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AN EXTENSION OF THE ROOT PERTURBATION
M–DIMENSIONAL POLYNOMIAL FACTORIZATION
METHOD

Nikos E. Mastorakis

In this paper, an extension of an m-D (multidimensional or multivariable) polynomial
factorization method is investigated. The method is the “root perturbation method” which
is recently proposed by the author. According to this method, one sets to zero all complex
variables, except one variable, and factorizes the 1-D polynomial. Furthermore, the values
of these variables vary properly. In this way, one can “built” the m-dimensional polynomial
in its factorized form. However, in the “root perturbation method”, an assumption is that
the 1-D polynomial must have discrete roots. In this paper, a solution is given in the
case that the 1-D polynomial may have multiple roots. This is achieved by a proper
transformation of the complex variables. The present method is summarized by way of
algorithm. A numerical (3-D) example is presented.

1. INTRODUCTION

Multidimensional (m-D) Systems and Multidimensional Signal Processing is an im-
portant new discipline in mathematics (systems theory) and in computer science.
m-D systems theory are receiving continuous attention in recent years by many
mathematicians, while many computer engineers and practitioners are usually in-
terested in the relevant applications like remote sensing, digital filtering, comput-
erized tomography, sonar devices, artificial vision etc, [9], [23]. A serious difficulty
in the development of the m-D systems is the non-factorizability of the m-D poly-
nomials, where by the term factorizability it is meant the possibility that a given
m-D polynomial can be split into factors of other multidimensional polynomials
of appropriate dimensions. Polynomial theory and the relevant algorithms is in
general an important modern topic in mathematics, (algebra and system theory),
electrical engineering (control systems, circuits and communication) and computer
science (algorithms, multidimensional signal processing, information theory, codifi-
cation techniques) [8], [10].

The study of m-D polynomials and particularly their factorization into simpler
factors is of fundamental importance, since such polynomials appear to be charac-
teristic polynomials of m-D transfer functions, and the m-D stability criteria can
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be applied more easily to these factors. On the other hand, the transfer function
factorization that is numerator and denominator factorization enable us a cascade
realization of the system. The m-D polynomial factorization is also a question of
a great importance in the study of distributed parameter systems (DPS) which are
described by Partial Differential Equations, since each Partial Differential Equation
corresponds one-to-one and onto an m-D polynomial. Finally, there is an obvious
importance of the m-D factorization subject from a pure mathematical point of view.

So far, several different meaning of the term “m-D polynomial factorization” have
been discussed [1] – [7], [20], [21], [24]. In [22], the factorization in factors of one vari-
able i. e. f(z1, . . . , zm) = f1(z1) · · · fm(zm), or in factors with no common variables
i. e. f(z1, . . . , zm) = f1(z̄1) · · · fk(z̄k) where z̄1, . . . , z̄k are mutually disjoint groups of
independent variables has been presented. In [11], [14], the factorization is succeeded
by considering the given polynomial as 1-D polynomial with respect to zj and apply-
ing the well known formulas from 1-D algebra. In [11], [15], the factorization of the
state-space model is investigated. In [11], [13], the factorization of an m-D polyno-
mial using appropriate linear operators is considered. In [11], [16], the factorization
of an m-D polynomial f = f(z1, . . . , zm) =

∑N1
i1=0 . . .

∑Nm

im=0 a(i1, . . . , im) zi1
1 . . . zim

m

in linear factors f(z1, . . . , zm) =
∏N1

i1=0(z1 + ai,2z2 + . . . + ai,mzm + ci) has been
examined, while in [11] and [17] the more general type of factorization is studied.
The method of reduction in lower-order polynomial factors is presented in [11] and
[18]. In [11] and [19], an m-D polynomial factorization method based on a proper
perturbation of the discrete roots of one 1-D polynomial is developed. However, in
the case in which this 1-D polynomial has multiple roots the method fails. In the
present paper, an attempt is made to face this difficult case of the multiple roots.
In particular, a proper transformation of the variables is proposed under which the
roots of this 1-D polynomial become discrete again. All the methods from [11] to
[19] have been proposed by the author for first time in the international literature.
See a brief description of them in [12].

The present paper is organised as follows: In Section 2, the steps of the “root
perturbation method” ([11] and [19]) are briefly presented. In Section 3, the exten-
sion of the method, in the case of multiple roots, is given. The proposed algorithm
is stated in Section 4, while, in Section 5, the applicability of the present technique
is illustrated by an example. The author has already verified the validity, the power
and the applicability of the algorithm by a computer program.

2. THE ROOT PERTURBATION METHOD

The considered problem is the factorization of the m-D polynomial f(z1, . . . , zm)
given by (1)

f(z1, . . . , zm) =
N1∑

i1=0

. . .

Nm∑

im=0

a(i1, . . . , im) zi1
1 . . . zim

m (1)

where ∃ j such that a(0, . . . , 0, Nj , 0, . . . , 0) 6= 0 and a(i1, . . . , ij−1, Nj , ij+1, . . . im) =
= 0 when i1 + . . . + ij−1 + ij+1 + . . . + im > 0 . Then, without loss of generality, we
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can set
a(0, . . . , 0, Nj , 0, . . . , 0) = 1. (2)

We exam the possibility of the given polynomial to be written as

f(z1, . . . , zm) =
Nj∏

k=1

(
zj − pk(z̃)

)
(3)

with pk(z̃) polynomial in z̃ (z̃=̂[z1, . . . , zj−1, zj+1, . . . , zm]T). Therefore

pk(z̃) =
M1∑

i1=0

. . .

Mj−1∑

j−1=0

Mj+1∑

ij+1=0

. . .

Mm∑

im=0

q(i1, . . . , ij−1, ij+1, . . . , im)

·zi1
1 . . . z

ij−1
j−1 z

ij+1
j+1 . . . zim

m (4)

with Mk ≤ Nk, k = 1, . . . , j − 1, j + 1, . . . , m and q(i1, . . . , ij−1, ij+1, . . . , im) to
be real numbers. Since the exact values of Mk (k = 1, . . . , j − 1, j + 1, . . . ,m) are
unknown, we write

pk(z̃) =
N1∑

i1=0

. . .

Nj−1∑

j−1=0

Nj+1∑

ij+1=0

. . .

Nm∑

im=0

q(i1, . . . , ij−1, ij+1, . . . , im)

·zi1
1 . . . z

ij−1
j−1 z

ij+1
j+1 . . . zim

m (5)

considering q(i1, . . . , ij−1, ij+1, . . . , im) = 0 for the remaining terms.
The polynomial pk(z̃) can be found by knowing its values at

(N1 + 1) . . . (Nj−1 + 1) (Nj+1 + 1) (Nm + 1) different points and more particularly
at (z1i1

, . . . , zj−1ij−1
, zj+1ij+1

, . . . , zmim
) where

0 ≤ i1 ≤ N1, . . . , 0 ≤ ij−1 ≤ Nj−1, 0 ≤ ij+1 ≤ Nj+1, . . . , 0 ≤ im ≤ Nm

So, if we set these (N1 + 1) . . . (Nj−1 + 1) (Nj+1 + 1) (Nm + 1) different values
to z̃, we shall find the roots of f(z1, . . . , zm), which is now considered as an 1-D
polynomial with respect to zj (we note f(zj ; z1, . . . , zj−1, zj+1, . . . , zm)). As these
roots are also the values of the supposed polynomials pk(z̃), finally we can find the
polynomials pk(z̃). One can easily seen that pk(z̃) can be found by the m-D Lagrange
interpolation formula, [11] and [19].

However, the difficulty in finding pk(z̃) is that we don’t know exactly which
root of the 1-D polynomial f(zj ; z1, . . . , zj−1, zj+1, . . . , zm) corresponds to a par-
ticular pk(z̃). For this reason, we set z1, . . . , zj−1, zj+1, . . . , zm at “small” values
(absolutely). So, pk(z̃), as it is proved, is now “very close” to pk(0̃) = ck, where
ck (k = 1, . . . , Nj) are the roots of f(0, . . . , 0, zj , 0, . . . , 0) which are assumed to be
discrete, i. e. ck 6= cl for every k, l, (k, l = 1, . . . , Nj). Therefore pk(z̃)’s which are
now very close to the discrete pk(0̃) = ck can be separated. Unfortunately, in this
way, the case of multiple roots of f(0, . . . , 0, zj , 0, . . . , 0) i. e. the case where we have
some k, l such that ck = cl, (k, l = 1, . . . , Nj) can not be faced.

More specifically, in the case of “simple” (“discrete”) roots of f(0, . . . , 0, zj , 0, . . .
. . . 0) the following Theorem is proved, [11] and [19].
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Theorem 1. If

|z1| < 1
s
, . . . , |zj−1| < 1

s
, |zj+1| < 1

s
, . . . , |zm| < 1

s
(6)

where the positive real number s is calculated by

s =
2(Ã + 1 + maxk |ck|)

mink,l k 6=l |ck − cl| (7)

k, l = 1, . . . , Nj and Ã = max Aij
(ij = 0, 1, . . . , Nj − 1) where

Aij =
N1∑

i1=0

. . .

Nj−1∑

ij−1=0

Nj+1∑

ij+1=0

. . .

Nm∑

im=0

|a(i1, . . . , ij−1, ij , ij+1, . . . , im)|

then
|pk(z̃)− ck| < 1

2
min |ck − cl| (8)

k, l = 1, . . . , Nj where k 6= l.

So, if we put appropriate values for z1, . . . , zj−1, zj+1, . . . , zm, (|z1| < 1
s , . . . , |zj−1|

< 1
s , |zj+1| < 1

s , . . . , |zm| < 1
s , where s is given by equation (7)), we know exactly

which root of the 1-D polynomial f(zj ; z1, . . . , zj−1, zj+1, . . . , zm) is the value of the
particular pk(z̃). A geometrical interpretation is given in Figure 1.

Fig. 1. In the case of discrete roots ck, cl of f(zj ; , . . . , 0), the values of pk(z̃) can be

separated.

Furthermore, the polynomial pk(z̃) can be found using the m-D Lagrange inter-
polation formula. At this point, we recall, that if we know the values of an m-D
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polynomial p(z1, . . . , zm) for N1 +1 values of z1, . . . , Nm +1 values of zm, then this
polynomial can be found by the m-D Lagrange interpolation formula.

p(z1, . . . , zm) =
N1∑

i1=0

. . .

Nm∑

im=0

li1,...,im
(z1, . . . , zm) · g(z1i1

, . . . , zmim
) (9)

where the g(z1i1
, . . . , zmim

)’s are the polynomial values of p(z1, . . . , zm) at the con-
sidered points (0 ≤ i1 ≤ N1, . . . , 0 ≤ im ≤ Nm) and:

li1,...,im(z1, . . . , zm) =

∏N1
k=0, k 6=i1

(z1 − z1k
) . . .

∏Nm

k=0, k 6=im
(zm − zmk

)
∏N1

k=0, k 6=i1
(z1i1

− z1k
) . . .

∏Nm

k=0, k 6=im
(zmim

− zmk
).

In the case of pk(z̃), we have the variables z1, . . . , zj−1, zj+1, . . . , zm in (9) and (10).
Suppose now that a polynomial pk(z̃) has been constructed by the Lagrange

interpolation formula. Then, the m-D polynomial zj − pk(z̃) is tested as a factor of
f(z1, . . . , zm) by applying the following theorem. Its proof can be found in [11], [12]
and [18].

Theorem 2. Suppose that we have found pk(z̃) from (9). Then a possible m-D:
polynomial factor of f(z1, . . . , zm) is the polynomial zj − pk(z̃). This is an m-D
polynomial factor of f(z1, . . . , zm) if and only if

f (z1, . . . , zj−1, pk(z̃), zj+1, . . . , zm) ≡ 0. (10)

Now, if we find one factor zj − pk(z̃), we carry out the 1-D algorithmic division
f(z1, . . . , zm) : (zj − pk(z̃)) = q(z1, . . . , zm). The procedure of the m-D polynomial
factorization might progress if the polynomial q(z1, . . . , zm) could be factorized by
applying the same or some other method [11] – [19], [22].

3. THE CASE OF MULTIPLE ROOTS

In this paragraph, we exam the interesting case in which f(0, . . . , 0, zj , 0, . . . , 0) has
multiple roots. First some useful preliminary results are presented: Let the 1-D
polynomials

f(z) =
N∑

i=0

aiz
i, g(z) =

N∑

i=0

biz
i. (11)

If they are different polynomials, (we denote f(z) 6≡ g(z)), i. e. ai 6= bi at least for
one i, then, except of N values of z, we have f(z) 6= g(z). Therefore, one can write:

f(z) 6= g(z) ∀ z ∈ C − {w1, . . . , wN} (12)

where w1, . . . , wN are the roots of the polynomial f(z)− g(z) and C is the set of the
complex numbers.
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Suppose now that we have n different 1-D, N degree, polynomials. Then, except
of N ·(n−1)n

2 values of z, they all have different values.
In 2-D polynomials, we have the following. Suppose that the polynomials

f(z) =
N1∑

i1=0

N2∑

i2=0

ai1,i2z
i1
1 zi2

2 , g(z) =
N1∑

i1=0

N2∑

i2=0

bi1,i2z
i1
1 zi2

2

are different from each other. We denote f(z) 6≡ g(z). That is to say ai1,i2 6= bi1,i2

at least for one pair (i1, i2). These polynomials can be written as

f(z1, z2) =
N1∑

i1=0

(
N2∑

i2=0

ai1,i2z
i2
2

)
zi1
1 (13)

g(z1, z2) =
N1∑

i1=0

(
N2∑

i2=0

bi1,i2z
i2
2

)
zi1
1 . (14)

Since ai1,i2 6= bi1,i2 for at least one pair (i1, i2), at least one pair of 1-D polynomials:

N2∑

i2=0

ai1,i2z
i2
2 ,

N2∑

i2=0

bi1,i2z
i2
2 (15)

are different from each other. Then, except of N2 values of z2, these two polynomials
have different values. So, for z2 = w2 ∈ C − {w2,1, . . . , w2,N2} we obtain that
f(z1, w2) 6≡ g(z1, w2). These are 1-D polynomials with respect to z1, so, for z1 =
w1 ∈ C − {w1,1(w2), . . . , w1,N1(w2)} we have that f(w1, w2) 6≡ g(w1, w2).

The conclusion is that: f(z1, z2) 6= g(z1, z2) ∀ (w1, w2) with w2 ∈ C − {w2,1, . . .
. . . , w2,N2} and w1 ∈ C − {w1,1(w2), . . . , w1,N1(w2)}.

Suppose now, that we have n different 2-D, N1, N2-degree, polynomials. Then,
they are unequal (they have different values) for each (w1, w2) with

w2 ∈ C − {w2,1, . . . , w2,N2·(n−1)n/2}
and

w1 ∈ C − {w1,1(w2), . . . , w1,N1·(n−1)n/2(w2)}.
Now, generalizing the above results, if we have n different m-D, N1, . . . , Nm-degree
polynomials, they are unequal (they have different values) for all (w1, . . . , wm) with

wm ∈ C − {wm,1, . . . , wm,Nm·(n−1)n/2}
...

w1 ∈ C − {w1,1(w2, . . . , wm), . . . , w1,N1·(n−1)n/2(w2, . . . , wm)}.
Henceforth, the following notation is introduced

Cr
m = {wm,1, . . . , wm,Nm·(n−1)n/2}

...
Cr

1 = {w1,1(w2, . . . , wm), . . . , w1,N1·(n−1)n/2(w2, . . . , wm)}.
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With the above preparations, we are ready to present the extension of the root
perturbation method in the case in which f(0, . . . , 0, zj , 0, . . . , 0) has multiple roots,
i. e. if ∃ k1, k2, (with k1, k2 = 1, . . . , Nj) such that pk1(0̃) = pk2(0̃).

First, suppose that pk(z̃) 6≡ pl(z̃) ∀ k, l (k, l = 1, . . . , Nj) i. e. pk(z̃) are different
from each other. In this case, based on the previous preliminary results, there exists a
point (w1, . . . , wj−1, wj+1, . . . , wm) for which these polynomials take different values,
i. e. the values pk(w1, . . . , wj−1, wj+1, . . . wm) are different from each other. So,
if one finds such a point (w1, . . . , wj−1, wj+1, . . . , wm), then one can consider the
transformation

z1 −→ z1 + w1

...
zj−1 −→ zj−1 + wj−1

zj+1 −→ zj+1 + wj+1

...
zm −→ zm + wm

under which the polynomial

f̂(z1, . . . , zj−1, zj , zj+1, . . . , zm)
= f(z1 + w1, . . . , zj−1 + wj−1, zj , zj+1 + wj+1, . . . , zm + wm) (16)

results. Obviously f̂(z1, . . . , zj−1, zj , zj+1, . . . , zm) is a factorizable polynomial if and
only if f(z1, . . . , zj−1, zj , zj+1, . . . , zm) is factorizable. It is easy to verify that the
roots of f̂(0, . . . , 0, zj , 0, . . . , 0), which are symbolized as ĉi, are pk(w1, . . . , wj−1, wj+1,
. . . , wm). However, pk(w1, . . . , wj−1, wj+1, . . . wm) are different from each other. In
other words, the roots of the new polynomial f̂(0, . . . , 0, zj , 0, . . . , 0) are now simple
(discrete). Thus, the root perturbation method can be applied.

Furthermore, the factorization of f(z1, . . . , zm) results from the factorization of
f̂(z1, . . . , zj−1, zj , zj+1, . . . , zm) after the inverse transformation:

z1 −→ z1 − w1

...
zj−1 −→ zj−1 − wj−1

zj+1 −→ zj+1 − wj+1

...
zm −→ zm − wm

Secondly, in the very special case where some of pk(z̃) are identically equal, it
is not possible to succeed to transform all the roots of f(zj ; 0, . . . , 0) into simple
ones. However, in this case, the problem of separation of roots does not actually
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exist, since equal roots of the 1-D polynomial f(zj ; z1, . . . , zj−1, zj+1, . . . , zm) corre-
spond to identically equal pk(z̃). Therefore the root perturbation method, Section 2,
[11], [12] and [19] can be applied.

4. THE PROPOSED ALGORITHM

Arranging the above ideas in a logical order, the following algorithm can be con-
structed.

Step 1: Find the roots of f(0, . . . , 0, zj , 0, . . . , 0). If they are discrete (simple), then
apply the root perturbation method −→ END. If there exist multiple roots, then
follow the next steps.

Step 2: Set arbitrary values to z1, . . . , zj−1, zj+1, . . . zm, say w1, . . . , wj−1, wj+1, . . .
. . . , wm and find the roots of f(w1, . . . , wj−1, zj , wj+1, . . . , wm).

If some of them continue to be multiple, then vary z1 where
z1 = w1,1, . . . , w1,(1+Nj(Nj−1)/2)·N1 .
If, after all, the multiplicity of roots remains, we conclude that some of w2,1, . . .
. . . , wj−1, wj+1, . . . , wm,1 belong to Cr

2 , . . . , Cr
j−1, C

r
j+1, . . . , C

r
m. In this case, vary

z2. Proceeding this procedure, finally, one can find a point such that:

(w1, . . . , wj−1, wj+1, . . . wm) ∈ (C−Cr
1)×. . .×(C−Cr

j−1)×(C−Cr
j+1)×. . .×(C−Cr

m)

for which f(w1, . . . , wj−1, zj , wj+1, . . . wm) has simple roots. If this is not possible,
go to Step 4.

Step 3: Find the polynomial

f̂(z1, . . . , zj−1, zj , zj+1, . . . , zm)
= f(z1 + w1, . . . , zj−1 + wj−1, zj , zj+1 + wj+1, . . . , zm + wm)

Find the roots of f̂(0, . . . , 0, zj , 0, . . . , 0) (equivalently the roots of f(zj ; w1, . . . , wj−1,
wj+1, . . . , wm)). These will be simple. Afterwards, apply the root perturbation
method.
If f̂(z1, . . . , zj−1, zj , zj+1, . . . , zm) is factorized, then f(z1, . . . , zm) is factorized too.
The second can be found in its factorized form since:
f(z1, . . . , zm) = f̂(z1 − w1, . . . , zj−1 − wj−1, zj , zj+1 − wj+1, . . . , zm − wm)
−→ END.

Step 4: Some of pk(z̃) are identically equal. Their number has been known from
Step 2: It is the minimum number of multiple roots that results in the various
changes of w1, . . . , wj−1, wj+1, . . . wm following the procedure of Step 2. Apply the
root perturbation method (since equal pk(z̃) correspond to equal ck)−→ END.
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Remark. In Step 2 of the previous algorithm, note that:

Cr
m = {wm,1, . . . , wm,Nm·n(n−1)/2}

...
Cr

j+1 = {wj+1,1(wj+2, . . . , wm), . . . , wj+1,Nj+1·n(n−1)/2(wj+2, . . . , wm)}
Cr

j−1 = {wj−1,1(wj+1, . . . , wm), . . . , wj−1,Nj−1·n(n−1)/2(wj+1, . . . , wm)}
...

Cr
1 = {w1,1(w2, . . . wj−1, wj+1, . . . , wm), . . . ,

w1,Nm·n(n−1)/2(w2, . . . wj−1, wj+1 . . . , wm)}
where n = Nj .

5. EXAMPLE

Let the polynomial f(z1, z2, z3) = z2
1 + 4z1z2 + 3z2

2 + 2z1z
2
2 + 2z3

2 + 4z1z3 + 12z2z3+
+8z2

2z3.

The above algorithm can be applied as follows. Select zj = z1 (i. e. j = 1).
Step 1: First, we find the roots of f(z1, 0, 0). So, f(z1, 0, 0) = z2

1 . We obtain the
double root 0.
Step 2: Setting z2 = z3 = 1, the polynomial f(z1, 1, 1) = z2

1 + 10z1 + 25 is found
which also has the double root −5. Setting z2 = 0, z3 = 1, the resultant polynomial
f(z1, 0, 1) = z2

1 + 4z1 has the discrete roots 0,−4.
Step 3: Under the transformation

z2 −→ z2 + 0
z3 −→ z3 + 1

the polynomial f(z1, z2, z3) is transformed into f̂(z1, z2, z3) = f(z1, z2 + 0, z3 + 1) =
= 4z1 + z2

1 + 12z2 + 4z1z2 + 11z2
2 + 2z1z

2
2 + 2z3

2 + 4z1z3 + 12z2z3 + 8z2
2z3.

The roots of the polynomial f̂(z1, 0, 0) are −4, 0. Applying the root perturbation
method, one can find: A0 = 45, A1 = 14. Therefore, following Theorem 1 we have
Ã=45 and s = 25. Setting (N2 +1) (N3 +1) = 4×2 = 8 values (z2, z3) in f(z1; z2, z3)
such that |z2| < 1

s , |z3| < 1
s , we find the corresponding roots − with respect to z1−

of f̂(z1; z2, z3). For example, for z2 = −0.02 and z3 = −0.02, we find the roots
0.0592 and −3.9. Finally, using the Lagrange interpolation formula and Theorem 2,
we find after some manipulation

f̂(z1, z2, z3) = (z1 + 3z2 + 2z2
2) · (z1 + z2 + 4z3 + 4) (17)

Step 4: Under the inverse transformation

z2 −→ z2 − 0
z3 −→ z3 − 1
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(17) yields

f(z1, z2, z3) = (z1 + 3z2 + 2z2
2) · (z1 + z2 + 4z3) (18)

since f̂(z1, z2 − 0, z3 − 1) = f(z1, z2, z3). Thus, the factorization of the given poly-
nomial is achieved.

6. CONCLUSION

The factorization algorithm, presented in this paper, can be applied in a wide class
of m-D polynomials. The method can be applied in such a way that, if the complete
decomposition into N1 factors zj − pk(z̃) is impossible, then, at least the evaluation
of an eventual factor zj − pk(z̃) to be possible. So − as in the case of the simple
root perturbation method [11], [19] – if one factor of f(z̃) is found, the polynomial
f(z̃)/(zj − pk(z̃)) may be factorized by some other method of the literature [11],
[13] –[19], [22].

The extension of the root perturbation method to polynomial matrices may be an
other interesting mathematical extension with many applications in physics (optical
systems, biophysics), in electrical engineering (multidimensional circuits and sys-
tems, automatic control) as well as in computer science (digital image processing,
theory of algorithms [8], [10], information theory). However, this is left for future
research.

(Received March 13, 1995.)
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