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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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VALIDATION SETS IN FUZZY LOGICS1

Rostislav Horč́ık and Mirko Navara

The validation set of a formula in a fuzzy logic is the set of all truth values which this
formula may achieve. We summarize characterizations of validation sets of S-fuzzy logics
and extend them to the case of R-fuzzy logics.

1. BASIC NOTIONS

In order to express vagueness of information, we often enlarge the set {0, 1} of truth
values to the unit interval [0, 1], obtaining fuzzy logic systems [1, 3, 8, 9, 20]. Fuzzy
logics are naturally linked to the theory of fuzzy sets, where the membership of
objects is described by “membership functions” the range of which is the interval
[0, 1], see [10, 24]. In this paper we study two approaches to fuzzy logics: R-fuzzy
logics studied mainly by Hájek [10], and S-fuzzy logics introduced by Butnariu,
Klement and Zafrany [1]. We ask which are the sets of possible truth values of
formulas in these logics.

Let us recall the basic notions used in the sequel.

Definition 1.1. A (propositional) fuzzy logic is an ordered pair P = (L,Q) of a
language (syntax) L and a structure (semantics) Q described as follows:

(i) The language of P is a pair L = (A, C), where A is a nonempty at most count-
able set of atomic symbols and C is a tuple of connectives.

(ii) The structure of P is a pair Q = ([0, 1],M), where [0, 1] is the set of truth
values, and the tuple M consists of the interpretations (meanings) of the con-
nectives in C.

For simplicity, we fix the set A of atomic symbols throughout this paper.

The tuple of connectives always will contain at least a conjunction which is in-
terpreted by a triangular norm (t-norm for short), i. e., a commutative, associative,
non-decreasing operation T : [0, 1]2 → [0, 1] with neutral element 1 (see [13, 23]).

1Work supported by the Czech Ministry of Education under project MSM 212300013 and by
the Grant Agency of the Czech Republic under project GA CR 201/02/1540.
The first author was supported by the Czech Technical University in Prague under project
CTU0208613.
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Three basic t-norms are the minimum TG, the product TP and the ÃLukasiewicz t-
norm TL given, respectively, by TG(x, y) = min(x, y), TP(x, y) = xy and TL(x, y) =
max(0, x+ y − 1).

A triangular conorm (t-conorm for short) is a commutative, associative, non-
decreasing operation S : [0, 1]2 → [0, 1] with neutral element 0.

There is an obvious duality between t-norms and t-conorms. Let NS : [0, 1] →
[0, 1] be the standard negation defined by NS(x) = 1 − x. For each t-norm T , the
function ST : [0, 1]2 → [0, 1] given by

ST (x, y) = NS(T (NS(x), NS(y)))

is a t-conorm, called the dual of T . The duals of the three important t-norms are the
maximum SG, the probabilistic sum SP and the bounded sum SL given, respectively,
by SG(x, y) = max(x, y), SP(x, y) = x+ y − xy and SL(x, y) = min(1, x+ y).

The class FP of well-formed formulas in a fuzzy logic P (P-formulas for short)
is defined in the standard way, starting from the atomic symbols and constructing
new formulas using the connectives. For each function t : A→ [0, 1] which assigns a
truth value to each atomic formula, there exists a unique natural extension of t to a
truth assignment (evaluation) t : FP → [0, 1].

All logics studied in this paper have their axiomatizations allowing to define
provable formulas (theorems) and formulate and prove completeness theorems (see
[1, 10] for more details). Here we concentrate on the properties of validations sets.
The P-validation set of a P-formula ϕ is defined as

VP(ϕ) = {t(ϕ) | t ∈ [0, 1]A}.

This paper deals with the question of which validation sets may occur in various
fuzzy logics. The section dealing with S-fuzzy logics summarizes the results of [12]
for comparison, while the section on R-fuzzy logics is new. Prior to this, let us clarify
the situation in classical logic.

Proposition 1.2. Let C be classical logic. Each C-validation set is of one of the
following forms:

– {1} iff the formula is a tautology,

– {0} iff the negation of the formula is a tautology,

– {0, 1} otherwise.

As all fuzzy logics considered here extend classical logic (in the sense that all logi-
cal operations work on crisp values {0, 1} classically), each validation set necessarily
contains 0 or 1.

2. S–FUZZY LOGICS

The following construction of propositional fuzzy logics was presented in [1]:
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Definition 2.1. A t-norm-based propositional fuzzy logic (S-fuzzy logic) ST is a
fuzzy logic (in the sense of Definition 1.1) in which the basic connectives are unary
¬ (negation) and binary ∧ (conjunction), interpreted respectively by the standard
fuzzy negation NS and a t-norm T .

All S-fuzzy logics ST have the same syntax, they differ only by their semantics.
The logics corresponding to the basic t-norms TG, TL and TP are Gödel S-fuzzy logic
SG, ÃLukasiewicz S-fuzzy logic SL and product S-fuzzy logic SP.

Starting with the basic logical connectives ¬ and ∧, we can define additional
logical connectives in an S-fuzzy logic ST . The disjunction ∨ is defined by ϕ ∨ ψ =
¬(¬ϕ ∧ ¬ψ); it is interpreted by the t-conorm ST dual to T .

The implication → in ST is defined as ϕ → ψ = ¬(ϕ ∧ ¬ψ); it is interpreted by
the binary operation IT : [0, 1]2 → [0, 1] given by IT (x, y) = ST (NS(x), y), which is
often called the S-implication induced by the t-norm T .

In S-fuzzy logics different from ÃLukasiewicz S-fuzzy logic, the false statement can-
not be obtained as a (nullary) derived connective, i. e., there is no formula evaluated
by the constant function 0 (of course, it may be added to the definition).

Let us summarize results on ST -validation sets from [1] and [12]:

Theorem 2.2. The validation sets in Gödel S-fuzzy logic SG are of one of the
following forms:

[0, 1
2 ] , [ 12 , 1] , [0, 1] .

The validation sets in product S-fuzzy logic SP are of one of the following forms:

[0, a] , [b, 1] , [0, 1] ,

where a, b ∈ ]0, 1[. The validation sets in ÃLukasiewicz S-fuzzy logic SL are of one of
the following forms:

{0} , {1} , [0, a] , [b, 1] , [0, 1] ,

where a, b ∈ ]0, 1[. The possible values of the bounds a, b form a countable dense
subset of [0, 1].

3. R–FUZZY LOGICS

A reasonable way of constructing connectives in fuzzy logics is to start with a con-
tinuous t-norm T and to use the residuum (R-implication, see [4, 22]) defined by

RT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} . (1)

as the interpretation of the implication. It is immediate that we have

RT (x, y) = 1 if and only if x ≤ y .

The following approach to fuzzy logics with residual implications is described in
detail in [10].
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Definition 3.1. A residuum-based propositional fuzzy logic (R-fuzzy logic) RT is
a fuzzy logic (in the sense of Definition 1.1) in which the basic connectives are the
nullary connective 0 (false statement) and the binary connectives ∧ (conjunction)
and → (implication) with respective interpretations 0, T , RT , where T is a t-norm
and RT is the corresponding residuum.

Well-formed formulas in an R-fuzzy logic will be called R-formulas. Since their
definition is independent of T , we omit this index.

The R-fuzzy logics corresponding to the basic t-norms TG, TL, and TP are Gödel
R-fuzzy logic RG, ÃLukasiewicz R-fuzzy logic RL, and product R-fuzzy logic RP.

Using the basic logical connectives ∧,→ and 0, we can define derived logical
connectives in an R-fuzzy logic RT .

The negation ¬ in RT is defined as an implication with consequence 0, i. e.,
¬ϕ = ϕ→ 0. Its interpretation is the negation NT given by NT (x) = RT (x, 0). For
T = TL, i. e., in ÃLukasiewicz R-fuzzy logic RL, we obtain the standard negation NS.
For TG and for all strict t-norms T , we obtain the Gödel negation,

NG(x) =

{
1 if x = 0,
0 if x > 0.

(2)

In each R-fuzzy logic RT , the derived binary connective ∨M defined by

ϕ ∨M ψ = [(ϕ→ ψ) → ψ] ∧ [[(ϕ→ ψ) → ψ] → [(ψ → ϕ) → ϕ]] (3)

is evaluated by the maximum, i. e. by SG (see [10]),
t(ϕ ∨M ψ) = max(t(ϕ), t(ψ)).

Observe that the S-implication ITL
coincides with the R-implication RTL

. So the
interpretation of logical connectives in ÃLukasiewicz S-fuzzy logic SL and ÃLukasiewicz
R-fuzzy logic RL is identical (although not the same connectives are considered as
the basic ones). One difference between ÃLukasiewicz fuzzy logics RL and SL is that
the nullary connective 0 is not considered an S-formula. Nevertheless, it can be
introduced as a derived logical connective putting, e. g., 0 = ¬ϕ ∧ ϕ for a fixed
S-formula ϕ.

In Gödel R-fuzzy logic RG, the interpretation RG of the implication is defined
by

RG(x, y) =

{
1 if x ≤ y,

y otherwise.

The R-implication RG (called the Gödel implication) is not continuous in the points
(x, x) with x ∈ [0, 1[.

In product R-fuzzy logic RP, we obtain the interpretation RP of the implication
defined by

RP(x, y) =

{
1 if x ≤ y,
y

x
otherwise.

The R-implication RP (also called the Goguen implication) is not continuous in the
point (0, 0).
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The notion of RT -validation set depends on the choice of T . In contrast to the
situation of S-fuzzy logics (see Section 2), the validation set VRT

(ϕ) of an R-formula
ϕ in RT is not necessarily an interval.

In view of the equivalence of the semantics of ÃLukasiewicz S- and R-fuzzy logics,
we have:

Theorem 3.2. The validation sets in ÃLukasiewicz R-fuzzy logic RL are of one of
the following forms:

{0} , {1} , [0, a] , [b, 1] , [0, 1] ,

where a, b ∈ ]0, 1[. The possible values of the bounds a, b form a countable dense
subset of [0, 1].

In Gödel R-fuzzy logic, the situation becomes different because of the lack of an
operation interpreted by the standard fuzzy negation.

Theorem 3.3. The validation sets in Gödel R-fuzzy logic RG are of one of the
following forms: {0} , {1} , {0, 1} , ]0, 1] , [0, 1] .

P r o o f . First, we prove that all the above-mentioned cases occur. Let p be an
atomic symbol. Then

VRG
(0) = {0} ,

VRG
(0 → 0) = {1} ,

VRG
(p→ 0) = {0, 1} ,

VRG
(((p→ 0) → 0) → p) = ]0, 1] ,

VRG
(p) = [0, 1] .

Second, we have to prove that all RG-validation sets are of one of the above
forms. For this, it is sufficient to prove the following implication:
If ϕ is an R-formula and t an RG-evaluation such that t(ϕ) ∈ ]0, 1[, then for each
b ∈ ]0, 1] there is an RG-evaluation tb such that tb(ϕ) = b.

The proof will be done separately for b ∈ ]0, 1[ and for b = 1.
First, assume that b ∈ ]0, 1[ and t(ϕ) = a ∈ ]0, 1[. We may find an order

automorphism (i. e., an increasing bijection) h : [0, 1] → [0, 1] such that h(a) = b.
A routine verification shows that h commutes with the interpretations of all basic
connectives, i. e.,

h(0) = 0 ,
h(TG(a, b)) = TG(h(a), h(b)) ,
h(RG(a, b)) = RG(h(a), h(b)) .

We define the evaluation tb of atomic formulas

tb(p) = h(t(p)) . (4)
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The formula tb(ρ) = h(t(ρ)) (5)

holds for all atomic formulas and also for 0, because

tb(0) = 0 = h(0) = h(t(0)) .

Suppose that ρ, ψ are formulas for which (5) holds. Then

tb(ρ ∧ ψ) = TG(tb(ρ), tb(ψ)) = TG(h(t(ρ)), h(t(ψ)))
= h(TG(t(ρ), t(ψ))) = h(t(ρ ∧ ψ)) ,

tb(ρ→ ψ) = RG(tb(ρ), tb(ψ)) = RG(h(t(ρ)), h(t(ψ)))
= h(RG(t(ρ), t(ψ))) = h(t(ρ→ ψ)) ,

thus also ρ ∧ ψ and ρ→ ψ satisfy (5). The latter two equalities are inductive steps
which allow us to prove (by induction over the complexity of formulas) that (5) holds
for all R-formulas. In particular,

tb(ϕ) = h(t(ϕ)) = h(a) = b .

Second, assume that b = 1 and t(ϕ) = a ∈ ]0, 1[. We proceed analogously to the
previous case. We define an order preserving mapping (now not a bijection)

h(a) =

{
0 if a = 0 ,

1 if a ∈ ]0, 1] .

Again, h commutes with the interpretations of all basic connectives.
We define an evaluation tb by (4) and by induction over the complexity of formulas

we obtain (5) for all R-formulas. In particular,

tb(ϕ) = h(t(ϕ)) = h(a) = b = 1 .

We have proved that whenever an RG-validation set contains a number from
]0, 1[, it contains the whole ]0, 1], thus it can be only ]0, 1] or [0, 1]. This finishes the
proof of the theorem. 2

Theorem 3.4. The validation sets in product R-fuzzy logic RP are of one of the
following forms: {0} , {1} , {0, 1} , ]0, 1] , [0, 1] .

P r o o f . The proof follows the method from Theorem 3.3; the only difference is
that not all order automorphisms commute with the product t-norm TP. Neverthe-
less, there are such automorphisms, namely

h(a) = ar ,

where r ∈ ]0,∞[. Then

h(TP(a, b)) = (a · b)r = ar · br = TP(h(a), h(b)) .
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(These are the only automorphisms with this property, see [6].) Moreover, these
automorphisms commute also with the Goguen implication RP. Indeed, RP(a, b) =
1 iff a ≤ b. This condition is equivalent to h(a) ≤ h(b) and in this case we obtain

h(RP(a, b)) = h(1) = 1 = RP(h(a), h(b)) .

In the remaining case, a > b, we have h(a) > h(b) and

h(RP(a, b)) = h

(
b

a

)
=
br

ar
=
h(b)
h(a)

= RP(h(a), h(b)) .

Thus it suffices to take r = log b
log a for b ∈ ]0, 1[; the case of b = 1 remains unchanged.

Arguments analogous to those of Theorem 3.3 show that the characterization of
RP-validation sets is the same as that of RG-validation sets. 2

4. CONCLUDING REMARKS

We gave a characterization of validation sets for the most frequently studied fuzzy
logics. Still there are open questions for further study. There are many other fuzzy
logics for which characterizations of validation sets are yet unknown. In particular,
one might consider logics in which conjunction is interpreted by a t-norm different
from the three basic ones used in this paper. We already know that the charac-
terizations of validations sets in logics using a strict t-norm instead of the product
remain basically the same. (This is trivial in case of R-fuzzy logics because they
are isomorphic to product logic. In S-fuzzy logics, the situation is different as the
isomorphism need not preserve the standard negation; still the same results con-
cerning validation sets are obtained.) Recently R-fuzzy logics were studied in which
conjunction is interpreted by a continuous t-norm which is an ordinal sum of the
basic t-norms (ÃLukasiewicz and product). Also the case of discontinuous t-norms
might be of interest.

Following [18], vector-valued evaluations of series of formulas may be introduced,
leading to validation sets that are subsets of vector spaces. This might lead to a
substantial generalization related to other questions of satisfiability, compactness,
etc.
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Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930),
51–77.

[18] M. Navara: Satisfiability in fuzzy logics. Neural Network World 10 (2000), 845–858.
[19] M. Navara: Product Logic is Not Compact. Research Report No. CTU–CMP–2001–09,

Center for Machine Perception, Czech Technical University, Prague 2001.
[20] H. T. Nguyen and E. Walker: A First Course in Fuzzy Logic. CRC Press, Boca Raton

1997.
[21] V. Novák: On the syntactico-semantical completeness of first-order fuzzy logic. Part I

– Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154.
[22] W. Pedrycz: Fuzzy relational equations with generalized connectives and their appli-

cations. Fuzzy Sets and Systems 10 (1983), 185–201.
[23] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North–Holland, Amsterdam

1983.
[24] L. A. Zadeh: Fuzzy sets. Inform. and Control 8 (1965), 338–353.
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