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PERIODIC TRANSFORMATIONS
OF THE SAMPLE AVERAGE RECIPROCAL VALUE1

Petr Lachout

The paper presents results on the convergence exp
“
i2π αn

Sn

”
D−→n→+∞

exp(i2πU), where

Sn is a random walk with zero mean and a positive finite variance. The positive real

numbers αn fulfill n−
1
2 αn → +∞ and U is a random variable uniformly distributed on

the interval [0, 1). The asymptotics is derived in a more general setting for a sequence of
random variables Sn that have either absolutely continuous distributions or distribution
functions which satisfy a Berry–Esseen type condition.

1. INTRODUCTION

We are looking for sufficient conditions for

f

(
αn

Xn

I
[
Xn 6= 0

])
D−→

n→+∞
f(UK) ,

where f is a periodic function with the periodK,Xn denotes the average of i.i.d. ran-
dom variables with zero mean and a positive finite variance and the random variable
UK is uniformly distributed on the interval [0,K). For example, that convergence
is fulfilled if the random variables possess bounded density and αn

√
n→ +∞. But

there are three other cases summed up in Corollary 3.1.
The research is motivated by the following problem in the robust estimation

theory. Let Xi be i.i.d. random variables and ψ be a given function. We consider
the function f(t) = Eψ(X−t) and assume unique solution θ0 of f(θ0) = 0. The point
θ0 is the unknown location parameter of the random sample and we estimate it by
the M -estimator θ̂n; i. e. fulfilling the equation

∑n
i=1 ψ(Xi− θ̂n) = 0. The difference√

n(θ̂n−θ0) can be expressed as a sum of i.i.d. random variables 1√
n

∑n
i=1 ψ(Xi−θ0)

with remainder of oP (n−
1
2 ), typically OP (n−1), see for that e. g. [2], [3] or [4]. The

properties of the M -estimator θ̂n are closely related to the behaviour of f(θ̂n). The
aim of the paper is to see what happens if the function f is discontinuous.

1The research was supported by the Grant Agency of the Academy of Sciences of the Czech
Republic through Grant No. 175 402.
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2. THE GENERAL RESULTS

Let us start with the necessary and sufficient condition for the weak convergence in
the unit circle. To avoid misunderstandings, we recall that if x is a real number then
bxc denotes the integer part of x, i. e. the integer fulfilling n ≤ x < n + 1, and {x}
is its fractional part, i. e. {x} = x− bxc.

Lemma 2.1. Let Zn be a sequence of random variables. Then the following two
statements are equivalent:

i) There exists a random variable Z with values in the interval [0, 1) such that

exp (i2πZn) D−→
n→+∞

exp(i2πZ) . (1)

ii) There exists a dense subset S of the interval (0, 1) such that

lim
n→+∞

Prob (x < {Zn} ≤ y) exists for each pair of points x, y ∈ S . (2)

If the statement ii) is valid then

lim
n→+∞

Prob (x < {Zn} ≤ y) = Prob (x < Z ≤ y) (3)

for each 0 < x < y < 1 such that Prob (Z = x) = Prob (Z = y) = 0.

P r o o f . i) Let exp (i2πZn) D−→
n→+∞

exp(i2πZ).

Define S = {x : 0 < x < 1,Prob (Z = x) = 0}. This set is dense in the interval (0, 1).
We take a pair x, y ∈ S, x < y and consider the open set G = {ei2πα : x < α < y}
and the closed set F = {ei2πα : x ≤ α ≤ y}. Then we have

Prob (exp(i2πZ) ∈ G) ≤ lim inf
n→+∞

Prob (exp(i2πZn) ∈ G)

≤ lim sup
n→+∞

Prob (exp(i2πZn) ∈ F ) ≤ Prob (exp(i2πZ) ∈ F ) .

Therefore,

Prob (x < Z < y) ≤ lim inf
n→+∞

Prob (x < {Zn} < y) ≤ lim inf
n→+∞

Prob (x < {Zn} ≤ y)

≤ lim sup
n→+∞

Prob (x < {Zn} ≤ y) ≤ lim sup
n→+∞

Prob (x ≤ {Zn} ≤ y)

≤ Prob (x ≤ Z ≤ y) = Prob (x < Z < y) since x, y ∈ S .

Consequently, the limit limn→+∞ Prob (x < {Zn} ≤ y) exists for each pair x, y ∈ S.

ii) Let S be a dense subset of the interval (0, 1) such that the limit
limn→+∞ Prob (x < {Zn} ≤ y) exists for each pair x, y ∈ S. We define the function
H on [0, 1) by

H(0) = 1− lim
∆→0+

lim inf
n→+∞

Prob (∆ < {Zn} ≤ 1−∆)
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and
H(y) = H(0) + lim

∆→0+
lim inf
n→+∞

Prob (∆ < {Zn} ≤ y) if 0 < y < 1.

The function H is non-decreasing and H(1−) = 1. Then there is a random variable
Z with values in the interval [0, 1) such that Prob (Z < y) = H(y−).
Let G be an open subset of the unit circle.

ii1) Let 1 6∈ G.
Then the set G can be expressed as at most countable union of disjoint open sets

G =
⋃

k∈N
{exp(i2πα) : ak < α < bk} where 0 ≤ ak < bk ≤ 1 .

The set S is dense in the interval [0, 1] and one can find points ak,j , bk,j ∈ S such
that ak ≤ ak,j < bk,j < bk, ak,j tends to ak and bk,j tends to bk. Then we have

lim inf
n→+∞

Prob (exp(i2πZn) ∈ G) ≥ lim inf
n→+∞

j∑

k=1

Prob (ak,j < {Zn} ≤ bk,j)

=
j∑

k=1

(H(bk,j)−H(ak,j)) ≥
j∑

k=1

Prob (ak,j + ε < Z < bk,j − ε)

for every ε > 0 and every natural number j. Letting ε→ 0+ and j → +∞, we get

lim inf
n→+∞

Prob (exp(i2πZn) ∈ G) ≥ Prob (exp(i2πZ) ∈ G) .

ii2) Let 1 ∈ G.
Then the set G can be written as an at most countable union of disjoint open sets

G={exp(i2πα) : 0≤α< b}∪{exp(i2πα) : a<α<1}∪
⋃

k∈N
{exp(i2πα) : ak<α<bk}

where 0 < a < 1, 0 < b < 1 and 0 < ak < bk < 1. One can find points
a0,j , b0,j , ak,j , bk,j ∈ S such that a < a0,j , b0,j < b,ak ≤ ak,j < bk,j < bk, a0,j

tends to a, b0,j tends to b, ak,j tends to ak and bk,j tends to bk. Then we have

lim inf
n→+∞

Prob (exp(i2πZn) ∈ G)

≥ lim inf
n→+∞

[
(1− Prob (b0,j < {Zn} ≤ a0,j)) +

j∑

k=1

Prob (ak,j < {Zn} ≤ bk,j)

]

= (1−H(a0,j) +H(b0,j)) +
j∑

k=1

(H(bk,j)−H(ak,j))

≥ 1− Prob (b0,j − ε ≤ Z ≤ a0,j + ε) +
j∑

k=1

Prob (ak,j + ε < Z < bk,j − ε)

for every ε > 0 and every natural number j. Letting ε→ 0+ and j → +∞, we again
get

lim inf
n→+∞

Prob (exp(i2πZn) ∈ G) ≥ Prob (exp(i2πZ) ∈ G) . 2
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There is a helpful criterion verifying (2).

Lemma 2.2. Let S be a dense subset of (0, 1) such that

lim inf
n→+∞

Prob (x < Zn ≤ y) ≥ h(y)− h(x) (4)

for every pair x, y ∈ S, x < y and some non-decreasing function h with property
h(1−)− h(0+) = 1. Then,

lim
n→+∞

Prob (x < Zn ≤ y) = h(y)− h(x) (5)

for every pair x, y ∈ S.

P r o o f . Fix a pair x, y ∈ S, x < y. Taking u, v ∈ S, u < x < y < v, we have

h(y)− h(x) ≤ lim inf
n→+∞

Prob (x < Zn ≤ y) ≤ lim sup
n→+∞

Prob (x < Zn ≤ y)

≤ lim sup
n→+∞

Prob (u < Zn ≤ v)− lim inf
n→+∞

Prob (u < Zn ≤ x)

− lim inf
n→+∞

Prob (y < Zn ≤ v) ≤ 1− h(x) + h(u)− h(v) + h(y) .

Because the difference 1− h(v) + h(u) can be made arbitrarily small, we conclude

lim
n→+∞

Prob (x < Zn ≤ y) = h(y)− h(x) .
2

Assuming the existence of densities and their “left uniform” convergence to
another density, we get the following result.

Theorem 2.1. Let Yn be random variables with distribution functions Fn having
a density hn. Assume that there is a density h such that for almost all x, hn(xn) →
h(x) whenever xn < x, xn → x. Then for each sequence αn > 0, αn → +∞, we
have

exp
(
i2π

αn

Yn

)
D−→

n→+∞
exp(i2πU) ,

where U is an random variable uniformly distributed on the interval [0, 1).

P r o o f . Fix 0 < x < y < 1. We can immediately compute the criterion (2),

Prob
(
x <

{
αn

Yn

}
≤ y

)
=

+∞∑

k=−∞

(
Fn

(
αn

x+ k

)
− Fn

(
αn

y + k

))

=
∫ +∞

−∞

(
Fn

(
αn

bzc+ 1 + x

)
− Fn

(
αn

bzc+ 1 + y

))
dz

=
∫ +∞

−∞
αn

(
Fn

(
αn

bαnzc+ 1 + x

)
− Fn

(
αn

bαnzc+ 1 + y

))
dz

=
∫ +∞

−∞

(∫ y

x

hn

(
αn

bαnzc+ 1 + u

) (
αn

bαnzc+ 1 + u

)2

du

)
dz .
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Since αn

bαnzc+1+u <
1
z and αn

bαnzc+1+u → 1
z , we may apply Fatou’s lemma and obtain

lim inf
n→+∞

Prob
(
x <

{
αn

Yn

}
≤ y

)

≥
∫ +∞

−∞
h

(
1
z

)
y − x

z2
dz = (y − x)

∫ +∞

−∞
h(z) dz = y − x .

Finally, for every 0 < x < y < 1, we get

lim
n→+∞

Prob
(
x <

{
αn

Yn

}
≤ y

)
= y − x ,

according to Lemma 2.2. The theorem follows from Lemma 2.1. 2

Another possibility is to assume a Berry–Esseen type condition.

Theorem 2.2. Let Yn be random variables with distribution functions Fn and
αn > 0, αn → +∞, βn > 0, βn → 0 such that

αn sup
|t|≤K

|Fn(t)− F (t)− βnG(t)|−→
n→+∞

0 for every K ∈ R , (6)

where F is a distribution function with a density which is continuous almost every-
where and G is a left-continuous function with finite variation on every compact
interval. Then

exp
(
i2π

αn

Yn
I[Yn 6= 0]

)
D−→

n→+∞
exp(i2πU) , (7)

where U is a random variable uniformly distributed on the interval [0, 1).

P r o o f . The proof is based on the integration by parts which is valid in the form
∫

[a,b]

g(x) dq(x) = g(b) q(b)− g(a) q(a)−
∫

[a,b]

q(x) dg(x)

if g, q have finite variation on the interval [a, b], g is continuous and q is left-
continuous. A more general statement can be found in [6].

The set of all continuous functions with finite variation on the unit circle is dense
in the set of all continuous functions on the unit circle. Thus, to show the convergence
in distribution it is sufficient to verify the convergence

E

∫
h

(
exp

(
i2π

αn

Yn
I[Yn 6= 0]

))
−→
n→+∞

E

∫
h(exp(2πU))

for every continuous function with finite variation.
Fix such a function h. We need to show that the quantity

Qn =
∣∣∣∣
∫
h

(
exp

(
i2π

αn

x
I[x 6= 0]

))
dFn(x)−

∫
h

(
exp

(
i2π

αn

x

))
dF (x)

∣∣∣∣

is vanishing.
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Fix ε > 0. One can find points 0 < a < b < +∞ such that

max{Fn(−b), Fn(a)− Fn(−a), 1− Fn(b), F (−b), F (a)− F (−a), 1− F (b)} < ε .

The function h(exp(i2παn

x )) is continuous with finite variation on the interval [a, b]
as well as on the interval [−b,−a].

For simplicity, we denote h̃(t) := h(exp(i2πt)) and H = max{|h̃(t)| : t ∈ R}. The
bound H is always finite since h is a continuous function. We derive

Qn ≤
∣∣∣∣∣
∫

[a,b]

h̃
(αn

x

)
dFn(x)−

∫

[a,b]

h̃
(αn

x

)
dF (x)

∣∣∣∣∣

+

∣∣∣∣∣
∫

[−b,−a]

h̃
(αn

x

)
dFn(x)−

∫

[−b,−a]

h̃
(αn

x

)
dF (x)

∣∣∣∣∣ + 6Hε

≤
∣∣∣∣∣
∫

[a,b]

h̃
(αn

x

)
dFn(x)−

∫

[a,b]

h̃
(αn

x

)
dF (x)− βn

∫

[a,b]

h̃
(αn

x

)
dG(x)

∣∣∣∣∣

+

∣∣∣∣∣
∫

[−b,−a]

h̃
(αn

x

)
dFn(x)−

∫

[−b,−a]

h̃
(αn

x

)
dF (x)− βn

∫

[−b,−a]

h̃
(αn

x

)
dG(x)

∣∣∣∣∣

+ βn

∣∣∣∣∣
∫

[a,b]

h̃
(αn

x

)
dG(x)

∣∣∣∣∣ + βn

∣∣∣∣∣
∫

[−b,−a]

h̃
(αn

x

)
dG(x)

∣∣∣∣∣ + 6Hε

≤
∣∣∣h̃

(αn

b

)
(Fn(b)− F (b)− βnG(b))− h̃

(αn

a

)
(Fn(a)− F (a)− βnG(a))

−
∫

[a,b]

(Fn(x)− F (x)− βnG(x)) dh̃
(αn

x

)∣∣∣∣∣

+
∣∣∣∣h̃

(
αn

−a
)

(Fn(−a)−F (−a)−βnG(−a))−h̃
(
αn

−b
)

(Fn(−b)−F (−b)−βnG(−b))

−
∫

[−b,−a]

(Fn(x)− F (x)− βnG(x)) dh̃
(αn

x

)∣∣∣∣∣ + βnH

b∨

−b

G+ 6Hε

≤ 2 sup
|t|≤b

|Fn(t)− F (t)− βnG(t)|
{(

αn

(
1
a
− 1
b

)
+ 1

) 1∨
0

h̃+ 2H

}

+ βnH

b∨

−b

G+ 6Hε .

Therefore Qn is vanishing since the variations
∨1

0 h̃ and
∨b
−bG are bounded and

the ε may be arbitrarily small.
This completes the proof since the random variable X with the distribution func-

tion F fulfills

exp
(
i2π

αn

X

)
D−→

n→+∞
exp(i2πU) according to Theorem 2.1 . 2
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3. RESULTS FOR RANDOM SAMPLES

This section presents results for random samples. In the sequel, we will assume
X1, X2, X3, . . . to be i.i.d. random variables with the distribution function H and
the characteristic function ψ. Denote Sn =

∑n
i=1Xi and Xn = 1

nSn.

Theorem 3.1. Let EX1 = 0, 0 < varX1 < +∞ and let H∗k have a bounded
density for some k. If αn > 0, αn√

n
→ +∞ then

exp
(
i2π

αn

Sn

)
D−→

n→+∞
exp(i2πU) , (8)

where U is a random variable uniformly distributed on the interval [0, 1).

P r o o f . We have

exp
(
i2π

αn

Sn

)
= exp

(
i2π

αn√
n

Sn√
n

)
D−→

n→+∞
exp(i2πU) ,

according to Theorem 2.1 as the densities of 1√
n
Sn converge uniformly to the density

of standard Gaussian random variable, see [7], theorem VII.2.8, p. 244. 2

Another possibility is assuming a finite absolute moment.

Theorem 3.2. Let EX1 = 0, 0 < varX1 and E |X1|2+δ < +∞ for some 0 < δ ≤ 1.
Then

exp
(
i2π

αn

Sn
I[Sn 6= 0]

)
D−→

n→+∞
exp(i2πU) , (9)

whenever αn > 0, αn√
n
→ +∞ and n−

1+δ
2 αn → 0. The random variable U is

uniformly distributed on the interval [0, 1).

P r o o f . The proof immediately follows from Theorem 2.2 and the Berry–Esseen
inequality

sup
t∈R

|Hn(
√
nt)− Φ(t)| = OP (n−

δ
2 ) see [7], theorem V.3.4, p.140. 2

Theorem 3.3. Let EX1 = 0, 0 < varX1, E |X1|3 < +∞ and lim sup|t|→+∞ |ψ(t)| <
< 1. Then

exp
(
i2π

αn

Sn
I[Sn 6= 0]

)
D−→

n→+∞
exp(i2πU) , (10)

whenever αn > 0, supn∈N
αn

n < +∞ and αn√
n
→ +∞. The random variable U is

uniformly distributed on the interval [0, 1).

P r o o f . The proof immediately follows from Theorem 2.2 and the improved
Berry–Esseen inequality

sup
t∈R

∣∣∣∣Hn(
√
nt)− Φ(t)− EX3

1√
2πn

(t2 − 1)e−t2
∣∣∣∣ = oP

(
1√
n

)
,
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see [7], theorem VI.3.5, p. 209. 2

In the case of lattice distribution, we can utilize a local limit theorem. For that
the finite variance is sufficient but the result is surprisingly weaker.

Theorem 3.4. Let EX1 = 0, 0 < varX1 < +∞ and Prob (X1 ∈ a + dZ) = 1 (Z
denotes the set of all integers) for some origin a and step d. If αn > 0, αn√

n
→ +∞

and αn

n → 0 then

exp
(
i2π

αn

Sn
I[Sn 6= 0]

)
D−→

n→+∞
exp(i2πU) , (11)

where U is a random variable uniformly distributed on the interval [0, 1).

P r o o f . Denote σ2 := varX1 and assume that the step d is the largest possible.
Fix 0 < x < y < 1 and consider (2):

Prob
(
x <

{
αn

Sn

}
≤ y

)
=

+∞∑

k=−∞
Prob (Sn = na+ dk) I

[
x <

{
αn

na+ dk

}
≤ y

]

=
∫ +∞

−∞
Prob (Sn = na+ dbzc) I

[
x <

{
αn

na+ dbzc
}
≤ y

]
dz

=
σ
√
n

d

∫ +∞

−∞
Prob

(
Sn =na+d

⌊√
nσz − na

d

⌋)
I

[
x<

{
αn

na+ db
√

nσz−na
d c

}
≤y

]
dz

≥ σ
√
n

d

∫

A≤|z|≤B

Prob
(
Sn = na+ d

⌊√
nσz − na

d

⌋)

I

[
x <

{
αn√
nσz

}
≤ y − αnd

σ2nA(A− d√
nσ

)

]
dz

≥
∫ +∞

−∞
ϕ(z) I

[
x <

{
αn√
nσz

}
≤ y

]
dz − 1Wn + 2Wn + 3Wn

−Φ(z : |z| < A)− Φ(z : |z| > B) ,

where 0 < A < B < +∞, Φ denotes the standard Gaussian distribution with the
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density ϕ(x) = 1√
2π

exp(−x2

2 ) and

0 ≤ 1Wn =
∫

A≤|z|≤B

ϕ(z) I

[
y − αnd

σ2nA(A− d√
nσ

)
<

{
αn√
nσz

}
≤ y

]
dz ,

2Wn =
∫

A≤|z|≤B

(
ϕ

(
na+ db

√
nσz−na

d c√
nσ

)
− ϕ(z)

)

I

[
x <

{
αn√
nσz

}
≤ y − αnd

σ2nA(A− d√
nσ

)

]
dz ,

3Wn =
∫

A≤|z|≤B

(
σ
√
n

d
Prob

(
Sn = na+ d

⌊√
nσz − na

d

⌋)

−ϕ
(
na+ db

√
nσz−na

d c√
nσ

))

I

[
x <

{
αn√
nσz

}
≤ y − αnd

σ2nA(A− d√
nσ

)

]
dz .

All these members are vanishing for n → +∞ : 1Wn because αnd
σ2nA(A− d√

nσ
)
→ 0,

2Wn because ϕ is continuous, and 3Wn because of the local limit theorem for lattice
distributions, see [7], theorem VII.1.1, p. 231. Therefore, we have shown that

lim inf
n→+∞

Prob
(
x <

{
αn

Xn

}
≤ y

)

≥ lim inf
n→+∞

∫ +∞

−∞
ϕ(z)I

[
x <

{
αn√
nσz

}
≤ y

]
dz − Φ(z : |z| < A)− Φ(z : |z| > B)

for any 0 < A < B < +∞. According to the previous Theorem 3.1 or Theorem 2.1,
we have

lim inf
n→+∞

Prob
(
x <

{
αn

Xn

}
≤ y

)
≥ lim inf

n→+∞
Prob

(
x <

{
αn

σ
√

n

W

}
≤ y

)
= y − x ,

where W is a standard Gaussian random variable. Lemma 2.2 and Lemma 2.1
conclude the proof, again. 2

These theorems imply a corollary for the sample average (denoted by Xn).

Corollary 3.1. Let EX1 = 0, 0 < varX1 < +∞, f be a periodic function with the
period K, the set of discontinuity points of f is negligible w.r.t. Lebesgue measure,
and αn > 0, αn

√
n→ +∞. Let at least one of the following conditions be fulfilled

• X1 +X2 + . . .+Xk has a bounded density for some k;
• E |X1|3 < +∞, lim sup|t|→+∞ |ψ(t)| < 1 and supn∈N αn < +∞;
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• for some 0 < δ ≤ 1, E |X1|2+δ < +∞ and αnn
1−δ
2 → 0;

• the distribution of X1 is the lattice distribution and αn → 0.

Then
f

(
αn

Xn

I[Xn 6= 0]
)

D−→
n→+∞

f(UK) ,

where the random variable UK is uniformly distributed on the interval [0,K).

P r o o f . Each of these assumptions implies the convergence

exp
(
i
2παn

KXn

I[Xn 6= 0]
)

= exp
(
i
2πnαn

KSn
I[Sn 6= 0]

)
D−→

n→+∞
exp(i2πU) ,

where U is a random variable uniformly distributed on the interval [0, 1), cf. Theo-
rem 3.1 Theorem 3.2, Theorem 3.3 or Theorem 3.4.

The function f is periodic with the period K, therefore we can write f(x) =
f̃(exp(i2π

K x)) where f̃ is defined on the unit circle and the set of its discontinuity
points is negligible w.r.t. Haar measure on the unit circle. Therefore f̃ preserves the
weak convergence and we receive

f

(
αn

Xn

I[Xn 6= 0]
)

= f̃

(
exp

(
i
2παn

KXn

I[Xn 6= 0]
))

D−→
n→+∞

f̃(exp(i2πU)) = f(KU) ,

and UK = KU is a random variable uniformly distributed on the interval [0,K). 2

The corollary solves the problem of asymptotic behaviour of sin( 1
Xn

) for abso-
lutely continuous distribution with bounded density and for distribution with the
third finite moment and fulfilling Cramer’s condition; i. e. lim sup|t|→+∞ |ψ(t)| < 1.
However, the behaviour is still unknown for the other cases. Especially, the treat-
ment fails for discrete and singular distributions.
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