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ROBUST METHODS IN EXPONENTIAL SMOOTHING

Jiř́ı Michálek1

The paper deals with robust modification of exponential smoothing with additive outliers.
The presented modification is based on the M -estimates approach. Simple and double
exponential smoothing procedures are discussed in detail. A robust version of famous
Holt’s method is given, too.

1. INTRODUCTION

Exponential smoothing is a very famous and often used recursive procedure for both
smoothing and prediction of time series. One of the main advantages of exponential
smoothing is its numerical simplicity giving relatively good results. However, in
case when the observed time series is distorted by outliers, the classical technique
of exponential smoothing can fail. Such a situation can occur in practice when, e. g.
an information comes out from a sensor, which can add unpleasant outliers to a
basic signal caused by a wrong function of the sensor. As for the robust methods in
time series the reader is referred to the survey paper by Dutter and Stockinger [3].
The paper is mainly motivated by the paper due to Cipra [2], where some recursive
methods of robust exponential smoothing are derived. This paper analysed the
methods described in Cipra [2] and discussed mainly the single and double robust
exponential smoothing procedures. A robust version of Holt’s method is given, too.

In general, exponential smoothing is a method for filtering and predicting, which
is very closely connected with the method of weighted least squares, where the
corresponding weights are given by a forgetting factor. The method considers a
general linear regression model

y(t) = zT(t) a+ σ e(t), (1)

where z(t) is a vector of specified basis functions, a is a vector of unknown par-
ameters and e(t) is a random noise with standard deviation 1. Here, uTv is the
usual scalar product. The parameter σ need not be known, in general. In practice,
the parameters (a, σ) can usually change at time t and therefore it is reasonable to

1This research was supported by the Grant Agency of the Czech Republic under grant No.
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generalize the model (1) into the form

y(t) = zT(t) a(t) + σ(t) e(t), (2)

where unknown parameters (a(t), σ(t)) are estimated only on the basis of the latest
observations y(s), s ≤ t, which is given by a suitable choice of a forgetting parameter
α. In case σ(t) is known the unknown parameter a(t) is estimated by minimizing

J(t) =
t∑

i=1

(
y(i)− zT(i) a

σ(t)

)2

αt−i,

where 0 < α < 1. When the noise e(t) is distorted by outliers then Cipra in [2]
suggests a modification of J(t) using M -estimates, which can limit the influence of
outliers. Then the “quadratic” form is

J(t) =
t∑

i=1

αt−iρ
(
y(i)− zT(i) a

σ(t)

)
,

where a function ρ satisfies demands that are usually required for M -estimates (e. g.
see Stockinger and Dutter). The “normal equations” are of the form

t∑

i=1

αt−iψ
(
y(i)− zT(i) a

σ(t)

)
z(i) = 0

when ψ(·) exists. If σ(t) is unknown, one can proceed as follows (see Stockinger and
Dutter) by minimizing

J1(t) =
t∑

i=1

αt−iρ
(
y(i)− z(i) a

σ

)
σ + cσ,

where c is a suitable constant. After derivating we obtain the equation

t∑

i=1

αt−iϕ
(
y(i)− zT(i) a

σ

)
z(i) = 0

with ϕ(t) = tψ(t)− ρ(t). This approach leads to the following equation

t∑

i=1

ψ

(
r(i)
σ̂

)
z(i)αt−i = 0,

where r(i) = y(i)− zT(i) â are residuals and σ̂ is an estimate of standard deviation.
This equation can be rewritten into the form (we put 0

0 = 1 for simplicity)

t∑

i=1

αt−i
r(i)
σ̂

ψ
(
r(i)
σ̂

)

r(i)
σ̂

z(i) = 0
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which is a form that is very similar to the method of weighted least squares with
the forgetting factor α. The obtained equations are not linear and can be solved by
a recurrent method (for detail see, e. g. Stockinger and Dutter). It would be very
useful to have a recursive algorithm solving these equations as the time t is running
t→ t+ 1. Let us introduce the denotation

w(i, a) =
ψ

(
y(i)−zT(i) a

σ̂

)

y(i)−zT(i) a
σ̂

.

These quantities play the role of weights in normal equations but unfortunately they
contain unknown parameters. There is an idea (e. g. Cipra [2]) the unknown par-
ameter a is substituted at the time t by the previous estimate â(t−1) obtained at the
time t− 1. Then the variables w(i, a) are not depending on the unknown parameter
a and the normal equations are substituted by the following approximative normal
equations

t∑

i=1

αt−iw(i, â(t− 1)) (y(i)− zT(i) â(t− 1)) z(i) = 0

which are linear equations in a. As the time t is running we obtain a triangular
scheme of the weights w(i, â(t− 1))

w(1, â(0))

w(1, â(1)), w(2, â(1))

w(1, â(2)), w(2, â(2)), w(3, â(2))
...

w(1, â(t− 1)), w(2, â(t− 1)), · · · , w(t, â(t− 1)).
...

...
...

The weights are random variables, which are dependent stochastically, in general,
because

w(i, â(t− 1)) = f(i, e(i)− zT(i) θ̂(t− 1))

where θ̂(t−1) = â(t−1)−a. In case we will consider the Huber function ψH(x) = x
for |x| ≤ c and ψH(x) = c sign(x) otherwise, we can see that

0 < w(i, â(t− 1)) ≤ 1.

Similar results can be obtained in the case of Welsh’s function, which is defined as

ψW(x) = x · e−cx2
,

where c is another suitable constant, too. Further we will assume that 0 < w(i, a) ≤ 1
in every case. With respect to the fact that in each step t → t + 1 all the weights
w(i, â(t)), i = 1, 2, . . . , t+ 1 are changing one cannot derive the recursive algorithm
in such a way as described in Cipra [2], where the weights lying on the main diagonal
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are used only. The role of weights w(i, â(t − 1)) can be explained as follows: the
greater error of prediction y(t)− zT(t) â(t− 1), the smaller value of the weight.

Then, the system of “approximative” normal equations, which are linear, has a
solution given by

â(t) =

[
t∑

i=1

αt−iw(i, â(t− 1)) z(i) zT(i)

]−1 t∑

i=1

αt−iw(i, â(t− 1)) y(i) z(i).

Let us try to substitute this calculation by a recursive algorithm. First, we find the
inversion of the matrix

[P (t)]−1 =

[
t∑

i=1

αt−iw(i, â(t− 1)) z(i) zT(i)

]−1

.

The existence of an inverse matrix immediately follows from the form of the matrix
z(i) zT(i) and from the fact that α and w(i, a) are positive. It is evident that

P (t) =
t∑

i=1

αt−iw(i, â(t− 1)) z(i) zT(i) = α

t−1∑
1

αt−1−iw(i, â(t− 1)) z(i) zT(i)

+w(t, â(t− 1)) z(t) zT(t)

= αP (t− 1) + α

t∑

i=1

αt−1−i∆w(i, â(t− 2)) z(i) zT(i),

where

∆w(i, â(t− 2)) = w(i, â(t− 1)− w(i, â(t− 2)) for i = 1, 2, . . . , t− 1

and
∆w(t, â(t− 1)) = w(t, â(t− 1)).

In this way we have reached the relation

P (t) = αP (t− 1) + α

t∑

i=1

αt−1−i∆w(i, â(t− 2)) z(i) zT(i)

which is different from the recursive relation given in Cipra [2], p. 67 because he
puts

∆w(i, â(t− 2)) = 0 for i = 1, 2, . . . , t− 1.

For simplicity let us denote ∆w(i, â(t− 2)) z(i) zT(i) = Ri then

P (t)−1 =
1
α

[
P (t− 1) +

t∑

i=1

αt−1−iRi

]−1

.

At this moment we use a well-known lemma about inverse matrices, namely

(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1
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in such a way that this inversion will be used t-times. In the first step

P (t)−1 =
1
α

[
P (t− 1) +

t−1∑

i=1

αt−1−iRi +
Rt
α

]−1

.

Denote, for a better orientation, At(t− 1) = P (t− 1) +
∑t−1
i=1 α

t−1−iRi, then

P (t)−1 =
1
α

(
A−1
t (t− 1)−A−1

t (t− 1) z(t)

×
[
zT(t)A−1

t (t− 1) z(t) +
α

w(t, â(t− 1))

]−1

zT(t)A−1
t (t− 1)

)
.

Then, in the second step, let us express

At(t− 1) = At(t− 2) +Rt−1 = At(t− 2) + ∆w(t− 1, â(t− 1)) z(t− 1) zT(t− 1),

and hence

A−1
t (t−1)=

[
At(t− 2)+∆w(t−1, â(t−1)) z(t−1) zT(t−1)

]−1

= A−1
t (t−2)−A−1

t (t−2) z(t−1)
[
zT(t−1)A−1

t (t−2) z(t−1)+
1

∆w(t− 1, â(t− 1))

]−1

×zT(t−1)A−1
t (t−2)

and this relation will be substituted into the previous formula instead of A−1
t (t−1).

In this way we will proceed to the last relation

At(2) = P (t− 1) + αt−2 ∆w(1, â(t− 1)) z(1) zT(1)

and after t steps we will finally obtain the formula for P (t)−1 via P−1(t− 1), which
gives a recursive relation. However, this procedure is very complicated and numeri-
cally exacting and its complexity is growing up as t grows. On the other hand, one
can expect that for relatively small t the value αt will be almost negligible and hence
the expressions of the form

[
zT(i)P−1(t− 1) z(i) +

1
αt∆w(i, â(t− 1))

]−1

will be very small as |∆w(i, â(t− 1))| ≤ 2.
In a similar way we can also calculate the estimates â(t) of unknown parameters

a. Because

â(t) = P−1(t)
t∑
1

αt−iw(i, â(t− 1)) z(i) y(i)

= P−1(t)

[
α

t−1∑
1

αt−1−iw(i, â(t− 2)) z(i) y(i)

+ α

t∑
1

αt−1−i∆w(i, â(t− 2)) z(i) y(i)

]
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we get the following recursive relation

â(t) = αP−1(t)P (t− 1) â(t− 1) + P−1(t)α
t∑

i=1

αt−1−i∆w(i, â(t− 2)) z(i) y(i).

The above described algorithm is entitled in such a case only when the unknown par-
ameter a is almost not changing in time. Under more rapid changes it is reasonable
to substitute the series

t∑

i=1

αt−1−i∆w(i, â(t− 2))

by its last member w(t, â(t− 2)) only in the recursive relation calculating P−1(t)
and in that calculating â(t), too. Then the obtained recursive algorithm would be
the same as described in Cipra [2], p. 62. In the next text we will deal with the
approach presented in Cipra [2] because it is simpler with respect to calculation
than that considered here earlier. We will concentrate mainly to simple and double
exponential smoothing procedures, which are commonly used in practice.

2. ROBUST SIMPLE AND DOUBLE EXPONENTIAL SMOOTHING

First, we will derive a general robust exponential smoothing when we follow the
approach commonly used in a nonrobust form. We will start from the following
model that is quite usual in exponential smoothing, e. g. see Abraham & Ledolter
[1], namely

y(t+ j) =
p∑

k=1

βk(t) zk(j) + e(t+ j), j = 0,±1,±2, . . .

where
βT
t = (β1(t), β2(t), . . . , βp(t))

is a vector of unknown parameters, zT(j) = (z1(j), z2(j), . . . , zp(j)) is a vector of
specified basis functions and {e(·)} is noise. The parameter t presents a running
time, the parameter j expresses a local time in the model considered at the time t.
At this time we will assume the knowledge of standard deviation σ (for simplicity we
will put σ = 1). The case of unknown σ will be solved later. This model is usually
written in a matrix form

y(t+ j) = zT(j)β(t) + e(t+ j).

The main idea of exponential smoothing is based on the use of the latest observations
for estimating unknown parameters βk(t), which can change in time. In this way we
get to the model

y(t− j) = zT(−j)β(t) + e(t− j), j = 0, 1, 2, . . .
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where the influence of older observations is suppressed using a forgetting factor α.
The classic method of exponential smoothing uses the estimates obtained from the
minimization of a quadratic form

∞∑

j=0

αj(y(t− j)− zT(−j)β)2.

In the case of a robust version let’s start with the quadratic form
∞∑

j=0

αj ρ(y(t− j)− zT(−j)β),

where ρ is a suitable function satisfying usual demands on M -estimates. At this
moment we leave the question of the existence of a derivative apart and let’s perform
a formal differentiation of this form. In this way we obtain normal equations

∞∑

j=0

αj ψ(y(t− j)− zT(−j)β) z(−j) = 0.

These normal equations are very difficult to solve and therefore we use the idea of
substitution by approximative linear equations again. Let’s define adaptive weights

w(t− j, β) =
ψ(y(t− j)− zT(−j)β)
y(t− j)− zT(−j)β

where the unknown parameter β will be substituted by a suitable estimate. For
complexity, let’s put ψ(0)

0 = 1. As the parameter β can change in course of time it
is reasonable to substitute β in the weight w(t− j, β) by the estimate β̂(t− j − 1)
obtained at the time t − j − 1. In this way the original weight w(t − j, β) will be
replaced by the weight w(t− j, β̂(t− j − 1)). At this moment we get to the system
of approximative linear equations

∞∑

j=0

αj w(t− j, β̂(t− j − 1)) z(−j) (y(t− j)− zT(−j)β) = 0.

Now, we must ensure the existence of these infinite series. First, we will discuss the
series ∞∑

j=0

αj w(t− j, β̂(t− j − 1)) z(−j) y(t− j). (∗)

As y(t− j) = zT(−j)β+ e(t− j), this infinite series is the sum of two series, namely
∞∑

j=0

αj w(t− j, β̂(t− j − 1)) z(−j) zT(−j)β

and ∞∑

j=0

αj w(t− j, β̂(t− j − 1)) z(−j) e(t− j).

The conditions for existence in the sense a. s. are given in the following



296 J. MICHÁLEK

Lemma. Let the noise {e(·)} be centered having mutually independent components
with finite bounded dispersions. Further, let the following series be convergent

∞∑

j=0

αj‖z(−j)‖,

then the series (∗) is convergent a. s.

Remark. ‖ · ‖ is a usual Euclidean vector norm.

P r o o f . Let {β̂(t − j − 1)} be quite arbitrary estimates, then thanks to the
construction all the weights w(t − j, β̂(t − j − 1)) are positive a. s. and bounded
between 0 and 1. Denote

SiN =
N∑

j=1

αj |zi(−j)| · |e(t− j)|, i = 1, 2, . . . , p.

There is no problem to show that {SiN} is nonnegative supermartingal for each
i = 1, 2, . . . , p satisfying

E{SiN+1/S
i
N} = SiN + αN+1|zi(−N − 1)|E{|e(t−N − 1)|}.

If E{|e(t − j)|} are bounded from above, then thanks to the above inequality one
can easily prove the existence of the limit

lim
N→∞

SiN

in the sense a. s. As 0 < w(t− j, β̂(t− j − 1)) ≤ 1 then the series

∞∑

j=0

αjw(t− j, β̂(t− j − 1)) zi(−j) e(t− j)

is also a. s. convergent.
The convergence of the series

∞∑
0

αjw(t− j, β̂(t− j − 1)) zi(−j) zk(−j), i, k = 1, 2, . . . , p

is an easy consequence of the convergence of
∑∞
j=0 α

j‖z(t− j)‖2, because

|zi(−j) zk(−j)| ≤ 1
2
|zi(−j)|2 +

1
2
|zk(−j)|2 ≤ 1

2
‖z(−j)‖2.

2
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Then, the unknown parameter β at the time t is estimated as

β̂t =



∞∑

j=0

αj w(t− j) z(−j) zT(−j)


−1 ∞∑

j=0

αj w(t− j) y(t− j) z(−j)

where for the sake of simplicity w(t− j, β̂(t− j − 1)) = w(t− j). Let’s try to find a
recursive relation between β̂t and β̂t+1. First, we need a recursive formula between
the inversion matrices P−1

t+1, P
−1
t where

Pt+1 =
∞∑
0

αj w(t+ 1− j) z(−j) zT(−j) and Pt =
∞∑
0

αj w(t− j) z(−j) zT(−j).

It is evident that

P (t+ 1) = w(t+ 1) z(0) zT(0) + α

∞∑

j=0

αj w(t− j) z(−j − 1) zT(−j − 1).

In order to obtain a recursive formula we are obliged to assume a relation between
z(−k − 1) and z(−k). This relation is expressed via a matrix operator L in the
classical version of exponential smoothing and we will use the same approach, namely

z(−k − 1) = L−1 z(−k)

then
P (t+ 1) = w(t+ 1) z(0) zT(0) + αL−1 P (t) (L−1)T.

At this moment we are ready to use the well known lemma on matrix inversion and
thus we can write

P−1(t+ 1) =
1
α
LT P−1(t)L− LTP−1Lz(0)zT(0)LT(t)Lw(t+ 1)

α(α+ w(t+ 1)zT(0)LTP−1(t)Lz(0))
. (∗∗)

The regularity of the matrix P (t + 1) can be proved by mathematical induction if
we start with any regular symmetric matrix P (0). We also need the regularity of
the matrix L. After this we can write

β̂t+1 = P−1(t+ 1) (w(t+ 1) y(t+ 1) z(0) + αL−1 p(t)),

where the vector p(t) =
∑∞
k=0 α

kw(t−k) y(t−k) z(−k). Using the recursive relation
(∗∗) and after not complicated calculation we can write

β̂(t+ 1) = LT β̂(t) +
G(t) z(0)w(t+ 1)

α+ w(t+ 1) zT(0)G(t) z(0)
[y(t+ 1)− (Lz(0))Tβ̂(t)]

where we have used the denotation G(t) = LT P−1(t)L. At the first sight we see
that this robust version of exponential smoothing is very similar to the Kalman filter
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because y(t+1)− zT(1) β̂(t) plays the role of an innovation sequence and the vector
function

w(t+ 1)G(t) z(0)
α+ zT(0)G(t) z(0)w(t+ 1)

can be understood as a gain function. Let’s multiply both the sides of the last
equality by zT(0). In this way we obtain the recursive relation for robust exponential
smoothing

zT(0) β̂t+1 = (Lz(0))T β̂t +
zT(0)G(t) z(0)w(t+ 1)

α+ zT(0)G(t) z(0)w(t+ 1)
[y(t+ 1)− (Lz(0))T β̂t].

As Lz(0) = z(1) this last equality gives a relation between robust filtering and
robust smoothing because y(t+1)−zT(1) β̂t is an error of one-step-ahead prediction,
zT(0) β̂t+1 is de facto ŷ(t + 1|t + 1), i. e. a filtered value of y(t + 1) and zT(1) β̂t is
a predicted value ŷ(t + 1|t) based on information up to time t. Using this facts we
can rewrite the last equality into the following form

ŷ(t+ 1|t+ 1) = ŷ(t+ 1|t) +
U(t)w(t+ 1)

α1 + U(t)w(t+ 1)
[y(t+ 1)− ŷ(t+ 1|t)]

if U(t) = zT(0)G(t) z(0). The relation between U(t) and U(t + 1) is not so simple
although U(t) = zT(1)P−1(t) z(1) as one can simply show. Using the relation
between P−1(t+ 1) and P−1(t) we can easily prove that

U(t+ 1) =
1
α
zT(2)P−1(t) z(2)− 1

α

zT(2)P−1(t) z(1) zT(1)P−1(t) z(2)
α+ w(t+ 1)U(t)

w(t+ 1)

which gives a more formal relation, namely,

‖z(1)‖2t+1 =
1
α

(
α‖z(2)‖2t + w(t+ 1)

[‖z(2)‖2t ‖z(1)‖2t − 〈z(1), z(2)〉2t
]

α+ w(t+ 1) ‖z(1)‖2t

)

if ‖z(i)‖2k = zT(i)P−1(k) z(i), because P−1(·) is positive definite with probability 1,
as follows from the recursive relation.

Next, we will concentrate ourselves on the two most important cases of expo-
nential smoothing used in practice. First, we will deal with simple exponential
smoothing, which is described by a model with a locally constant trend

y(t+ j) = βt + e(t+ j). (3)

Here, the parameter β is a scalar, z(j) = 1 for every j and L = 1. Then the recursive
algorithm for estimating β is given by

β̂t+1 = β̂t +
w(t+ 1)G(t)

α+ w(t+ 1)G(t)
[y(t+ 1)− β̂t].

As easy to see, here P−1(t) = G(t) and hence

P−1(t+ 1) =
P−1(t)

α+ w(t+ 1)P−1(t)
.
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If, at this moment we compare this result with that given in Cipra [2] for the case
of simple exponential smoothing, we see that both the algorithms are identical.
This algorithm is relatively very simple and is very similar to the classical simple
exponential smoothing because

β̂t+1 =
α

α+ w(t+ 1)P−1(t)
β̂t +

w(t+ 1)P−1(t)
α+ w(t+ 1)P−1(t)

y(t+ 1).

There is no problem to show that P (t+ 1) = αPt +w(t+ 1), which is a very simple
relation. Using this, the robust simple exponential smoothing can be expressed as

β̂t+1 = β̂t +
w(t+ 1)

αPt + w(t+ 1)
(y(t+ 1)− β̂t)

where

Pt = αt P0 +
t∑

j=1

αt−j w(j).

Let’s denote θt = β̂t − βt, then the above relation can be rewritten as

θ̂t+1 = θ̂t +
w(t+ 1)

αPt + w(t+ 1)
(e(t+ 1)− θ̂t)

which gives

θ̂t+1 =
αt+1 θ̂0∑t+1−j

j=1 w(t+ 1− j)
+

∑t+1
j=0 w(t+ 1− j) e(t+ 1− j)
∑t+1
j=0 α

t+1−jw(t+ 1− j)
,

if for simplicity we put P0 = 1 and w(0) = 1. Thus, we obtained the expression for
θ̂t+1 using θ̂0, {e(·)} and the weights {w(·)} only.

Remark 1. In case α < 1 there is no possibility to investigate an asymptotic
behaviour of θ̂(t) for lack of information. Although the case with α = 1 does not
belong to exponential smoothing procedures, despite of this fact we can consider
the above given algorithm. It would be very nice to prove the consistence of θ̂(t)
in the stable case βt → β∞ if t → ∞. Such a result would prove the consistence
of the proposed robust procedure. But, the author of the paper has not so far met
with success in proving such a result when the weights are derived from the classical
Huber function. In the following theorem the consistence of θ̂(t) is proved under the
use of a modified Huber function. On the basis of this result we cannot, of course
speak about the robustness in the classical sense due to Huber and Hampel, but we
can speak about the “practical” robustness because Theorem 1 ensures the stability
of this algorithm for α = 1 in practice.

The following theorem describes the asymptotic behaviour of θ̂t if α = 1 and t
runs to infinity.
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Theorem 1. Let in the model (3) with locally constant trend limt→∞ βt = β exist
finite and {e(·)} be iid random variables with a symmetric distribution function with
vanishing mean and finite dispersion. Let adaptive weights w(·) be derived from a
modified Huber function ψHMOD(·), which is defined as

ψHMOD(x) = x for 0 ≤ x ≤ c

ψHMOD(x) = c for c < x ≤ C∞

ψHMOD(x) = ε(x− C∞) + c for x ≥ C∞

and ψHMOD(x) = −ψHMOD(−x) for x < 0,

where ε is a small positive real number, c < C∞, c > C∞ε. The adaptive weights
are then defined as

w(x) =
ψHMOD(x)

x
.

Then θ̂t → 0 a. s. and in the quadratic mean sense, too.

P r o o f . Using the relation ψHMOD(x) = w(x)x the robust algorithm for simple
exponential smoothing can be expressed as

θ̂t+1 = θ̂t +
ψHMOD(e(t+ 1)− θ̂t)

St+1

where St+1 =
∑t+1
j=0 w(j), w(0) = 1. One can easily show that ε < w(x) ≤ 1 and

hence
ε(t+ 1) < St+1 ≤ t+ 1 a. s..

Then

θ̂2t+1 = θ̂2t − 2θ̂t
ψHMOD(θ̂t − e(t+ 1))

St+1
+
w2(t+ 1) (e(t+ 1)− θ̂t)2

S2
t+1

.

Let Ft = σ(e(t), e(t − 1), . . .). As there exists E θ̂2t+1 (it follows from the recursive
relation and properties of {e(·)}), we can consider the conditional expected value

E(θ̂2t+1|Ft) = θ̂2t − 2θ̂tE

{
ψHMOD(θ̂t − e(t+ 1))

St+1

∣∣∣∣∣Ft
}

+E

(
w2(t+ 1) (θt − e(t+ 1))2

S2
t+1

∣∣∣∣Ft
)
.

The definition of ψHMOD(·) gives

E

{
w2(t+ 1) (e(t+ 1)− θ̂t)2

S2
t+1

∣∣∣∣∣Ft
}

≤ E

{
(e(t+ 1)− θ̂t)2

ε2(t+ 1)2

∣∣∣∣∣Ft
}

=
1
ε2

σ2

(t+ 1)2
+

1
ε2

1
(t+ 1)2

θ̂2t a. s.
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because θ̂t is Ft-measurable and E{e2(t + 1)} = σ2. In the next step we will show
that the quantity

θ̂t E

{
ψHMOD(θ̂t − e(t+ 1))

St+1

∣∣∣∣∣Ft
}
≥ 0 a. s..

Thanks to independence e(t+ 1) and Ft we can write

E

{
ψHMOD(θ̂t − e(t+ 1))

St+1

∣∣∣∣∣Ft
}

=
∫ ∞

−∞

ψHMOD(θ̂t − x)

St + w(|θ̂t − x|) dF (x) a. s.

where F (·) is a symmetric distribution function of e(t+ 1). The random variable St
is Ft-measurable. A very important fact following from the definition of w(·) is that
the function

ψHMOD(x)
St + w(|x|)

is a nondecreasing odd function in x ∈ R, which is negative for x < 0, vanishing at
0 and positive for x > 0. Then we have

∫ ∞

−∞

ψHMOD(x)
St + w(|x|) dF (x) = 0.

Then, for an arbitrary θ̂t < 0

ψHMOD(x− θ̂t)

St + w(|x− θ̂t|)
≥ ψHMOD(x)
St + w(|x|)

and hence ∫∞
−∞ ψHMOD(x− θ̂t)

St + w(|x− θ̂t|) ≥ 0,

which gives

θ̂t E

{(
ψHMOD(e(t+ 1)− θ̂t)

St+1

∣∣∣∣∣Ft
)}

≤ 0.

A similar approach can be used for the case θ̂t > 0. Let’s denote

ηt = 2θ̂t E

{(
ψHMOD(θ̂t − e(t+ 1))

St+1

∣∣∣∣∣Ft
)}

.

We proved that ηt ≥ 0 a. s. for each t ∈ N . Then

θ̂2(t+ 1) ≤
(

1 +
1

ε2(t+ 1)2

)
θ̂2t +

1
ε2

σ2

(t+ 1)2
− ηt.

As the series
∑∞
t=0

σ2

ε2(t+1) <∞, it is possible to use the result on supermartingales,

see Robbins and Siegmund [4], which proves the convergence {θ̂2t } in the sense a. s.
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This result also proves the convergence of the series
∑∞
t=0 ηt, which will be used now

to prove θ̂t → 0 a. s.
As

ηt = 2θ̂t E

{
ψHMOD(θ̂t − e(t+ 1))

St + w(|θ̂t − e(t+ 1)|)

∣∣∣∣∣Ft
}

= 2
∫ ∞

−∞

θ̂t ψHMOD(θ̂t − x)

St + w(|θ̂t − x|) dF (x)

and
∑∞
t=1 S

−1
t = +∞ a. s. although S−1

t −→
t→∞ 0, we can ηt expressed as

ηt =
2
St

∫ ∞

−∞

θ̂t ψHMOD(θ̂t − x)

1 + w(|θ̂t−x|)
St

dF (x)

where the last integral must be nonnegative as ηt ≥ 0 a. s. and St > 0 a. s., too.
Thanks to the construction of ψHMOD(·)

ηt ≥ 2
t

∫ ∞

−∞

θ̂t ψHMOD(θ̂t − x)

1 + w(θ̂t−x)
St

dF (x) ≥ 0 a. s.

and hence ∞∑
t=1

1
t

∫ ∞

−∞

θ̂t ψHMOD(θ̂t − x)

1 + w(θ̂t−x)
St

<∞ a. s.

But
∑∞

1
1
t = +∞ and hence a subsequence {tj}∞j=1 must exist such that

∫ ∞

−∞

θ̂tj ψHMOD(θ̂tj − x)

1 +
w(|θ̂tj

−x|)
Stj

dF (x) −→
j→∞ 0.

We know that {θ̂2tj} is a. s. convergent. Thus there exists a subsequence {θ̂tjk
} such

that
lim
k→∞

θ̂tjk
= θ̂∞ a. s.

In this way, we have proved that

θ∞

∫ ∞

−∞
ψHMOD(θ∞ − x) dF (x) = 0

because |ψHMOD(z)| ≤ |z| and we assume the existence of
∫∞
−∞ z2 dF (x) = σ2. At

this moment we have two possibilities. Either θ∞ = 0 or
∫ ∞

−∞
ψHMOD(θ∞ − x) dF (x) = 0,

which implies thanks to the symmetry of F (·), the property ψHMOD(−z)=−ψHMOD(z)
and its strict monotony in a neighbourhood of 0 that in this case θ∞ = 0, too. This
completes the proof. 2
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Remark 2. The modification of the Huber function ψH(·) is necessary owing to
the convergence of the series

∞∑
t=0

S−2
t+1

as we need the boundedness of adaptive weights from below w(·) ≥ ε. But such an
assumption is only a technical matter because C∞ can be arbitrarily large and ε,
in the opposite, can be almost zero but positive. In practice, these assumptions are
automatically satisfied by using a computer.

Secondly, we will study double exponential smoothing in detail. Here, we start
with the model

y(t+ j) = β0(t) + β1(t) j + e(t+ 1), j = 0,±1,±2, . . .

and we are looking for estimates β̂0(t), β̂1(t) satisfying approximative normal equa-
tions

∞∑

j=0

αj w(t− j) (y(t− j)− β0 + β1j) = 0

∞∑

j=0

αj j w(t− j) (y(t− j)− β0 + β1j) = 0,

where the adaptive weights w(t− j) are functions of one-step-ahead prediction

y(t− j)− β̂0(t− j − 1)− β̂1(t− j − 1).

Here, in the matrix denotation we have

βt =
[
β0(t)
β1(t)

]
, z(j) =

[
1
−j

]
and L =

(
1 0
−1 1

)
.

Using these relations after a short calculation we obtain

β̂0(t+ 1) = β̂0(t) + β̂1(t) +
w(t+ 1)A2(t+ 1) [y(t+ 1)− β̂0(t)− β̂1(t)]

α2R(t) + w(t+ 1)A2(t+ 1)

β̂1(t+ 1) = β̂1(t) +
w(t+ 1)A1(t+ 1) [y(t+ 1)− β̂0(t)− β̂1(t)]

α2R(t) + w(t+ 1)A2(t+ 1)

where A1(·), A2(·) and R(·) are calculated recursively by

R(t+ 1) = α2R(t) +A2(t+ 1)w(t+ 1)
A2(t+ 1) = α(A1(t+ 1) +A2(t) +A1(t))
A1(t+ 1) = α(A0(t) +A1(t))
A0(t+ 1) = w(t+ 1) + αA0(t).

At the first sight we see that this robust version of double exponential smoothing is
very similar to the classical version.
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3. A ROBUST HOLT’S METHOD

The classical Holt’s method, which is frequently used in practice is based on the
choice of two independent forgetting factors α1, α2 as seen from the following rela-
tions

β̂0(t+ 1) = α1 y(t+ 1) + (1− α1) (β̂0(t) + β̂1(t))

= β̂(t) + β̂1(t) + α(y(t+ 1)− β̂0(t)− β̂1(t))

β̂1(t+ 1) = α2(β̂0(t+ 1)− β̂0(t)) + (1− α2) β̂1(t)

= β̂1(t) + α2α1(y(t+ 1)− β̂0(t)− β̂1(t))

where 0 < αi ≤ 1, i = 1, 2.
We see that Holt’s method is a combination of two double exponential smoothing

procedures with forgetting parameters α and β, where α ≥ β. On the basis of this
fact we propose the following robust version of Holt’s method, namely

β̂0(t+ 1) = β̂0(t) + β̂1(t) +
w(t+ 1)A2(α, t+ 1)

R(α, t+ 1)
[y(t+ 1)− β̂0(t)− β̂1(t)]

β̂1(t+ 1) = β̂1(t) +
w(t+ 1)A1(β, t+ 1)

R(β, t+ 1)
[y(t+ 1)− β̂0(t)− β̂1(t)]

where A2(α, j), R(α, j) are derived using a forgetting factor α, A1(β, j) and R(β, j)
are calculated using a forgetting factor β, where of course α ≥ β as it is described
in the previous robust version of double exponential smoothing.

4. ROBUST VERSION WITH UNKNOWN σ

As written in Introduction the construction of an M -estimate is based on minimiza-
tion of the “quadratic” form

t∑

j=1

ρ

(
y(j)− zT(j) a

σ

)
σ + c σ

with respect to both a and σ (for details see Dutter & Stockinger). Here σ is a
standard deviation of noise. In practice we don’t know usually the parameter σ and
hence the proposed robust version of simple and double exponential smoothing must
be modified in this direction. We can follow the approach given in Cipra [2]. First,
we must modify adaptive weights w(t− j, â(t− j)), j = 0, 1, 2, . . .. The weight w(·)
is defined then as the ratio

w(t− j, a) =
ψ

(
y(t−j)−zT(t−j) a

σ

)

y(t−j)−zT(t−j) a
σ

in the case of uknown σ. As the unknown parameter a is substituted by the latest
estimate â(t − j − 1) it is reasonable to estimate σ similarly, i. e. by an estimate
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σ̂(t− j − 1) obtained at the time t− j − 1. Then the random variable

y(t− j)− zT(t− j) â(t− j − 1)
σ̂(t− j − 1)

is the standardized one-step-ahead prediction error. The calculation of σ̂(t− j) can
be given by a very simple recursive relation proposed in Cipra [2], namely

σ̂(t− j) = γ|y(t− j)− zT(t− j) â(t− j − 1)|+ (1− γ) σ̂(t− j − 1)

where γ is chosen close to zero.
Despite of this complication we can state the following very interesting

Theorem 2. Let all the assumptions from Theorem 1 be satisfied and further, let
the unknown parameter σ be estimated by a recursive procedure

σ̂(t+ 1) = ft+1(σ̂(t), e(t+ 1)),

where {ft+1(·, ·)} are chosen in such a way that σ̂(t) > 0 a. s. for each t ∈ N . Then
{θ̂2(t)} is a. s. convergent when t runs to infinity.

P r o o f . The robust algorithm with unknown σ can be rewritten as follows

θ̂t+1 = θ̂t +
σ̂(t) · ψHMOD

(
e(t+1)−θ̂t

σ̂(t)

)

S(t) + w(t+ 1)
,

with S(t) =
∑t

0 w(t), w(0) = 1. After making powers on both the sides we obtain

θ̂2t+1 = θ̂2t − 2θ̂t
σ̂(t) · ψHMOD

(
θ̂(t)−e(t+1)

σ̂(t)

)

S(t) + w(t+ 1)
+
w2(t+ 1) (e(t+ 1)− θ̂t)2

S2(t+ 1)
.

Then, thanks to the definitions of ψHMOD(·) and w(·) and positivity of σ̂(t) we can
assert that the function

ψHMOD

(
x
σ̂t

)

St + w
(∣∣∣ xσ̂t

∣∣∣
)

is nondecreasing and odd. In case θ̂t < 0 we obtain similarly as in the proof of
Theorem 1 that

θ̂t σ̂t

∫ ∞

−∞

ψHMOD

(
x−θ̂t

σ̂t

)

S(t) + w
(∣∣∣x−θ̂t

σ̂t

∣∣∣
) dF (x) ≤ 0

because
∫ ∞

−∞

ψHMOD

(
x
σ̂t

)

S(t) + w
(∣∣∣ xσ̂t

∣∣∣
) dF (x) = 0.
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The same approach can be applied in case θ̂t > 0. There is no problem to show that
ε < w

(
x
σ

) ≤ 1 for each x ∈ R1 and each σ > 0. Using the inequality for super-
martingales mentioned in the proof of Theorem 1, we can state that the sequence
{{θ̂t}2} is convergent. But, in order to prove the convergence to zero we need the
convergence of the estimate {σ̂(t)} to any positive finite number. This demand is
more complicated owing to a mutual relation binding θ̂t and σ̂t together in recursive
algorithms. 2
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