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Karel Sladký
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George Klir, Ivan Kramosil, Tomáš Kroupa,
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the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz. — Printed by
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ON–OFF INTERMITTENCY IN CONTINUUM SYSTEMS
DRIVEN BY THE CHEN SYSTEM

Qian Zhou, Zeng-Qiang Chen and Zhu-Zhi Yuan

Previous studies on on-off intermittency in continuum systems are generally based on the
synchronization of identical chaotic oscillators or in nonlinear systems driven by the Duffing
oscillator. In this paper, one-state on-off intermittency and two-state on-off intermittency
are observed in two five-dimensional continuum systems, respectively, where each system
has a two-dimensional subsystem driven by the chaotic Chen system. The phenomenon of
intermingled basins is observed below the blowout bifurcation. Basic statistical properties
of the intermittency are investigated. It is shown that the distribution of the laminar
phase follows a −3/2 power law, and that of the burst amplitudes follows a −1 power law,
consistent with the basic statistical characteristics of on-off intermittency.

Keywords: on-off intermittency, Chen system, Blowout bifurcation, intermingled basin,
power law

AMS Subject Classification: 37C70, 93C10

1. INTRODUCTION

Intermittency refers to the random switching of system behaviors between the rela-
tively “regular” laminar phase and “irregular” burst phase during the evolution of
time. Since intermittency appears whenever a dynamical system is close to several
types of bifurcations, the phenomenon is very common in various fields such as bi-
ological behavior [8, 10], fluid dynamics [4, 14], human activities [2, 3], earthquake
occurrence [13], etc. Different types of intermittency have been reported, includ-
ing the Pomeau–Manneville intermittency [18], crisis-induced intermittency [7] and
in-out intermittency [1].

On-off intermittency is another type of intermittency, first reported by Platt,
Spiegel and Tresser [17]. With its close connection to chaotic synchronization
[12, 19, 22], it has attracted a great deal of attention in recent years. In “off” state,
the dynamical system stays in the vicinity of an invariant manifold for a long pe-
riod of time, and in “on” state, it bursts out of the invariant manifold occasionally.
Ott and Sommerer [15] found that the occurrences of on-off intermittency and rid-
dled basins are on the two sides of the blowout bifurcation, which is related to the
transverse stability of an invariant subspace. The statistical properties of on-off in-
termittency have been extensively investigated [5, 9, 16]. It is confirmed that on-off
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intermittency follows some well-known power laws, e. g. the asymptotic scaling of
the laminar phase lengths follows a power law with exponent −3/2, and the distri-
bution of the burst amplitude follows a power law with exponent −1. These power
laws are widely used to characterize on-off intermittency.

In deterministic systems, generation of on-off intermittency in general needs a
drive system and a response system. Moreover, the drive system determines the dy-
namics of the chaotic attractor in the invariant subspace, while the response system
determines the positions and the number of invariant subspaces, that is, the num-
ber of laminar phases. According to [21], among the two physical situations that
could display on-off intermittency, one is the synchronization of identical chaotic
oscillators, and the other is some physical systems with a spatial symmetry.

In this paper, we deal with two five-dimensional systems with a skew product
structure [17]. In each system, a two-dimensional subsystem is driven by the chaotic
Chen system [6]. By calculating the largest transverse Lyapunov exponent, we find
the location of blowout bifurcation of each system. Just beyond the bifurcation,
the Chen attractor in the subspace loses its transverse stability and becomes weakly
unstable, consequently we observe one-state and two-state on-off intermittency in
the two systems respectively. And below the blowout bifurcation the phenomenon
of intermingled basins is observed. Through investigating the statistical properties
of the intermittency in these systems, we verify that the intermittency is on-off
intermittency.

2. MODEL OF ONE–STATE ON–OFF INTERMITTENCY
AND NUMERICAL RESULTS

We construct the following two-dimensional system as the response system:

u̇ = v,

v̇ = −γu3 + p1Su + p2v,
(1)

where S is a signal from a drive system, p1 and p2 are control parameters, γ > 0.
Let system (1) be driven by the Chen system [6]. Then we get the following five-
dimensional continuous system:

ẋ = a(y − x),
ẏ = (c − a)x + cy − xz,

ż = xy − bz,

u̇ = v,

v̇ = −γu3 + p1xu + p2v.

(2)

Obviously, the dynamics of variables x, y and z are independent of those of variables
u and v, thus system (2) has a skew product structure. Moreover, the system
is symmetrical with respect to (u, v) → (−u,−v) , therefore u = v = 0 is an
invariant three-dimensional manifold in the phase space. In this invariant subspace,
the dynamics is the chaotic Chen attractor. Here, we take γ = 1, a = 35, b = 3,
c = 28.
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Fig. 1. The transverse Lyapunov exponent λ⊥ versus

the control parameter p1 ∈ [−1, 1] in system (2).

Since on-off intermittency occurs on the loss of transverse stability of an invariant
manifold, we calculate the largest transverse Lyapunov exponent λ⊥ of system (2).
Take (δu, δv) as infinitesimal perturbation transverse to the invariant subspace u =
v = 0. Here, we take p1 as the control parameter and p2 as a constant p2 = −0.6.
According to system (1), the motion equation of the perturbation (δu, δv) near the
invariant subspace u = v = 0 is

˙δu = δv,

δ̇v = p1xδu + p2δv,
(3)

where x is a chaotic trajectory produced by system (2) in the invariant subspace.
The largest transverse Lyapunov exponent λ⊥ is calculated via

λ⊥ = lim
t→∞

(1/t) ln(δ(t)/δ(0)), (4)

where δ(t) = ((δu(t))2+(δv(t))2)1/2. A plot of λ⊥ versus p1 for p1 ∈ [−1, 1] is shown
in Figure 1. We see that λ⊥ passes through zero at pc1 ≈ −0.702 and pc2 ≈ 0.713.
Thus, there symmetrically exist two blowout bifurcation points of system (2) in the
parameter range. If we take p2 as the control parameter, and p1 as a constant
p1 = 0.15, with the method above we find another blowout bifurcation point. Thus,
any combination of p1 and p2 that satisfies λ⊥ ∼= 0 corresponds to a bifurcation
point of system (2).

Near each blowout bifurcation point, while the two control parameters p1 and p2

take values corresponding to slightly positive λ⊥, we observe typical on-off intermit-
tency in the time series of u(t) and v(t) as shown in Figure 2. We present the projec-
tions of on-off intermittent attractors of system (2) in Figure 3. In Figure 3 (a) and
Figure 3 (b), it can be clearly seen that trajectories repeatedly spend long stretches
of time on or near the Chen attractor during which the on-off intermittency is in
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Fig. 2. (a) On-off intermittent time series of u(t); (b) On-off intermittent time series of

v(t), with p1 = 0.8, p2 = −0.6 from an arbitrary initial condition in system (2).

“off” state, and they occasionally are repelled away from the attractor which cor-
responds to “on” state, and later are attracted to the attractor again. From these
phase portraits, we see that when on-off intermittency occurs, the chaotic attractor
in the subspace becomes a bursting attractor.

As the control parameter approaches the critical value of the bifurcation, the
frequency of bursting becomes less and less, approaching zero.

Scaling laws are used widely to describe different intermittent phenomena. It is
well known that on-off intermittency has the following power laws:

(i) In the range of moderate lengths, the distribution of laminar phase lengths
follows a power law with exponent −3/2 [9].

(ii) The distribution of burst amplitudes satisfies a power law with exponent −1
when their values are small, but deviates from the power law when their values are
large [20].

The intermittent behavior of system (2) is shown to share the same power laws.
Let τ denote the length of the laminar phase, which is defined by |u(t)| ≤ 0.001,
and P (τ) the distribution function of τ . We analyze the time-series data of u(t) for
p1 = 0.8, p2 = −0.6, and collect about 21200 laminar phases. Numerical analysis
shows a power law,

P (τ) ∝ τα. (5)

Figure 4 shows the distribution of the laminar phase lengths in log-log coordinates
for the on-off intermittency in system (2). In Figure 4 the fitted line is drawn by
the least-squares method and the slope is calculated to be −1.463; in other words,
α ≈ −1.463, which is close to −1.5. It is confirmed that the power law (i) holds well
for the distribution of the laminar phase lengths of the intermittency in system (2).

Next, we investigate the burst amplitude r, which is defined by |u(t)|. With
p1 = 0.75, p2 = −0.6, we take a time series of 4 × 107sampled data points for |u(t)|.
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Fig. 3. On-off intermittent attractor of system (2) with p1 = 0.8, p2 = −0.6.
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Fig. 4. Distribution of laminar duration time of the intermittency in system (2).
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Fig. 5. Distribution of burst amplitudes of the intermittency in system (2). The straight

line is fitted to p(r) = ar + b, a = −0.999. The slope of the line is very close to −1.

Numerical analysis shows that the distribution of r also follows a power law,

P (r) ∝ rβ . (6)

Relation (6) is shown in Figure 5, in which the slope of the straight fitted line is
−0.999. Therefore, β is very close to −1 and the power law (ii) holds very well for
the intermittency in system (2).

3. MODEL OF TWO–STATE ON–OFF INTERMITTENCY
AND NUMERICAL RESULTS

If a dynamical system has two low-dimensional symmetric invariant subspaces, the
system shows two-state on-off intermittency or intermingled basins near the blowout
bifurcation.

Still using the Chen system as the drive system, we modify the response subsystem
in Section 2 to make it have two symmetric invariant subspaces. Consequently, we
get a model for two-state on-off intermittency as follows:

ẋ = a(y − x),
ẏ = (c − a)x + cy − xz,

ż = xy − bz,

u̇ = v,

v̇ = −γu(u2 − 1)3 + p1xu(u2 − 1) + p2v.

(7)

Obviously, system (7) has a skew product structure and is symmetrical with
respect to (u, v) → (−u,−v). Moreover, u = 1, v = 0 and u = −1, v = 0 are
two three-dimensional symmetric invariant subspaces of system (7). In these two
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Fig. 6. The largest transverse Lyapunov exponent λ⊥ versus

the control parameter p1 for p1 ∈ [−0.5, 0.5] in system (7).

invariant subspaces, the dynamics are decided by the chaotic Chen attractor. Like
the case of the one-state on-off intermittency model, the control parameter can
be either p1 or p2. Here, we only consider p1 as the control parameter and take
γ = 1, a = 35, b = 3, c = 28, and p1 = −0.6.

Since the infinitesimal transverse perturbation (δu, δv) of both symmetric invari-
ant subspaces evolves according to the following equation of motion:

˙δu = δv,

δ̇v = 2p1xδu + p2δv,
(8)

the two invariant manifolds have the same transverse stability. The exponent λ⊥
is computed via Eq. 4). Figure 6 shows a plot of λ⊥ versus the parameter p1 for
p1 ∈ [−0.5, 0.5], in which λ⊥ passes through zero at pc1 ≈ −0.356, pc2 ≈ 0.356.
Thus, system (7) has two blowout bifurcations at pc1, pc2.

When p1 takes values corresponding to negative λ⊥, the chaotic Chen attractors
in the subspaces u = 1, v = 0 and u = −1, v = 0 are global attractors. We
observe the phenomenon of intermingled basins [11]. Figure 7 shows the attraction
basins of the Chen attractors at u = 1, v = 0 and at u = −1, v = 0, for initial
conditions taken from the two-dimensional region of −1 ≤ x ≤ 1, −1.5 ≤ u ≤ 1.5
with y = z = v = 0. In Figure 7, 49000 randomly chosen initial conditions were
integrated to determine their destinations. We see that arbitrarily near any initial
point in the attraction basin of one attractor, there exist points which belong to the
basin of the other attractor. Therefore, the two attraction basins are intermingled.

When λ⊥ is slightly positive, the two attractors in the subspaces lose their trans-
verse stability simultaneously, consequently two-state on-off intermittency appears.
The time series of u(t) and v(t) are shown in Figure 8 with p1 = 0.43, p2 = −0.6.
We see that the on-off intermittent behavior of u(t) has two laminar states at u = 1
and u = −1, while v(t) has only one laminar state at v = 0.
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Fig. 7. Intermingled basins of attraction for initial conditions taken from the
two-dimensional region of −1 ≤ x ≤ 1, −1.5 ≤ u ≤ 1.5 with γ = 0.3 in system (7).

(a) The attraction basin of the Chen attractor at u = 1, v = 0 ;

(b) The attraction basin of the Chen attractor at u = −1, v = 0.
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Fig. 8. (a) Two-state on-off intermittent time series of u(t) ; (b) One-state on-off

intermittent time series of v(t) in system (7) when p1 = 0.43, p2 = −0.6.
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Fig. 9. Projections of on-off intermittent attractor

of system (7) with p1 = 0.4, p2 = −0.6.

The phase portraits of the two-state on-off intermittent attractor with p1 = 0.4,
p2 = −0.6 are shown in Figure 9, which enable us to have a better understanding of
the nature of two-state on-off intermittency. We can see that on-off intermittency
in system (7) has two laminar phases near the two invariant manifolds at u =
±1, v = 0 (dense area corresponds to laminar state) and the trajectories shuttle
between the two invariant subspaces and they occasionally burst away from the two
attractors in the subspaces (corresponds to burst state). This is confirmed by the
time series of u(t) and v(t) shown in Figure 8. Thus, the symmetric existence of two
invariant subspaces is a precondition for the onset of two-state on-off intermittency.
Figure 9 (a) shows that the projection of the chaotic attractor of system (7) in the
u − v plane has four rolls which joint at the invariant manifold u = 1, v = 0 and
u = −1, v = 0.

The statistical properties of the two-state on-off intermittency in system (7) are
analyzed here. First, we show the distribution of the laminar phase duration time.



478 Q. ZHOU, Z.Q. CHEN AND Z. Z. YUAN

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

log
10

 (τ
n
) 

lo
g 10

 p
(τ

n )
 

 

 
n=1
n=−1
fitted line

Fig. 10. Distribution of the laminar phase duration τn(n = 1,−1) in system (7).
τ1 is associated with attractor at u = 1, v = 0, and τ−1 associated with attractor

at u = −1, v = 0. The straight line is drawn from a lease-squares fit to the model

p(τ) = aτ + b and a = −1.492. The slope of the line is very close to −3/2.

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log
10

(r
1
)

lo
g 10

P
(r

1)

Fig. 11. Distribution of the burst amplitude r1 associated with the laminar phase at

u = 1 in system (7). The straight line is drawn from a lease-squares fit to the model

p(r1) = ar1 + b and a = −0.998.



On-Off Intermittency in Continuum Systems Driven by the Chen System 479

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log
10

(r
−1

)

lo
g 10

P
(r

−
1)

Fig. 12. Distribution of the burst amplitude r−1 associated with the laminar phase at

u = −1 in system (7). The straight line is drawn from a lease-squares fit to the model

p(r−1) = ar−1 + b and a = −1.031.

For each laminar phase level, we collect about 32500 laminar phases defined by
|u(t)| ≤ 0.001. We denote the duration of the laminar phase by τn (n = 1,−1). τ1 is
associated with laminar phase near attractor at u = 1, v = 0, and τ−1 associated
with laminar phase near attractor at u = −1, v = 0. Our numerical analysis
demonstrates that the universal −3/2 power-law distribution of laminar phases still
holds true for the two-state on-off intermittency. In Figure 10, we see that the
distributions of τ1, τ−1 share the same power law

P (τn) ∝ τα
n . (9)

This can be explained by the same transverse stability of the two symmetric in-
variant subspaces. The straight fitted line in Figure 10 has a slope of −1.492; in other
words, α ≈ −1.492. It is confirmed that the distribution of laminar phase lengths
of the two-state on-off intermittency follows the power law (i) with exponent −3/2.

Next, we investigate the distributions of the burst amplitudes of the two laminar
levels, which are denoted by rn (n = 1,−1). r1is associated with laminar phase near
attractor at u = 1, v = 0 and defined by |u(t)−1|, and r−1 is associated with laminar
phase near attractor at u = −1, v = 0 and defined by |u(t) − (−1)|. Relation of
rn and their distribution are shown in Figure 11 and Figure 12, respectively. In the
two figures, the slopes of the fitted solid lines are −0.998 and −1.031, respectively,
which are both close to −1. It is confirmed that the power law

P (rn) ∝ r−1
n (10)

holds very well in the distributions of burst amplitudes for the two laminar levels of
two-state on-off intermittency.
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4. CONCLUSIONS

Previous studies on on-off intermittency in continuum systems are generally based
on the synchronization of identical chaotic oscillators or in nonlinear systems driven
by the Duffing oscillator. In this paper, we observe one-state on-off intermittency
and two-state on-off intermittency in two five-dimensional continuum systems driven
by the chaotic Chen system, respectively. Moreover, we observe the phenomenon of
intermingled basins below the blowout bifurcation of the systems. We have investi-
gated the statistical properties of the intermittency in the systems and found that
for both one-state intermittency and two-state intermittency observed, the distribu-
tion of the laminar phase duration time follows a power law, and that of the burst
amplitudes follows a −1 power law.
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