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SYNTHESIS OF CHAOTIC SYSTEMS!

ANTONIN VANECEK AND SERGEJ CELIKOVSKY

Scenario for the chaos synthesis was developed and tested. Namely, choose:

(i) A SISO (single-input single-output) dissipative (i.e. sum of its poles is negative)
linear system of the third or higher order having hyperbolic (i.e. with nonzero real
parts only), semistable (i. e. both positive and negative real parts are always present)
poles.

(ii) Nonlinear static output feedback being odd and strictly monotonous function. The
corresponding closed-loop system should have two additional nontrivial equilibria
such that the appropriate approximate linearizations has again poles with properties
of (i).

(iii) Ze1§0)s of the linear systems that are attracting and parametrized by the feedback gain
according to the Root Locus Method.

It will be demonstrated that the nonlinear system synthetized according (i) — (iii) exibits
chaotic behaviour (i.e. bounded nonstationary motion with sensitive dependence on initial
data) for a wide range of its parameters.

1. CONTROL SYSTEMS CLASSIFICATION

We introduce control systems both (linear and nonlinear) as dynamical systems with
the parameters. A natural and clear geometrical interpretation of these systems will
be suggested.

1.1. Linear control system is the following linear dynamical system with pa-
rameters:
de/dt = Fpz, z€R",

where I, is n x n matrix depending linearly or additively on parameter p € R™.
Typically, Fx = F + GK or F, = F + LH where K, L, G, K are appropriate ma-
trices from linear systems theory (see e.g. [14,10]). Fixing a parameter p € R™
and limiting ourselves to a semisimple hyperbolic (n x n) matrices F}, ([14]), we may
describe the systems geometrically by the decomposition of the state space R™ into
the collection of one-dimensional subspace(s) corresponding to the real eigenvalues
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and/or of two-dimensional subspace(s) corresponding to the pairs of complex con-
jugate eigenvalues. Changing parameter p the previous structure may vary, but the
only equilibrium of the system remains fixed.

1.2. Weakly nonlinear control system is the following nonlinear dynamical
system with parameters:

de/dt = fp(xz), xze€R", peR™

e.g. fx(x) = fo(z) + g(Kz) or fr(z) = fo(z) + Lh(z), where fo, g, h : R" — R"
and K, L are appropriate matrices of parameters. We suppose that there always
exists (at least locally) unique solution passing through the given initial state. We
consider this weakly nonlinear system around an equilibrium point that is hyperbolic,
then it is topologically equivalent (at least locally) to a linear system. Nevertheless,
dependence on parameter p € R™ remains nonlinear. Weakly nonlinear systems
behaviour is qualitatively the same as in the linear case. Instead of stable and ustable
subspaces we have in weakly nonlinear case curved stable and unstable manifolds
tangent to them. Topological transformation of a given weakly nonlinear system into
the linear one may be intuitively viewed as “deformation” of curved manifolds into
their tangents. Weakly nonlinear systems analysis and synthesis may be regarded
as very similiar to the linear case.

1.3. Strongly nonlinear control systems is the following nonlinear dynamical
systems with parameters

dz/dt = fp(xz), ze€R", peR™,

that is globally defined. We suppose that there always exists globally defined unique
solution passing through the given initial state. Strongly nonlinear systems are not
globally topologically equivalent to a linear system. They may have several isolated
equilibria. The behaviour of these systems is locally everywhere unstable, globally
it is chaotic, i.e. bounded nonstationary behaviour with the sensitive dependence
on initial data, topological transitivity and mixing property.

This paper is devoted to the synthesis of the strongly nonlinear systems.

2. CHAOTIC SYSTEMS DESIGN

With the change of paradigm, now evaluating chaos in some cases positively, [4, 6,
8,12] — mainly due to its mixing properties, we have postulated a new control goal:
synthesis of the chaotic system. The usual way is to search global bifurcations
— homoclinic or heteroclinic orbits, [17]. This way enables a rigorous (but very
complicated) proof of the chaos presence. Nevertheless, it is mainly related with the
analysis of systems rather then with their synthesis. See [5] for an application of
this approach to a particular class of systems.

We suggest here rather different approach. Namely, we provide a generalizations
of Chua’s circuit, [3,4, 11]. Contrary to the analysis of this Chua’s circuit (see [3, 11]),
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we concentrate ourselves on the synthesis. Our generalizations of Chua’s circuit are
based on the observation that the Chua’s circuit may be viewed as Lur’e nonlinear
system with a single static nonlinearity. The explicit use of this Lur’e structure
for chaotic system was initiated by Genesio and Tesi in [7]. We will design chaotic
behaviour searching suitable parameters representing the scalar nonlinearity N L(y)
with the odd symmetry and the linear subspace(s) of real and complex conjugate
poles and zeros.

The chaotic system will consists from the linear system with the scalar input
U(s) € C and the scalar output Y (s) € C with the transfer function

) — g(s—z1)(s —22) ... (58— 2zp—_1) .
Yis)= (s —s1)(s—52)...(s— 8n) Uls),

and nonlinear, static, odd, strictly monotonous output feedback
U(s) = NL(Y(s)) = =NL(-Y (s)).
The most simple (up to the weight) symmetric, nontrivial nonlinearity is
NL(y(t)) = =y* (1) /3 + qy°(t)/5 = =N L(—y(t)).

A state space realization of the nonlinear circuit in the canonical Frobenius observ-
able form with the output y = z,, gives the nonlinear system

dz/dt = Fx + G (=23 /3 + q27./5),

I (1) ... 0 ?1 G,
2
Tr = x2 5 F = . 3 G = G2

For ¢ # 0, the solutions of Fiz, + Gi(—z3/3 + qz2/5) = 0 are the output
coordinates of the equilibria:
1/3—SQRT
2q/5

1/3+SQRT

), Yeq2 =Tn,eq2z= \/( 2q/5

),

Yeq0 = Tn,eq0 :07 Yeql = Tn,eql = \/(

1 qky
SQRT = \ﬂg - 57611)7 Yeq3 = ~Yeql = Tn,eq3s Yeqd = ~Yeq2 = Tn,eqd-

Than for i = 1,2,...,n: Zijeqp = —FiZneqr — Gi(—mieqk/i’) + qxieqk/t’)) and
eqy, k = 1,2 have the coordinates z;.qx (j = 1,...,n), respectivelly. By the
symmetry: eqs = —eqy, eqq = —eqo. Of course, eqg =0 € R".

For ¢ = 0 we have instead of 5 equilibria only 3 equilibria instead of 5. The
solution of Fiz, + G1(—x3/3) = 0, gives the output coordinates of the equilibria
Yeq0 = Tn,eq0 = 0, Yeql = Tneql = \/(3F1/G1)7 Yeq3 = Tneq2 = ~Yeq2- Than for
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T =1,2,...,n Tieqr = —FiTpeq — Gi(—$iyeq1/3), The eq; has the coordinates
Zjeqr (J=1,...,n). From the symmetry: eqs = —eq;. Again, eqyp =0 € R".

For both ¢ # 0 and ¢ = 0 the equilibria lie on the same line and they are
symmetric with respect to the origin 0 € R™. Moreover due the invariance dz/dt —
Fr —G(=23/3+4 qx®/5) = d(—z)/dt — F(—z) — G(—(—2%)/3 + q(—2°)/5) = 0 each
solution z(t) has a symmetric counterpart —z(¢). Consult [3,17] to understand the
importance of the symmetry: one symmetrical equation reduces the dimensionality
of the variety on which the solutions evolve by one; the space of symmetric functions
is smaller than the space of all functions and so the number of parameters needed
to be investigated on chaotic behavior is smaller.

According to the idea of the Chua’s circuit, we will choose the linear system as
hyperbolic, dissipative, nonpotential system. For the prescription of characteristic
polynomial

ST Fus" Tl —Fys — Fy = (5—51) (s —52)...(s— 5,)
with the poles s1, s9, ..., s,, we shall use the Vieta’s formulas
Fi=(=1)""1's189...80, ..., Fy =81 +82+...+ sn.

The condition of dissipativity (negativity of the divergence of the right-hand side
vector field gives:

$1+ 824 ...+ sy +g(—a2 +qzh) <O0.
According to the theorem of Liouville
dv/dt = fD(t) divf(z) du,

where V(t) is the volume of the variety D(t) (see [2]). The dissipativity guarantees
that any initial volume converges to a zero volume which may be an attractor or
that all trajectories tend to some set with zero volume, [9].

Similarly the G; from the gain g and the zeros z;

Gi=(-1)"1Ygz1...2n-1, ..., Guo1=—g(z1+.... + 2p_1), Gn =g

For ¢ # 0, near the equilibria states eqg = 0, eq1, eqs = —eq1,eqe,eqs = —eqo
the nonlinear system, with the output nonlinearity —y°/3 + qy°/5 is behaving lo-
cally as the linear systems with the state matrices F, F + Guiq, F + Gog, where
Gmid = G(_I%,eql + qxf‘b,eql)’ GOff = G(_x%,ezﬂ + qxi,qu) and where _IQ +
gzt = (—23/3 + q2°/5)'. The state matrices have the eigenvalues s;, sj1, sj3 =
$j1, Sj2, Sja = Sj2, and the eigenvectors vjo, vj1, vj3 = vj1, V2, Vs = U2 (J =
1,...,n) which are either the real lines — for the real eigenvalues or the real planes
— for pairs of the complexely conjugate eigenvalues, going through the equilibria
eqo, €q1, €92, €qs, eqs, €qs. The Root Locus Method of Bode and Evans originated
from the stability analysis using the poles with the change of the gain with the
change of the working point. For us, the working points are both the three equilib-
ria and the middle points — parameterized by z,, = y. The equation of the Root
Locus, parameterized by the output x,, is:

(s—s1)(s—s82)...(s—sn) + (xfl fqxi)g(zle)(z722)...(,272”,1) =0.
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For x, = 0, the roots are s1, so, ..., S,; for x,, inproper, the roots are z1, z9, ..., 2,1
and the inproper root.

The condition of hyperbolicity guarantees that the solution is contracting in some
directions and expanding in some other directions. This condition together with
synergistic effect of several equilibrium hyperbolic points leads to the solutions that
expand from the vicinity of an equilibrium and is for some time catched at the
vicinity of the other equilibrium, etc. [11].

The condition of nonpotencionality or the existence of either stable or unstable
planes corresponding to complex conjugate poles guarantees the rotation which is,
together with hyperbolicity, part of the mechanism of the Smale’s horseshoe [3,17].
The nonpotentionality guarantees that during the stay at the vicinity of equilibrium
there are several turns near that equilibrium.

3. AN EXAMPLE OF SYNTHESIZED CHAOTIC SYSTEM

Fig. 1. Upper left: The slope of feedback quintic nonlinearity parameterizes the Root
Locus giving rise of the chaos near the inner three of the five equilibria. On upper left there
is given the output symmetric quintic nonlinearity —y® /34 qy®/5 with the slope —y> +qy*.
Upper right: The Root Locus parameterized by output y starting from the poles x of
the center equilibrium, going through the poles * of the middle equilibria, than turning
back to poles x of the center equilibria, going through the poles + of the far-off-center
equilibria and then reaching the zeros o. In all the equilibria, the divergence is negative.
On the bottom: The integrations start near the center equilibrium eq0, the right middle
off-center equilibrium eq1, and right far-off-center equilibrium eq2 on the eigenvectors with
the unstable eigenvalues. The first solution starting near eqO is expanded to the vicinity
of right middle equilibrium eq2, rotates there and expands to the vicinity of the center
equilibrium eq0, rotates there and then expands to the left middle equilibrium eg3, etc.
keeping the symmetry. Similarly for the two other solutions starting near eql and eq2.
After some transient time, all three solutions get mixed in the proximity of the chaotic
attractor of the designed system.
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We present the most advanced example: system of sixth order and quintic nonlin-
earity. Nevertheless, initially we started with the third order and cubic nonlinearity
and then we investigated the orders 4,5,6. Then we used quintic nonlinearity for
the third order and continued up to order 6. To demonstrate the chaotic behaviour,
we know from our previous research (see [15]), that the good choice is to start the
integration of chaotic systems in the following way. We integrated our strongly non-
linear system starting near equilibria on unstable directions — which corresponds to
an unstable eigenvalues of appropriate approximate linearizations. For the specific
dimension of the state space RS the specific poles s, ..., sg, the zeros z1,. .., 25, the
gain g and the weight of the quintic term ¢ were designed; the results are shown on
Figure 1. It demonstrates even the basic mixing properties of the chaos: the three
solutions get mixed. The search in the space R!? of 6 real components of the 6 poles,
5 real components of the 5 zeros, 1 real gain and 1 real weight was successful due to
the knowledge of the classical Root Locus Method.

The computations were done in PC-MatLab (later in AT-MatLab) and imple-
mented on diskettes CanonChaos I1 (¢ = 0), I1I (¢ # 0) — in R?, R%, R5 RS.

(Received February 3, 1993.)
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