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PREDICTABILITY AND CONTROL SYNTHESIS

Philippe Declerck

Processes modeled by a timed event graph may be represented by a linear model in diöıd
algebra. The aim of this paper is to make temporal control synthesis when state vector is
unknown. This information loss is compensated by the use of a simple model, the “ARMA”
equations, which enables to introduce the concept of predictability. The comparison of the
predictable output trajectory with the desired output determines the reachability of the
objective.

1. INTRODUCTION

Discrete Event Dynamic Systems (DEDS) represent a great number of systems such
as flexible manufacturing systems, multiprocessor systems, and transportation net-
works that are characterized as being concurrent, asynchronous, distributed and
parallel. Among formalisms used to represent DEDS, Timed Petri Nets explicitly
integrate time. Timed Event Graphs are a subclass that plays an important role
because of its deterministic behavior. Its evolution is described by linear systems
defined on a diöıd. The interpretation of each variable is, for example, of “dater”
type for (max,+) algebra: each function xi(k) represents the date of the kth firing
of transition xi; ⊕ stands for the max operation while the usual addition plays the
role of the multiplication, denoted ⊗.

An important objective is to make temporal control synthesis of systems. His-
torically, the PERT graph and potentials-tasks are the first well-known classical
approaches enabling the definition of the execution calendar of a given project [13].
The results can be given by two algorithms that give respectively the earliest times
and the latest times of the tasks. Using the diöıd algebra, [1, 7] generalize for
processes with repetitive tasks. They solve the following classical problem: given
a production system, how can we compute the latest dates of the part inputs in
such a way that the parts be produced at the latest before the desired dates? It
can be proved that, for the system which dater equations gives the lowest solution
(the earliest times), the greatest solution (the latest times) is explicitly given by the
backward recursive equations where the co-state vector plays the role of the state
vector. This control theory is similar to the adjoint-state equations of optimal con-
trol theory. The difference between the co-state and the state represent the “spare
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time” or the “margin” which is available for the firing of the transitions. A negative
difference prevents the future deadlines from being met.

Thus, this approach requires the vector state values. The knowledge of the model
and of the initial conditions enable us to characterize the state vector with a state
equation iteration. Unfortunately, this solution disregards unavoidable model errors
and must start from a known state. To overtake these difficulties, we propose the
use of a different model composed of equations called “ARMA” by analogy with
ARMA equations used in classical control system theory. We show the possibility
of using “ARMA” model to make a temporal control synthesis without knowing the
state vector [8]. By example, this situation occurs when the process undergoes a
failure and must be recovered. The model presents a description rupture, generating
a misappreciation of the state vector. In this case, the problem is to compute, after
this past evolution of the system, the latest firing dates of the input transitions
in such a way that the output events occur at the latest before the desired date
[9]. The model is supposed to be exact in the horizon of application of the control
synthesis [10].

This paper is organized as follows. We first give notations and background con-
cerning diöıds. We then, present the problem and study the “predictability” concept
for the “d-cyclic” systems. Finally, we propose a multi-step control synthesis based
on the “ARMA” model. The approach is applied to a short example in the annex.

2. PRELIMINARY

One of the tools used in this paper is (max,+) algebra, a particular example of
the algebraic structure generally called diöıd. In this introduction, we shall limit
ourselves to present notations and main concepts. A complete description may be
found in [1][11].

A semi-ring S is a triplet (S,⊕,⊗) where (S,⊕) and (S,⊗) are monöıds, ⊕ is
commutative, ⊗ is distributive with respect to ⊕ and the zero element of ⊕ is the
absorbing element of ⊗. A diöıd D is an idempotent semi-ring. The set < ∪ {−∞}
provided with max denoted ⊕ and with addition denoted ⊗ is usually called (max,+)
algebra and is an example of diöıd.

We have: <max = (< ∪ {−∞},⊕,⊗} with
a⊕ b = max(a, b); ε = −∞ is the zero element of ⊕
a⊗ b = a + b; e = 0 is the identity element of ⊗
a⊕ a = a (idempotency of ⊕)
a⊗ ε = ε⊗ a = ε (absorbing element ε).

The sign ⊗ will be omitted as usual when this causes no risk of confusion (a⊗b = ab).
Cyclicity and residuation notions will be used again. Let λ be the maximum

mean value of a circuit’s weight of a graph associated with a general matrix A. λ is
also the maximum eigenvalue of this matrix. A matrix A is cyclic if there exist d
and m such that: (∀ i ≥ m) Ai+d = λdAi with λd = d× λ in the usual notations.

d is called cyclicity and we say that A is d-cyclic. In this paper, we take the
hypothesis that A is d-cyclic.
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Theorem 1. Every irreducible matrix is d-cyclic.

The following definition expresses the output trajectory characteristic. It may
also be applied to the control or to the desired output after a past evolution of the
process.

Definition 2. The output y follows a d-cyclic trajectory starting from k = ks to
kf if y(k) ≥ λdy(k − d) with ks ≤ k ≤ kf .

We denote a\b = max{x | ax ≤ b} the left residuated of b by a (also called the
subsolution of equality ax = b).

We denote A\B = max{x | Ax ≤ B} with A ∈ <m.n
max, x ∈ <n

max, B ∈ <m
maxand

A\B = At¯B, where ¯ is a matrix product where operation ⊕ and ⊗ of are replaced
respectively by ∧ (minimum) and \ of <max. The matrix product ¯ enables us to
calculate easily A\B.

3. MODELS

3.1. State equation

In the diöıd (max,+), the model has the following expression

x(k + 1) = Ax(k)⊕Bu(k + 1) (1)
y(k) = Cx(k)
x(0) = x0

where the control u, the output y and the state x are defined on < ∪ {−∞}. In
this paper, we consider the Single-Input/Single-Output case. x(k) is a n.1 vector of
completion times for the kth event.

We note

Y k1
k2

=




y(k1)
y(k1 + 1)
...
y(k2)


 , Uk1

k2
=




u(k1)
u(k1 + 1)
...
u(k2)




and gi = CAiB. To simplify the notations, we write equally Y for Y k1
k2

and U for
Uk1

k2
, if the context specifies the vectors without ambiguity. From the state equation,

we deduce

y(k + h) = CAhx(k)⊕
h−1∑

j=0

giu(k + h− j)

and

Y k+1
k+h = Hx(k)⊕GUk+1

k+h with H =




CA
CA2

...
CAh−2

CAh−1



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and

G =




g0 ε . . . ε ε
g1 g0 . . . ε ε
...

... . . .
...

...
gh−2 gh−3 . . . g0 ε
gh−1 gh−2 . . . g1 g0




.

3.2. “ARMA” model

Let us recall the principle of the generation of the “ARMA” equations.
From the state equation, we deduce the two following equations:

λdy(k − d) = λdCAmx(k −m− d)⊕ λd
m−1∑

j=0

gju(k − d− j)

y(k) = CAm+dx(k −m− d)⊕
m+d−1∑

j=0

gju(k − j).

We note

a1 =
m−1∑

j=0

gju(k − d− j); a2 =
m+d−1∑

j=0

gju(k − j)

and we respectively add a2 and λda1 to the previous equations.

λdy(k − d)⊕ a2 = λdCAmx(k −m− d)⊕ λda1 ⊕ a2

y(k)⊕ λda1 = CAm+dx(k −m− d)⊕ a2⊕ λda1.

As the matrix A is cyclic, we can eliminate the state. We deduce

y(k)⊕ λda1 = λdy(k − d)⊕ a2

or

y(k)⊕ λd
m+d−1∑

j=0

gj−du(k − j) = λdy(k − d)⊕
m+d−1∑

j=0

gju(k − j). (2)

Each term contains a single output and a function of the control. However, as
the addition does not have the property of symmetry, we cannot express the output
y(k) from the other terms. One of the objectives will be to reduce and to exploit
this structure.

4. CONTROL SYNTHESIS

4.1. Presentation of the problem

Suppose that some events be designated as controllable, meaning that their input
transitions may be delayed from firing until some arbitrary time. The delayed en-
abling times u(k) for the controllable events are to be provided by a supervisor.
Let us suppose that we wish to slow the system down as much as possible without
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causing any event to occur later than some sequence of execution times Z. We are
equally, interested by a regular behavior of the output trajectory and a constraint
will be the d-cyclicity: one application is high-frequency transportation systems,
for instance [2]. Moreover, we consider a past evolution of the process: it enables
changing the desired output, therefore a modification of the production rate. So, let
us consider the following problem.

Knowing the dates’ values of the control and the output, the number of events
being inferior or equal to k0 and a sequence of the desired output z(k), k ranging
from ks = k0 + 1 to kf = k0 + h, the problem is to determine the greatest control
sequence u(k) such that the output trajectory under the control effect satisfy the
following points:

a) each output y(k) occurs at the latest before z(k)

b) the output trajectory is d-cyclic.

4.2. Input trajectory

First, we consider the classical problem presented in the introduction. We introduce
the following theorem.

Theorem 3. The non-decreasing greatest control such that the output y(k) occur
at the latest before the desired output z(k) is given by: for j = 1 to h, u(k0 + j) =

H\Zk0+1
k0+h =

h−j∧
i=0

gi\z(k0 + j + i) under the initial constraints Zk0+1
k0+h ≥ Hx(k0) and

u(k0 + j) ≥
n∑

i=1

xi(k0); u(k0 + 1) ≥ u(k0).

P r o o f . We want to calculate the greatest control such that Y k0+1
k0+h ≤ Zk0+1

k0+h. The
model is

Y k0+1
k0+h = Hx(k0)⊕GUk0+1

k0+h .

If Hx(k0) 6≤ Zk0+1
k0+h, the classical problem has no solution.

If Hx(k0) ≤ Zk0+1
k0+h, the greatest control is H\Zk0+1

k0+h. In this case,

Y k0+1
k0+h = Hx(k0)⊕G(G\Zk0+1

k0+h) is maximum and Y k0+1
k0+h ≤ Zk0+1

k0+h. In the single-

input single output case, we have G\Zk0+1
k0+h =

h−j∧
i=0

gi\z(k0 + j + i) . 2

Actually, we can easily prove that this result is another formulation of the Back-
ward equations [1] in a more general case. In the following property, we give another
expression of the optimal control for the Backward equations which realizes a con-
nection between the control and the production rate. The calculus is divided into
a transient part of length m and a periodic part using the d-cyclicity concept. The
following definition expresses the production rate characteristic and can be equally
applied to the control or to the desired output after a past evolution of the process.
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Proposition 4. Let a desired output trajectory be (z(k0 +1), . . . , z(k0 +h))t. y(k)
= z(k) ∧ λd\y(k + d) with y(k) = +∞ for k > ks . For j = 1 to h, u(k0 + j) =
m−1∧
i=0

gi\z(k0 + j + i) ∧
m+d−1∧

i=m

gi\y(k0 + j + i) with y d-cyclic.

P r o o f . If

Hx(k0) ≤ Zk0+1
k0+h, u(k0 + j) =

h−j∧

i=0

gi\z(k0 + j + i) (Theorem 2)

u(k0 + j) =
m−1∧

i=0

gi\z(k0 + j + i) ∧
h−j∧

i=m

gi\z(k0 + j + i).

We note

u1(k0 + j) =
m−1∧

i=0

gi\z(k0 + j + i)

and

u2(k0 + j) =
h−j∧

i=m

gi\z(k0 + j + i)

u2(k0 + j) =
h−j∧

i=m

gi\z(k0 + j + i) =
d−1∧

l=0

+∞∧
p=0

gm+l+pd\z(k0 + j + m + l + pd)

with z(k0 + j + m + l + pd) = +∞ for j + m + l + pd > h.

However, gm+l+pd = (λd)pgm+l because gi = λdgi−d for i ≥ m + d.

(For example, gm+l+pd = gm+d+l+(p−1)d = λdgm+l+(p−1)d).
So,

u2(k0 + j) =
d−1∧

l=0

+∞∧
p=0

[(λd)pgm+l]\z(k0 + j + m + l + pd)

=
d−1∧

l=0

gm+l\
[

+∞∧
p=0

(λd)p\z(k0 + j + m + l + pd)

]
.

As

y(k) = z(k)
∧

λd\y(k + d) = z(k)
∧

λd\[z(k + d)
∧

λd\y(k + 2d)]

= z(k)
∧

λd\z(k + d)
∧

λ2d\y(k + 2d) = . . . =
+∞∧
p=0

(λd)p\z(k + pd),

we finally obtain

u2(k0 + j) =
d−1∧
l=0

gm+l\y(k0 + j + m + l) =
m+d−1∧

i=m

gi\y(k0 + j + i). 2

The following result is immediate.
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Proposition 5. Let a d-cyclic desired output trajectory be (z(k0 + 1), . . . , z(k0 +

h))t . For j = 1 to h, u(k0 + j) =
m+d−1∧

i=0

gi\z(k0 + j + i).

Consequently, if the desired trajectory is d-cyclic, the optimal control can be
calculated without knowing the values over a horizon of length d + m.

Proposition 6. A control sequence deduced from a d-cyclic desired output tra-

jectory z by u(k0 + j) =
m+d−1∧

i=0

gi\z(k0 + j + i) is also d-cyclic.

P r o o f .

u(k0 + j) =
m+d−1∧

i=0

gi\z(k0 + j + i), u(k0 + j + d) =
m+d−1∧

i=0

gi\z(k0 + j + i + d).

As λdz(k0 + j + i) ≤ z(k0 + j + i + d), we have

gi\z(k0 + j + i + d) ≥ gi\(λdz(k0 + j + i)) = λd[gi\z(k0 + j + i)].

So,

u(k0 + d + j) ≥
m+d−1∧

i=0

λd[gi\z(k0 + j + i)]

= λd
m+d−1∧

i=0

gi\z(k0 + j + i) = λdu(k0 + j). 2

4.3. Output trajectory

In this part, we assume that the control is known. As we have taken the hypothesis
that the state is unknown, the problem is to anticipate the effects on the output and
to predict it. We shall exploit the “ARMA” structure 2 which is a relation between
the input and the output on a finite horizon m + d.

In the following theorem, we show that an output trajectory deduced from a
d-cyclic input trajectory is also d-cyclic after a transient period and is given by a
simple relation.

Theorem 7. If
λdu(k) ≤ u(k + d) for k ≥ k0 + 1

then

y(k) = λdy(k)⊕
m+d−1∧

j=0

gju(k − j) for k ≥ k0 + m + d.

P r o o f . If u is d-cyclic, then we have λdgj−du(k0 + i− j) ≤ gj−du(k0 + i− j + d)
for i ≥ j + 1.
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If j belongs to [d, m + d− 1], then the minimal value of i is m + d.

If i ≥ m + d,

m+d−1∧

j=d

λdgj−du(k0 + i− j) ≤
m+d−1∧

j=d

gj−du(k0 + i− j + d)

=
m−1∧

j=0

gju(k0 + i− j) ≤ gju(k0 + i− j).

As y(k0+i) = CAix(k0)⊕
i−1∧
j=0

gju(k0+i−j), y(k0+i) ≥
m+d−1∧

j=d

λdgj−du(k0+i−j).

Finally, we obtain y(k0 + i) = λdy(k0 + i−d)⊕
m+d−1∧

j=0

gju(k0 + i−j) for i ≥ m+d.

2

Theorem 8. If the following initial constraint is verified

y(k0 + i) ≥
m+d−1∧

j=d⊕i

λdgj−du(k0 + i− j) for 1 ≤ i ≤ m + d− 1 (3)

and if the input is d-cyclic λdu(k) ≤ u(k + d) for k ≥ k0 + 1 then

y(k0 + i) = λdy(k0 + i− d)⊕
m+d−1∧

j=0

gju(k0 + i− j) for i ≥ 1. (4)

P r o o f . There are three cases:

a) for i ≥ m + d
We apply the Theorem 7.

b) for d + 1 ≤ i ≤ m + d− 1
As u is d-cyclic,

i−1∑

j=d

λdgj−du(k0 + i− j) ≤
i−1∑

j=d

gj−du(k0 + i− j + d)

=
i−d−1∑

j=0

gju(k0 + i− j) ≤
i−1∑

j=0

gju(k0 + i− j).

As
y(k0 + i) = CAix(k0)⊕

i−1∑

j=0

gju(k0 + i− j),
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y(k0 + i) is greater than equal
i−1∑
j=d

λdgj−du(k0 + i− j).

As
m+d−1∑

j=d

λdgj−du(k0+i−j) =
i−1∑
j=d

λdgj−du(k0+i−j)⊕
m+d−1∑

j=i

λdgj−du(k0+i−j),

the condition y(k0 + i) ≥
m+d−1∑

j=d

λdgj−du(k0 + i− j) is reduced to

y(k0 + i) ≥
m+d−1∑

j=i

λdgj−du(k0 + i− j) for d + 1 ≤ i ≤ m + d− 1.

c) For 1 ≤ i ≤ d, the condition remains y(k0 + i) ≥
m+d−1∑

j=d

λdgj−du(k0 + i− j).

We can shortly write y(k0 + i) ≥
m+d−1∑
j=d⊕i

λdgj−du(k0 + i− j) for 1 ≤ i ≤ m+d−1.

Consequently, if u is d-cyclic and the condition 3 holds, the condition y(k0 + i) ≥
m+d−1∑

j=d

λdgj−du(k0 + i− j) is true and we can write the following equality:

y(k0 + i) = λdy(k0 + i− d)⊕
m+d−1∧

j=0

gju(k0 + i− j) for i ≥ 1. 2

Remark 1. Let us suppose that the input and output trajectory are known from
k0 − m − d + 2 to k0. We can calculate the right hand term of the inequality 3
from the known values of the control. However, we cannot calculate y(k0 + i) for
1 ≤ i ≤ m+d−1 with the equation 4 to verify the condition 3 because this equality
needs that condition.

Proposition 9. A sufficient condition of 3 is for 1 ≤ i ≤ m + d− 1,

l+i−1∑

j=0

gju(k0 + i− j) ≥
m+d−1∑

j=d⊕i

λdgj−du(k0 + i− j) with l = m + d− 1. (5)

P r o o f . The state equation gives y(k0+i) = CAl+ix(k0−l)⊕
l+i−1∑
j=0

gju(k0+i−j).

As m + d is the minimal horizon necessary to exploit the “ARMA” structure, we
take l = m + d− 1 to obtain the maximal information.

So, y(k0 + i) ≥
l+i−1∑
j=0

gju(k0 + i− j) that is the minimal value of the output.

A sufficient condition is for 1 ≤ i ≤ m + d− 1,

l+i−1∑
j=0

gju(k0 + i− j) ≥
m+d−1∑
j=d⊕i

λdgj−du(k0 + i− j). 2
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4.4. The multi–step control synthesis in the single–input
single–output case

The following algorithm gives the solution of the problem of the Section 4.1. when
the state is unknown.

a) d-cyclic desired output trajectory

We deduce it from

w(k) = λdw(k − d)
∧

λd\w(k + d) for ks ≤ k ≤ kf with w(k) = +∞ for k > kf .

b) d-cyclic input trajectory

The control sequence is deduced by u(k) =
m+d−1∧

i=0

gi\w(k + i) for ks ≤ k ≤ kf with

the condition u(k) ≥ u(k0).

c) Predictable output trajectory

We predict a trajectory yp with yp(k) = λdyp(k−d)⊕
m+d−1∧

i=0

gju(k−i) for ks ≤ k ≤ kf

with the predictability condition
l+i−1∧
j=0

gju(k0 + i− j) ≥
m+d−1∧
j=d⊕i

λdgj−du(k0 + i− j)

for 1 ≤ i ≤ m + d− 1 with l = m + d− 1.

d) Reachability Analysis

We verify the following inequality z(k) ≥ yp(k) for ks ≤ k ≤ kf .

P r o o f . The output defined by w(k) = λdw(k−d)
∧

λd\w(k +d) for ks ≤ k ≤ ks

gives the greatest d-cyclic output w such that ∀ k ∈ [ks, ks] w(k) ≤ z(k) and the

Proposition 5 shows that the greatest output control is u(k) =
m+d−1∧

i=0

gi\w(k + i).

As the desired output trajectory w is d-cyclic, the output control u is also d-cyclic
after k0 (Proposition 6). If the initial constraint 5 is verified and if the input is

d-cyclic, then yp(k) = λdyp(k − d) ⊕
m+d−1∧

i=0

gju(k − i) for i ≥ 1 (Theorem 8 and

Proposition 9). Particularly, if the values of y(k0 + i) are known for 1 − d ≤ i ≤ 0,
we can deduce the output trajectory for 1 ≤ i ≤ ks − k0 that allows us to test the
just-in-time criteria. If it exists k such that z(k) < yp(k), there is not an optimal
control such that z(k) ≥ yp(k). 2

Remark 2. As the control is applied after the calculus of the control synthesis,
the calculated dates must be later than the initial data. Consequently, we have the
causality condition u(ks) > y(k0).
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Remark 3. We can notice that the control is calculated on a finite horizon d+m.
Precisely, if we consider the case of a d-cyclic desired output trajectory, we have
y(k) = z(k) in the first step and the calculus of the control u(k) does not need the
values of the desired output over d+m. In other words, if the desired output follows
the internal rate of the system, the control calculus can consider the real values of
the desired output trajectory on only a finite horizon d + m without any optimality
reduction: the knowledge of the trajectory under the d-cyclicity hypothesis can be
introduced in a sequential and infinite manner. As a result, the desired output
trajectory can be easily defined as the infinite repetition of a motif.

4.5. Related work

The reachability analysis verifies the existence of a control that satisfies the con-
straint a) of the problem and consequently uses only the output trajectory. It is
analogous to the existence of non-negative difference between the co-state and the
state for the backward approach [1]. In the spirit of the classical automatic con-
trol, [12] and [14] consider a strict definition of reachability where the state must
exactly be reached. The reachability analysis corresponds partially to the concept
of controllable desired output defined in [4, 5] and [6] with a different model. In this
work, the state is known and the matrix C equals the identity matrix. The events
of the transitions can be delayed or not. In the first case the events are designated
as controllable and the matrix B equals Ic: Ic denote the matrix having the identity
function on diagonal elements for which the events can be delayed and ε elsewhere.
The transposition of the controllable output is x = A∗(Bu⊕ v) ≤ z where x, u and
z are sequences of firing time vectors for events. v is a sequence of earliest allowable
firing time vectors and generalizes the initial condition x0. To compute the effect of
uncontrollable events, the authors choose the equality between the control and the
desired output which is a particular choice. The objective of our problem is precisely
to determine this control.

In this paper, a basic assumption that allows us to model the system, is that places
are First In First Out (FIFO) channels. A place is FIFO if the Kth token to enter
this place is also the Kth that becomes available in this place. The interpretation is
that tokens cannot overtake one another which is a necessary numbering condition
of the events. We are in this case if the holding times are constant. However, if the
holding times vary and if the event numbering is kept, the ARMA equation of the
normal system can be used after a delay of d+m occurrences if the system is restored
in its usual behavior. This delay is a consequence of the state equation iteration on
this horizon [10]. For example, if a place belongs to a cycle that contains one token,
the overtaking is forbidden because the place contains at most one token by reason
of the property of conservativeness of the event graphs. Consequently, the variation
of the holding time does not disrupt the numbering of the state equation. Note
that it corresponds to a classical situation where a machine can works on one piece
at once. The generalization to the event-index varying case needs a more general
Theorem 1 on d-cyclicity. In [4], [5] and [6], the Timed Event Graphs are modeled
using a backshift operator which make it possible to consider this case but a difficult
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problem is to describe algorithms to calculate A star [3].

5. CONCLUSION

In this paper, we present a temporal control synthesis using “ARMA” model in
Timed Event Graphs. This approach makes it possible the release of the knowledge
of the state vector and enables having a non-stationarity of the model. It enables
changes of the desired output and of the production rate in consequence of a modi-
fication in the desired output. Coherent with the spirit of the Backwards equations,
the solution is modular and can easily be applied.

The control synthesis is based on the d-cyclicity of the desired trajectories relevant
to the periodicity of the system and therefore to the production rate. Under this
constraint, the desired output trajectory can be defined as the infinite repetition
of a motif. In this paper, we also study the “predictability” concept through the
“ARMA” model which depends on the system and its behavior. This notion brings
up the problem of Observability and Commandability and for the time being, the
study of these concepts is an open field for Timed Petri Nets.

APPENDIX

Fig. 1. Timed Event Graph.
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A. State equation

We have y(k) = x2(k); x2(k) = q0x1(k − 1)⊕ p0u(k); x1(k) = ax1(k − 1)⊕ u(k)
(

x1(k)
x2(k)

)
=

(
a ε
q0 ε

)(
x1(k − 1)
x2(k − 1)

)
⊕

(
e
p0

)
u(k)

y(k) =
(

ε e
)(

x1(k)
x2(k)

) (
x1(0)
x2(0)

)
=

(
ε
ε

)
.

B. “ARMA” equation

(∀ i ≥ 1) Ai+1 = λdAi, m = 1, d = 1
g0 = CB = p0, g1 = CAB = q0

CA = (q0, ε), CA2 = (q0a, ε)(
y(k)
y(k + 1)

)
=

(
q0 ε
q0a ε

)
x(k − 1)⊕

(
p0 ε
q0 p0

)(
u(k)
u(k + 1)

)

y(k + 1)⊕ ag0u(k) = ay(k)⊕ g1u(k)⊕ g0u(k + 1).

C. Control synthesis

a) w(k) = z(k)
∧

a\w(k + 1)

b) u(k) = g0\w(k)
∧

g1\w(k + 1)

c) yp(k + 1) = ayp(k)⊕ g1u(k)⊕ g0u(k + 1).

Predictability condition: g0u(k0 + 1)⊕ g1u(k0) ≥ ag0u(k0).
Causality condition: u(ks) > y(k0).

Let p0 = 3, q0 = 1, a = 2.
If the holding times are constant, we can have for example the following evolution:

k 0 1 2 3

u e 1 3

x1 ε e 2 4

x2 ε 3 4 6

y ε 3 4 4

But we assume that the holding time “a” of the recycled place has undergone a
variation at k = 2.

We have x1(k) = ax1(k − 1)⊕ u(k) with a = 4 for k = 2and a = 2 otherwise.

k 0 1 2 3

u e 1 3

x1 ε e 4 6

x2 ε 3 4 6

y ε 3 4 6
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Let a desired output trajectory be (z(4), z(5), z(6))t = (11, 14, 14)t ·(k0 = 3, ks =
4, kf = 6). We deduce a d-cyclic trajectory (w(4), w(5), w(6))t = (10, 12, 14)t, hence
the control (u(4), u(5), u(6))t = (7, 9, 11)t.

The predictable output trajectory yp is: (yp(4), yp(5), yp(6))t = (10, 12, 14)t.
The predictability condition g0u(k0 +1)⊕ g1u(k0) ≥ ag0u(k0) is verified (u(k0) = 3,
u(k0 + 1) = 7) as the causality condition u(ks) = 7 > y (k0) = 6.

Using the state equations, the simulation confirms this result.

k 0 1 2 3 4 5 6

u e 1 3 7 9 11

x1 ε e 4 6 8 10 12

x2 ε 3 4 6 10 12 14

y ε 3 4 6 10 12 14

(Received April 8, 1998.)
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