min

{
(1− n−

1
2u)ei − δin(t), (1− n−

1
2u)ei, ei

}
,

max
{

(1− n−
1
2u)ei − δin(t), (1− n−

1
2u)ei, ei

}]
∩ {r1, r2} 6= ∅

}
,

Hn2(t, u) = {1, 2, . . . , n} \ Hn1(t, u).

Moreover denote the ith element of the sum SMn (t, u) by sin(t, u) and its kth coor-
dinate by sin(k)(t, u). Then we may write

SMn (t, u) =
n∑

i=1

sin(t, u) I{i∈Hn1} +
n∑

i=1

sin(t, u) I{i∈Hn2}. (21)

Denote moreover for any t ∈ Rp z
(`)
t = (t1, t2, . . . , t`−1, z, 0, . . . , 0)T. Then due to

the fact that

sin(k)(t, u) = −n− 1
2

{∫ u

0

ψ′([1− n−
1
2 v]ei) · g′k(Xi, β

0) dv

+
p∑

`=1

∫ t`

0

{
ψ′

([
1−n− 1

2u
]
ei−δin(z(`)

t )
)
g′k

(
Xi, β

0+n−
1
2 z

(`)
t

)
g′`

(
Xi, β

0+n−
1
2 z

(`)
t

)

− ψ
([

1− n−
1
2u

]
ei − δin(z

(`)
t )

)
g′′k`

(
Xi, β

0 + n−
1
2 z

(`)
t

)}
dz

}
, (22)

we find that for 1 ≤ i ≤ n |sin(k)| ≤ n−
1
2K8(|ei| + 1), where K8 < ∞ depends of

course on C. In a similar way we find that, starting with some n3, there is K9 <∞
such that {i ∈ Hn1(t, u)} ⊂ Din, where Din =

{{
r1 − n−

1
2K9 ≤ ei ≤ r1 + n−

1
2K9

}
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∪
{
r2 − n−

1
2K9 ≤ ei ≤ r2 + n−

1
2K9

}}
and P (Din) = O

(
n−

1
2

)
. It implies that

EP sup

{∣∣∣∣∣
n∑

i=1

sin(k)(t, u)I{i∈Hn1}

∣∣∣∣∣ : max {‖t‖, |u|} < C

}

≤ EP

{
EP sup

n∑

i=1

{
|sin(k)(t, u) I{i∈Hn1}| : max {‖t‖, |u|} < C | Xi = xi

}}

≤ n−
1
2 EP

{
EP

{
n∑

i=1

K8(|ei|+ 1)IDin

}}
= O(1),

and the Chebyshev inequality (for nonnegative random variable) applied on
n−

1
2

∑n
i=1K8(|ei|+ 1) IDin

gives that the first sum of the right-hand-side of (21) is
bounded in probability. Now, denoting the first coordinate of the second sum of the
right-hand-side of (21) by SM2

n1 , we have for any pair (t1, u1) and (t2, u2) of distinct
points

varG
(
SM2
n1 (t1, u1)− SM2

n1 (t2, u2)
)

(23)

≤ 2
n∑

i=1

EP
{
ψ

([
1− n−

1
2u1

]
ei − δin(t1)

)
g′k

(
Xi, β

0 + n−
1
2 t1

)

− ψ
([

1− n−
1
2u2

]
ei − δin(t2)

)
g′1

(
Xi, β

0 + n−
1
2 t2

)}2

I{i∈Hn2}.

Let us denote for ` = 1, 2, . . . , p z(`)
t1,t2 = (t21, t22, . . . t2 `−1, z, t1 `+1, . . . , t1 p)T. Again

due to the absolute continuity of ψ we may write

ψ
([

1− n−
1
2u1

]
ei − δin(t1)

)
− ψ

([
1− n−

1
2u2

]
ei − δin(t1)

)

= ein
− 1

2

∫ u2

u1

ψ′
([

1− n−
1
2u

]
ei − δin(t1)

)
du

and

ψ
([

1− n−
1
2u2

]
ei − δin(t1)

)
g′k

(
Xi, β

0 + n−
1
2 t1

)

−ψ
([

1− n−
1
2u2

]
ei − δin(t2)

)
g′k

(
Xi, β

0 + n−
1
2 t2

)

= −n− 1
2

p∑

`=1

∫ t2`

t1`

{
ψ′

([
1− n−

1
2u2

]
ei − δin(z

(`)
t1,t2)

)

×g′k
(
Xi, β

0 + n−
1
2 z

(`)
t1,t2

)
g′`

(
Xi, β

0 + n−
1
2 z

(`)
t1,t2

)

− ψ
([

1− n−
1
2u2

]
ei − δin(z

(`)
t1,t2)

)
g′′k`

(
Xi, β

0 + n−
1
2 z

(`)
t1,t2

)}
dz

and hence we may bound (23) by

K10

{
(u1 − u2)2 + ‖t1 − t2‖2

}
, 0 < K10 <∞,
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uniformly in
max {‖t1‖, ‖t2‖, |u1|, |u2|} < C.

Using analogous steps as above we derive that also uniformly in max {‖t1‖, ‖t2‖, |u1|,
|u2|} < C

∣∣∣∣∣EP (SM2
n1 (t1, u1)−SM2

n1 (t2, u2))+n−
1
2

n∑

i=1

{
γ1g

′
1(Xi, β

0)
[
g′(Xi, β

0)
]
T(t1 − t2)

+ γ2g
′
1(Xi, β

0)(u1−u2)
}
I{i∈Hn2}

∣∣∣∣≤ K11{‖t1−t2‖+|u1−u2|} , 0 < K11 <∞.

Earlier than proceeding further let us make following linearization (let g′′1 (Xi, β)
denotes the first column of g′′(Xi, β)):

ψ
([

1− n−
1
2u

]
ei − δin(t)

)
g′1

(
Xi, β

0 + n−
1
2 t

)
I{i∈Hn2}

=
{
ψ

([
1− n−

1
2u

]
ei

)
g′1(Xi, β

0)

− n−
1
2

{
ψ′

([
1− n−

1
2u

]
ei

)
g′1(Xi, β

0)
[
g′(Xi, β

0)
]T

− ψ
([

1−n− 1
2u

]
ei

)[
g′′1 (Xi, β

0)
]
T

}
t+n−1

{
ψ′′(ẽi)

[[
g′(Xi, β̃)

]
Tt

]2

g′1(Xi, β̃)

− ψ′(ẽi) tTg′′1 (Xi, β
0)

[
g′(Xi, β̃)

]T

t+ ψ′(ẽi)tTg′′1 (Xi, β̃)
[
g′(Xi, β̃)

]T

t

}

+ n−
1
2ψ

([
1− n−

1
2u

]
ei

) {
g′′1 (Xi,

∼∼
β )− g′′1 (Xi, β

0)
}T

t

}
I{i∈Hn2} (24)

where ẽi lies between
(
1− n−

1
2u

)
ei − δin(t) and (1− n−

1
2u)ei (remember that for

i ∈ Hn2 between
(
1− n−

1
2u

)
ei− δin(t) and

(
1− n−

1
2u

)
ei we have continuous – in

fact constant – derivative of ψ) and ‖β̃ − β0‖ < n−
1
2 t as well as ‖

∼∼
β − β0‖ < n−

1
2 t.

Due to the fact that ψ′′ ≡ 0 and all other derivatives are assumed bounded and
g′′ Lipschitz, the supremum (over max {‖t‖, |u|} < C) of the sum (over 1 ≤ i ≤ n)
of the last terms of (24) is Op(1). Similarly, the sum of the elements of order n−1

is of course also Op(1). Hence it remains to cope with the first three terms of the
right-hand side of the last expression. Taking into account that EPψ(e1) = 0, we
may write them as
{
ψ(ei) g′1(Xi, β

0)− n−
1
2ψ′(ei) g′1(Xi, β

0)
{
eiu+

[
g′(Xi, β

0)
]T
t
}

+Rin

}
I{i∈Hn2}

where sup
{∣∣∑n

i=1RinI{i∈Hn2}
∣∣ : max {‖t‖, |u|} < C

}
= Op(1). So we may substi-

tute the process SMn (t, u) by the process

S̃n(t, u) = −n− 1
2

n∑

i=1

{
ψ′(ei)

{
eiu+

[
g′(Xi, β

0)
]T
t
}
g′(Xi, β

0)
}
I{i∈Hn2}.
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and we have sup
{
‖SMn (t, u)− S̃n(t, u)‖ : max {‖t‖, |u|} < C

}
= Op(1). By this step

we have modified the original processes Sn(t, u) so that the new processes S̃n(t, u)
is equivalent to processes treated for the linear model (see [9]; the only difference
is that instead of the ith row of the design matrix, say XT

i , we have [g′(Xi, β
0)]T).

Now, the problem is that the processes S̃n(t, u) may not vanish along the lower
boundary and hence, to be able to use e. g. result of Bickel and Wichura [2], the
following reparametrization is necessary. Let us denote by

∼∼
Sn(t, u) = S̃n(t, u) + n−

1
2

n∑

i=1

g′1(Xi, β
0)

{
γ1

[
g′(Xi, β

0
]T
t+ γ2u

}

and D = {E = Diag(ε1, ε2, . . . , εp+1) : (εk ∈ {0, 1} , k = 1, 2, . . . , p+ 1)} . For any
E ∈ D let E(p) be the main submatrix of dimension p and put

S∗n(t, u) =
∑

E∈D
(−1)Tr(E)

∼∼
Sn((I − E(p)) t, (1− εp+1) u)

where I denotes the identity matrix. At this point we have reached the full coinci-
dence (even in the notation) with the proof of Theorem 3.2 of [9] (see (3.12)) and
the rest of the proof coincides with a part of the proof of Theorem 3.2 of [9]. Hence
it will be omitted. 2

4.3. Absolutely continuous ψ-function with absolutely continuous
derivative

Put for any δ > 0
ψ′′δ (y) = sup {|ψ′′(y + z)| : |z| ≤ δ}

and
ψ
′′
δ (y) = sup {|ψ′′(exp(w)(y + z))| : {|z|, |w|} ≤ δ} .

Theorem 3. Let Conditions A hold. Moreover, let for some δ0 > 0 and ν > 1

EP
{
|tψ′′δ0(t)|ν

}
<∞ and EP

{|t2ψ′′δ0(t)|ν
}
<∞ (25)

for all δ ∈ (0, δ0] and γ1 as well as γ2 are finite. Then

sup
{∥∥∥Sn(t, u) + n

1
2 [γ1Qt+ γ2qu]

∥∥∥ : max {‖t‖, |u|} < C
}

= Op(1). (26)

The proof can be again carry out by mimicing the steps of the proof of Theorem
4.2 of [9]. We hope that the proofs of the two previous theorems have demonstrated
that modifications of corresponding technique from the linear framework to the
nonlinear one is straightforward. That is why in this case, where due to existence
of all derivatives the modifications are simpler than above, we omit the proof.
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5. UTILIZATION OF THE ASYMPTOTIC LINEARITY FOR THE DIS-
CONTINUOUS ψ FUNCTIONS

As it was already indicated above, there is still some other problem. To be able
to apply the asymptotic linearity of the M -statistics on the M -estimator β̂(ψ,n), we
need to know something about the behavior of the sum

n∑

i=1

ψ

(
Yi − g(Xi, β̂

(ψ,n))
σ̂(n)

)
g′(Xi, β̂

(ψ,n)).

It is clear that when the derivative of the function ρ exist everywhere and the
M -estimator is defined by (3) we have

n∑

i=1

ψ

(
Yi − g(Xi, β̂

(ψ,n))
σ̂(n)

)
g′(Xi, β̂

(ψ,n)) = 0. (27)

Generally it does not hold for non-smooth ρ-functions derivative of which is dis-
continuous. A possible solution of the problem may be as follows. Rao and Zhao
[15] proved consistency of the estimator given by equation

S−1
n

n∑

i=1

ψ
(
Yi −XT

i β̂
(n,σ)

)
Xi = op(1) (28)

(where Sn is an estimator of the scatter matrix) for nondecreasing ψ (without the
assumption of continuity). Nevertheles a modification for the standardized version
would be necessary (and then of course we would have again to utilize considerations
which we employed above, applying the lemma of the Appendix).

Moreover Jurečková and Welsh [10] proved for increasing ψ-step-function the√
n-consistency of the M -estimator defined through the equation

n−
1
2

n∑

i=1

ψ

(
Yi −XT

i β

σ̂(n)

)
Xi = Op

(
n−

1
4

)
(29)

(see Theorem 4.2 of [9]; of course (29) is somewhat stronger than (28) but the result
is also stronger).

On the other hand to be able to apply the asymptotic linearity of the M -statistics
on the M -estimator of the parameters of the nonlinear models we do not need (27)
but it is sufficient to know that

n∑

i=1

ψ

(
Yi − g(Xi, β̂

(ψ,n))
σ̂(n)

)
g′(Xi, β̂

(ψ,n)) = op

(
n

1
2

)
. (30)

which is a standardized nonlinear version of (28).
But let us try to carry out directly some very first consideration clarifying this

problem. For the ψ-function which is not continuous, general conditions under which
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(30) is fulfilled are not known, although for some discontinuos ψ-functions, e. g. for
ψmed (given by

ψmed =
−1 if x < 0,
0 if x = 0,
1 if x > 0)

we may reach again even precise equality in (30) – under some conditions for sym-
metry of g′(Xi, β) without which it seems questionable to use ψmed.

To create an idea about the problem let us look at first on the much simpler
case of estimating location parameter in the case when the central model is assumed
to be the standard normal one. After all, in other cases, under assumptions which
was used in Huber’s paper [6], namely that − log f ′(x)

f(x) is strictly convex, we may
for theoretical considerations assume that we transform random variables to the
normal ones. Let us assume that we shall use skipped Huber’s ψ-function ψH(x),
i. e. ψH(x) = −ψH(−x) and

ψH(x) =
x if x ∈ [0, a],
a if x ∈ (a, b],
0 if x > b

for some 0 < a < b < ∞. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be our observation (in
fact we may assume Y(1) < Y(2) < · · · < Y(n) because if any sharp inequality is
distorted the (absolute) continuity, is questionable; from the similar reasons we have
also Y(i) − Y(j) 6= 2b for i, j = 1, 2, . . . , n a. e. for any n ∈ N). Now, let us observe
that for t ∈ (−∞, Y(1) − b) ∪ (Y(n) + b,∞) we have

∑n
i=1 ψH(Y(i) − t) = 0.

Since for any n ∈ N , any ω ∈ Ω and t ∈ (−∞, Y(1)(ω))∪(Y(n)(ω),∞) (31) holds, it
is clear that we may obtain inconsistent solution of (31) (below). In other words, for
strongly redescending ψ-function (regardless continuous or discontinuous) among the
estimators given by (26) is at least one inconsistent. Nevertheless for t = Y(1)− b we
obtain

∑n
i=1 ψH(Y(i)− t) = a and for t = Y(n) + b we finally get

∑n
i=1 ψH(Y(i)− t) =

−a. Moreover,
∑n
i=1 ψH(Y(i) − t) is continuous (and nonincreasing) in t except for

a finite number of discontinuities, at which it has the positive jumps equal to a. It
implies that there is at least one point t̂(n) ∈ (Y(1) − b, Y(n) + b) such that

n∑

i=1

ψH

(
Y(i) − t̂(n)

)
= 0. (31)

We may observe that the reason why for ψH we are able to fulfil (31) is a “compen-
sation” of the jump(s) by a decrease of the value of the terms which have argument
in the linear part of the ψ-function.

It is easy to see that the point(s) which solves (31) is a (local) minimum of the
function

∑n
i=1 ρ(Y(i) − t) because −ψH(y − t) is increasing in t. Moreover at any

point t∗ of jump of ∂
∂t

∑n
i=1 ρ(Y(i) − t) we have

lim
t→t∗−

∂

∂t

n∑

i=1

ρ(Y(i) − t) > lim
t→t∗+

∂

∂t

n∑

i=1

ρ(Y(i) − t)
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so that the function
∑n
i=1 ρ(Y(i) − t) either increases when t → t∗−, and then for

t > t∗ either decreases or increases less steeply, or decreases for t → t∗−, and then
for t > t∗ it decreases more steeply. Anyway, the function

∑n
i=1 ρ(Y(i) − t) cannot

have at t∗ minimum. So we may concludes that the global minimum is among the
points for which (31) holds.

More detailed analysis would reveal that a similar situation holds for many ψ-
functions, namely that we may hope to fulfill

n∑

i=1

ψ(Yi − t) = op

(
n

1
2

)

for rather large family of ψ-functions.
Some difficulties may appear e. g. for skipped median (or for some other esti-

mators with both types of jumps).
Let us now consider the linear regression. We would want again to show that

there is a point β̂(n) such that
n∑

i=1

ψH

(
Y(i) −XT

i β̂
(n)

)
Xi = 0.

Let us consider at first
∑n
i=1 ρH(Yi − L ·XT

i γ) for ‖γ‖ = 1. We easy verify that for
any γ

− ∂

∂L

n∑

i=1

ρH
(
Yi − L ·XT

i γ
)

=
n∑

i=1

ψH
(
Yi − L ·XT

i γ
)
XT
i γ

is nonincreasing in L (except of finite number ` (` ≤ 2n) of possitive jumps), and
along similar lines as above we again find that there is L(1)

γ < 0 such that for L < L
(1)
γ

we have
∑n
i=1 ψH(Yi − L ·XT

i γ)X
T
i γ = 0 and

n∑

i=1

ψH

(
Yi − L(1)

γ ·XT
i γ

)
XT
i γ =

∑

i∈I(1)
γ

|XT
i γ| · a

where I(1)
γ =

{
i ∈ N : sign(XT

i γ)ψH(Yi − L
(1)
γ ·XT

i γ) = a
}
. Similarly we may find

an upper “bound” L2. Then there is again at least one L∗γ ∈ (L(1)
γ , L

(2)
γ ) such that

n∑

i=1

ψH
(
Yi − L∗γ ·XT

i γ
)
XT
i γ = 0. (32)

Due to similar arguments as above we find that at one of these points (if they
are multiple) the function

∑n
i=1 ρH(Yi − L · XT

i γ), as the function of L, attains
its minimum, and that the points Yi − L∗γ · XT

i γ, i = 1, 2, . . . , n are not points of

discontinuity of the function ψH . Let ρ0 = inf
‖γ‖=1

∑n
i=1 ρH(Yi−L∗γ ·XT

i γ). Taking
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into account the compactness of the surface of unit ball we find that there is a
γ0, ‖γ0‖ = 1 such that

ρ0 =
n∑

i=1

ρH
(
Yi − L∗γ0 ·XT

i γ0

)
.

Let us recall that the points Yi − L∗γ0 ·XT
i γ0, i = 1, 2, . . . , n are not the points of

discontinuity of the function ψH , i. e. in the neighborhood of the point β̂(n) = L∗γ0γ0

the function
∑n
i=1 ρH(Yi −XT

i β) has (continuous) partial derivatives, and hence

n∑

i=1

ψH

(
Yi −XT

i β̂
(n)

)
XT
i = 0.

Of course, for the nonlinear setup it is more complicated to describe the situation
because it depends on mutual relations of ψ and g. E. g. considering again ψH(z)
we may find that for the function g which is for any fix X coordinatewise increasing
and convex or coordinatewise decreasing and concave in β we have again

n∑

i=1

ψH (Yi − g(Xi, Lγ))
p∑

`=1

g′`(Xi, Lγ)Tγ = 0

nonincreasing in L and the considerations which we made above might be repeated.
But in such a case we may probably cope with the problem even without the con-
vexity (or concavity) of function, just reparametrizing the problem to the linear one
(due to the monotonicity).

Nevertheless, the set of conditions covering all possibilities of the “compensation”
for the regression setup would be rather complicated. So that, one may only hope
that for some ψ-function one can recognize whether the “compensation” which
was described above is possible or not. On the other hand, the discontinuous ψ-
functions may not only imply infite local shift sensitivity but also they may have
infinite change-of-variance sensitivity (see [5]; consult also [18]). Some recent re-
sults moreover indicate that the change of (the norm of) estimate when excluding
some observations may be rather large for them (although asymptotically bounded
in probability), while for continuous function it is proportional to the gross error
sensitivity ([22]). It implies that the importance of the discontinuous ψ-functions
for robust estimation is limited.

APPENDIX

Lemma 7. Let for some p ∈ N, {V(n)
}∞
n=1

, V(n) =
{
v
(n)
ij

}j=1,2,...,p

i=1,2,...,p
be a sequence

of (p× p) matrixes such that for i = 1, 2, . . . , p and j = 1, 2, . . . , p

lim
n→∞

v
(n)
ij = qij in probability (33)
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where Q = {qij}j=1,2,...,p
i=1,2,...,p is a fixed nonrandom regular matrix. Moreover, let{

θ(n)
}∞
n=1

be a sequence of p–dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε. (34)

Then ∃ (δ > 0) ∀ (L > 0)
so that

lim sup
n→∞

P
(∥∥∥V(n)θ(n)

∥∥∥ > L
)
> δ.

P r o o f . Due to (33) the matrix V(n) is regular in probability. Let then 0 <
λ1n < λ2n < . . . < λpn and z1n, z2n, . . . , zpn be eigenvalues and corresponding
eigenvectors (selected to be mutually orthogonal) of the matrix [V(n)]TV(n). Let
us write θ(n) =

∑p
j=1 ajnzjn (for an appropriate vector an = (a1n, a1n, . . . , apn)T).

Then we have
∥∥∥V(n)θ(n)

∥∥∥
2

=
p∑

j=1

[ajn]2λjn‖zjn‖2 ≤ λ1n‖θ(n)‖. (35)

Moreover, denoting λ1 the smallest eigenvalue of the matrix QTQ, we have λ1n → λ1

in probability as n→∞. The assertion of the lemma then follows from (35). 2
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[17] A. Rubio, F. Quintana and J. Á. Vı́̌sek: Test for differences of M -estimates between
nonlinear regression models. Probab. Math. Statist. 14 (1993), 2, 189–206.
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