
KY BERNET I K A — V OL UME 3 2 ( 1 9 9 6 ) , N UM B ER 1 , PAGE S 4 3 – 6 2

ONE METHOD FOR ROBUST CONTROL OF
UNCERTAIN SYSTEMS: THEORY AND PRACTICE

George Leitmann

We present a controller design methodology for uncertain systems which is based on the
constructive use of Lyapunov stability theory. The uncertainties, which are deterministic,
are characterized by certain structural conditions and known as well as unknown bounds.
As a consequence of the Lyapunov approach, the methodology is not restricted to linear
or time-invariant systems. The robustness of these controllers in the presence of singular
perturbations is considered. The situation in which the full state of the system is not
available for measurement is also considered as are other generalizations. Applications of
the proposed controller are noted, and examples of some resource management problems
are discussed.

1. INTRODUCTION1

A fundamental feedback control problem is that of obtaining some specified desired
behavior from a system about which there is incomplete or uncertain information.
Here we consider systems whose uncertainties are characterized deterministically
rather that stochastically or fuzzily; for a stochastic approach see [6], and for fuzzy
one see [34].
Our model of an uncertain system is of the form

ẋ(t) = F (t, x(t), u(t), ω) (1)

where t ∈ IR is the “time” variable, x(t) ∈ IRn is the state and u(t) ∈ IRm is the con-
trol input. All the uncertainty in the system is represented by the lumped uncertain
element ω ∈ Ω. It could be an element of IRq representing constant unknown param-
eters and inputs; it could also be a function from IR into IRq representing unknown
time varying parameters and inputs; it could also be a function from IR× IRn× IRm

into IRq representing nonlinear elements which are difficult to characterize exactly;
it could be merely an index. F : IR× IRn× IRm → IRn is known. The only informa-
tion assumed about ω is the knowledge of a nonempty set Ω to which it belongs. A
related characterization of uncertainties is via inclusions see [35].

1 Throughout this paper, references are intended to be representative rather than exhaustive.
For a more complete bibliography see [40], [41].
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Discrete systems are usually modelled by a difference equation

x(k + 1) = F (k, x(k), u(k)) (2)

where k ∈ ZZ is the “time”, x(k) ∈ IRn is the state, u(k) ∈ IRm is the control, and
F is not known but rather belongs to a set F , with F known.

2. CONTINUOUS SYSTEM CONTROL

For continuous systems modelled by ordinary differential equations of the form (1)
we consider control to be given by a memoryless state feedback controller

u(t) = p(t, x(t)). (3)

Ideally we wish to choose p : IR × IRn → IRm so that the feedback controlled
system

ẋ(t) = f(t, x(t), ω), (4)

where
f(t, x, ω) := F (t, x, p(t, x), ω), (5)

has the property of g.u.a.s. (global uniform asymptotic stability) about the zero
state for all ω ∈ Ω and for all initial states in IRn. However to assure g.u.a.s. of an
uncertain system one sometimes has to resort to controllers which are discontinuous
in the state; see [26]. To avoid such discontinuous controllers, we relax the problem
to that of obtaining a family of controllers which assure that the behavior of (1) can
be made arbitrarily close to g.u.a.s.; such a family is called a practically stabilizing
family see [17], [20].

2.1. A specific class of uncertain continuous systems

An uncertain continuous system under consideration here is described by (1) and
satisfies the following assumption.

Assumption C.1. 2 There exist a continuous function B : IR × IRn → IRn,m, a
candidate Lyapunov function V : IR×IRn → IR+, a class K function γ : IR+ → IR+,
functions β1, β2 : IR×IRn×Ω → IR+ and continuous functions κ, ρ : IR×IRn → IR+

such that
F (t, x, u, ω) = fs(t, x, ω) +B(t, x) g(t, x, u, ω) (6)

for some functions fs and g which satisfy:

1. For each ω ∈ Ω, fs(·, ω) is continuous and

∂V

∂t
(t, x) +

∂V

∂x
(t, x) fs(t, x, ω) ≤ − γ(‖x‖) (7)

for all t ∈ IR, x ∈ IRn.
2For definition see [13], [20].
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2. For each ω ∈ Ω, g(·, ω) is continuous and

uT g(t, x, u, ω) ≥ −β1(t, x, ω) ‖u‖+ β2(t, x, ω) ‖u‖2 (8)

where
β1(t, x, ω) ≤ β2(t, x, ω) ρ(t, x) (9)

β1(t, x, ω) ≤ κ(t, x) (10)

for all t ∈ IR, x ∈ IRn, u ∈ IRm.

2.2. Proposed controllers

Here we present some practically stabilizing controller sets for the system considered
in the previous section. These controllers can be regarded as continuous approxi-
mations of those presented in [26].

Consider any uncertain system described above and let (B, V, γ, ρ, κ) be a quin-
tuple which assures the satisfaction of Assumption C.1. Choose any continuous
functions ρc, κc which satisfy

ρc(t, x) ≥ ρ(t, x) , κc(t, x) ≥ κ(t, x) (11)

and define
α(t, x) := B(t, x)T ∂V

∂x
(t, x)T , (12)

η(t, x) := κc(t, x)α(t, x) . (13)

A practically stabilizing family of controllers is the set

P := {pε | ε > 0} (14)

where pε is any continuous function which satisfies

‖α(t, x)‖ pε(t, x) = −‖pε(t, x) ‖α(t, x) (15)

i. e., pε(t, x) is opposite in direction to α(t, x), and

‖η(t, x)‖ > 0 =⇒ ‖pε(t, x)‖ ≥ ρc(t, x) [1− ‖η(t, x)‖−1ε] . (16)

As an example of a function satisfying the above requirements on pε, consider

pε(t, x) :=




−η(t,x)

ε ρc(t, x) if ‖η(t, x)‖ ≤ ε

− η(t,x)
‖η(t,x)‖ρc(t, x) if ‖η(t, x)‖ > ε;

(17)

see [14].
As another example, consider

pε(t, x) := − η(t, x)
‖η(t, x)‖+ ε

ρc(t, x) ; (18)
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see [1].
Controllers of a discontinuous type as well as their continuous approximations, re-

lated to those proposed here, have been deduced by employing the theory of variable
structure control; see [5]. Some early treatments of controller design for uncertain
systems were based on “games against nature”; see [25]. Another class of controllers
for systems of type (1) are deduced in [2].

2.3. Matching conditions

Given a system described by (1) the choice of B, fs, g to assure satisfaction of
Assumption C.1 (if possible) may not be obvious. This choice is usually easier if
the uncertainties are matched in the sense that there exist functions f0, B, g with
B(t, x) ∈ IRn,m such that

F (t, x, u, ω) = f0(t, x) +B(t, x) g(t, x, u, ω); (19)

that is, the uncertainty ω and the control enter the system description via the same
matrix B(t, x).
Much of the literature concerns systems in which the uncertainties are matched.
[4] and [11] consider systems with unmatched uncertainties; there the norm of the
unmatched portion of the uncertain term must be smaller than a certain threshold
value. In [52] linear systems are considered in which the uncertainty satisfies gen-
eralized matching conditions, that is, structural conditions which are less restrictive
than the matching condition. In these cases, as in the matched case, the norm
bounds of the uncertain terms can be arbitrarily large. Linear time-invariant sys-
tems with scalar control input are treated in [53], while Schmitendorf [47] requires
the existence of a positive definite solution of a certain Riccati equation.

2.4. Other problems

While global uniform asymptotic stability or at least practical stability can be
guaranteed provided the control is not constrained, only local stability can be assured
if the available control is subject to constraints. One class of stabilization problems
with control constraints is considered in [19], [51]. Controllers which assure not only
practical stability but also exponential convergence at a prescribed rate are treated
in [12], [13]. Corless and Leitmann [15] deal with systems in which the uncertainty
bounds are not known exactly but depend on unknown constants; the controllers
presented there are parameter adaptive controllers. Problems in which one wishes
to keep the system state within or outside a prescribed region of the state space
are considered in [21]. Systems with delay are considered in [55] and [38]. Corless
and Leitmann [27] treat controllers which linearize a nominal system in addition to
assuring stability of the actual one. Large scale uncertain systems with decentralized
control are discussed in [9] and [49].
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3. DISCRETE SYSTEMS CONTROL

The control of uncertain discrete systems modelled by difference equations of the
form (2) has been treated in [22], [44] and [48]. Unlike in the continuous case reviewed
in the previous section, arbitrarily large uncertainties cannot be tolerated, in general,
and the region of ultimate attraction cannot be made arbitrarily small. Corless and
Manela [22] consider the matched case, namely

x(k + 1) = f(k, x(k)) +B(k, x(k)) [u(k) + e(k, x(k), u(k))] (20)

where k ∈ ZZ, x(k) ∈ IRn and u(k) ∈ IRm. The functions f : ZZ × IRn → IRn and
B : ZZ × IRn → IRn,m are assumed known, with

rank [B(k, x(k))] = m. (21)

The function e : ZZ × IRn × IRm → IRm is not known; however, it is assumed that
the class of functions E to which it belongs is known. We make the following two
assumptions before stating a stabilization theorem.

Assumption D.1. 3 Given a positive definite P ∈ IRn,n there exist non-negative
scalars ρ0, ρ1 and ρ2 such that for all e ∈ E

‖B(k, , x) e(k, x, u)‖P ≤ ρ0 + ρ1‖x‖P + ρ2‖u‖R(k, x) (22)

for all (k, x, u) ∈ ZZ × IRn × IRm, where R(k, x) := B(k, x)TPB(k, x). Next we
define

ψ(k, x) :=
[
B(k, x)T PB(k, x)

]−1
B(k, x)TP , (23)

φ(k, x) := B(k, x)ψ(k, x) , (24)

f̄(k, x) := φ(k, x) f(k, x) , (25)

and
f̃(k, x) := f(k, x)− f̄(k, x) . (26)

Assumption D.2. There exist a positive definite matrix P ∈ IRn,n and a non-
negative scalar c̃ < 1 such that

‖f̃(k, x)‖P ≤ c̃ ‖x‖P (27)

for all (k, x) ∈ ZZ × IRn. If ρ2 6= 0, then there also exist non-negative scalars c0 and
c1 such that

‖f̄(k, x)‖P ≤ c0 + c1‖x‖P (28)

for all (k, x) ∈ ZZ × IRn.

3 Let P ∈ IRn,n be a positive definite matrix. We define the norm ‖ · ‖P : IRn → IR+ by

‖r‖P :=
√

rT Pr.



48 G. LEITMANN

3.1. Proposed controllers

Consider an uncertain discrete system (20) satisfying Assumptions D.1 –D.2 and
subject to the control u(k) = p(k, x(k)) where p(k, x(k)) is defined as follows:

p(k, x(k)) :=

{
0 if ρ2 ≥ 1

−ψ(k, x(k)) f(k, x(k)) if ρ2 < 1.
(29)

Suppose that
c̃2 + (ρ1 + c∗1)

2 < 1 (30)

where

c∗1 :=

{
0 if ρ2 = 0

ρ∗2c1 if ρ2 6= 0
(31)

and
ρ∗2 := min{ρ2, 1}. (32)

Then for all e ∈ E , the feedback controlled system (20) is g.u.a.s. about the set

BP (d) := {x ∈ IRn | ‖x‖P ≤ d} (33)

where
d :=

ρ0 + c∗0√
1− c̃2 − (ρ1 + c∗1)

(34)

and

c∗0 :=

{
0 if ρ2 = 0

ρ∗2c0 if ρ2 6= 0.
(35)

4. ROBUSTNESS IN THE PRESENCE OF SINGULAR PERTURBATIONS

Consider an uncertain singularly perturbed system described by

ẋ = F (t, x, y, u, µ, ω)

µẏ = G(t, x, y, u, µ, ω)
(36)

where (x, y) ∈ IRn × IRl describe the state of the system. µ ∈ (0,∞) is the singular
perturbation parameter, and all the other variables are as described above. Here one
wants to obtain memoryless feedback controllers (generating u) which assure that,
for all ω ∈ Ω and for all sufficiently small µ, the behavior of the feedback controlled
system is close to that of g.u.a.s.
Assuming that, for each x, u, ω there exists a unique vector H(x, u, ω) ∈ IRl such
that

G(t, x, H(x, u, ω), u, 0, ω) = 0 (37)

for all t, the reduced order system associated with (36) (let µ = 0 in (36)) is given
by

ẋ = F̄ (t, x, u, ω) (38)
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where
F̄ (t, x, u, ω) := F (t, x, H(x, u, ω), u, 0, ω). (39)

For each t, x, u, ω the boundary layer system associated with (36) is given by

dy
dτ

(τ) = G (t, x, y(τ), u, 0, ω). (40)

[20] require that the boundary layer system satisfies g.u.a.s. about its equilibrium
state H(x, u, ω) and present stabilizing controllers whose designs are based on the
reduced order system. This situation occurs for systems with stable “neglected
dynamics.” In [24] the boundary layer system is not required to be stable. The
“stabilizing” controllers presented there are composite controllers in the sense that
they consist of two parts; one part is utilized to stabilize the boundary layer system
and the other part is based on a nominal reduced order system.

5. OUTPUT FEEDBACK

Heretofore it was assumed that the complete state is available for feedback. Consider
now the more general situation in which the output y(t) ∈ IRs available for feedback
is related to the state by

y(t) = c(t, x(t), ω) (41)

for some function c : IR× IRn × Ω → IRs.
Memoryless output feedback controllers are treated in [10], [23], [54]. The dynamic
output feedback controllers in the literature utilize state estimators. The state is
fed to a memoryless controller whose design is based on having the complete state
available for feedback. Full order observers are utilized in [3], [56]. Breinl and Leit-
mann [7], [8] utilize reduced order observers. There the uncertain terms must satisfy
certain structural conditions and the differential equation describing the evolution
of the state estimation error is decoupled from the state equation.

6. APPLICATIONS

Controller designs based on a constructive use of Lyapunov stability theory or closely
related methods have been applied to a variety of uncertain systems. In the realm
of engineering these applications include tracking control for robotic manipulators
including hybrid tracking and force control [46], suspension control for magneti-
cally levitated vehicles [7], [8], control of seismically excited structures [33], of high
speed rotors [57], and of nuclear power plants [45], as well as various aircraft and
aerospace systems [42], [50], [53]. Experimental results may be found in [29], [32].
[43] concern applications in economics. Resource allocation in fisheries is discussed
in [28], [30], [31]. Harvesting problems are treated in [16], [36]. Lee and Leitmann
[37], [38] deal with pollution control in rivers and in [39] they treat a problem in
pedagogy.
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7. EXAMPLE: OPTIMAL LONG–TERM MANAGEMENT OF A DISTURBED
ECOSYSTEM

Consider the following model of an exploited ecosystem

ẋ(t) = f(x(t))−Hx(t), x(t0) = x0 (42)

where
x(t) := (x1(t), x2(t), . . . , xn(t))T ∈ X ⊂ IRn

is the biomass vector with its ith component representing the biomass of the ith
species with

X := {x ∈ IRn |xi > 0, i = 1, 2, . . . , n},
and where

H := diag (h1, h2, . . . , hn)

is the constant harvest effort matrix; a constant harvest effort vector h := (h1, h2, . . .
. . . , hn)T is admissible if h ∈ H, where H ⊂ IRn is prescribed. The corresponding
non-trivial solution of

f(x)−Hx = 0 (43)

is assumed to be unique. Let h∗ denote the harvest effort which maximizes βTHx
for all h ∈ H and subject to (43), and let x∗ denote the corresponding equilibrium
state of (42), where β := (β1, β2, . . . , βn)T is a given constant price vector. Thus,
under optimal steady state harvesting, the exploited ecosystem (42) becomes

ẋ(t) = f(x(t))−H∗x(t), x(t0) = x0 . (44)

If the exploited ecosystem (44) is undisturbed, then the harvest rate H∗x∗ is indeed
optimal for the long-term management of the ecosystem, that is, in the steady state.
However, real ecosystems are continually disturbed by unpredictable events such as
diseases, migrations, climatic changes, and others. To include such disturbances, we
modify the model in the following way:

ẋ(t) = f(x(t))−H∗x(t) + ∆ f(x(t), v(t)) + u(t) (45)

where ∆ f(·) : IRn × IRp → IRn is a known continuous function, v(t) ∈ R ⊂ IRp

is a vector of uncertain disturbances with R a compact bounding set which may
be known or unknown. To assure that the disturbed ecosystem can be practically
stabilized, an additional harvest rate u(t) ∈ U ⊂ IRn is provided where U is a known
or unknown depending on R (the bounding set of v).

Since we are concerned with xi > 0, i = 1, 2, . . . , n, we consider transformed
variables

zi = ln(xi/x
∗
i ), i = 1, 2, . . . , n (46)

which is valid for xi and x∗i > 0. Under this transformation, eqn. (45) leads to

ż(t) = g(z(t)) + ∆g(z(t), v(t)) +B(z(t))u(t), z(t0) = z0 (47)
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where

g(z) := E−zX∗−1 [f(X∗ez)−H∗X∗ez]
∆ g(z, v) := B(z)∆ f(X∗ez, v)

B(z) := E−zX∗−1

X∗ := diag (x∗1, . . . , x
∗
n)

E−z := diag (e−z1 , . . . , e−zn)
ez := (ez1 , . . . , ezn)
z0 := (ln(x0

1/x
∗
1), . . . , ln(x0

n/x
∗
n)) .

The problem then is that of determining a feedback controller in the case of known
uncertainty bound R, or an adaptive (dynamic) controller in the case of unknown
uncertainty bound R, such that the corresponding harvest rate u(·) assures at least
practical stability of the disturbed ecosystem model (47) regardless of the realization
of disturbance v(·); in particular, such a controlled harvest guarantees that z(t) → 0
(that is, x(t) → x∗) arbitrarily closely within finite time. Furthermore, since then
zi(t) remains bounded, it follows that xi(t) > 0, i = 1, 2, . . . , n.

A detailed discussion the controllers mentioned above can be found in [36] for
known R and in [16] for unknown R. Here we present a simple example of a single
species harvested population

ẋ(t) =
r

K
x(t) [K − x(t)]− hx(t), x(0) = x0 (48)

whence the maximum harvest rate at equilibrium is

h = h∗ = r/2

with corresponding equilibrium population

x = x∗ = K/2 .

Now consider that the growth is subject to unpredictable disturbances of the form
v(t)x(t), where v(·) : IR→R, R := {v | |v| ≤ α = const. > 0}. Thus, we have

ẋ(t) =
r

K
x(t) [K − x(t)]− h∗x(t) + v(t)x(t) + u(t) (49)

where the control u(t) corresponds to adjusting the total harvest rate −h∗x(t)+u(t).
Of course, if u(t) > h∗x(t), harvesting is replaced by stocking (replenishing) which
is not ruled out here. If stocking is not allowed, a constraint u(t) ≤ h∗x(t) must be
imposed; see, for instance, [19], [51].

On employing transformation (46), eqn. (49) leads to

ż(t) =
r

2
(1− ez(t)) + v(t) +

2
K
e−z(t) u(t)

corresponding to eqn. (47). For this system, the result of Sec. 2.2 yields a stabilizing
feedback control. After retransformation from z to x, one such control u(t) = p(x(t))
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is one with

p(x) =





[−sgnα( x
x∗ − 1)

]
Kx
2x∗ if

∣∣α (
x
x∗ − 1

)∣∣ > ε

−α( x
x∗−1)

ε
Kx
2x∗ if

∣∣α (
x
x∗ − 1

)∣∣ ≤ ε
(50)

where ε > 0 is at our disposal; however, the smaller ε, the smaller is the assured
value of |x(t)− x∗| for all t ≥ T for some computable T .

For simulation purposes we use K = 1.5, r = 0.25, α = 0.1, and the uncertain
disturbance realization v = −0.1 cos t. Figure 1 shows the biomass evolution of the
uncontrolled (u(t) ≡ 0) and undisturbed (v(t) ≡ 0) ecosystem (49) for two initial
values. Figure 2 portrays the biomass evolution for the disturbed but uncontrolled
system, while Figures 3(a) and 3(b) present the biomass evolution of the disturbed
and controlled system for two values of the design parameter ε. Finally, Figures 4(a)
and 4(b) show the accumulative yield

Y (t) :=
∫ t

0

[h∗x(τ)− u(τ)] dτ ,

corresponding to the biomass history of Figure 3(b), as a function to time t. Clearly,
in the long run the yield of the controlled system exceeds that of the uncontrolled
one.

Fig. 1. Harvested one species system, undisturbed and uncontrolled.

Fig. 2. Harvested one species system, disturbed and uncontrolled.
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Fig. 3. Harvested one species system, disturbed and controlled. (a) ε = 0.01,

(b) ε = 0.001.

Fig. 4. Harvested and disturbed one species system. (a) x(0) = 0.276, (b) x(0) = 2.039.
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Fig. 5. Biomass responses for uncertain model with non-adaptive controller.

Fig. 6. Biomass responses for uncertain model with adaptive controller.

Fig. 7. Accumulative yields for x(0) = 2.039.

As mentioned above, if the bound of the disturbance, here α, is not known, we
may employ a dynamic controller. As shown in [16], for the example treated here
such a controller is

u(t) = s̃(t) α̂(t)x(t) (51)
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where

s̃(t) :=




−sgn[x(t)− x∗] if |α̂(t) [x(t)− x∗] | > ε(t)
−α̂(t) [x(t)−x∗]

ε(t) if |α̂(t) [x(t)− x∗] | ≤ ε(t)
(52)

and
˙̂α(t) = L |x(t)− x∗ | , α̂(0) > 0 (53)

ε̇(t) = −l ε(t) , ε(0) > 0

for L, l = const. > 0.
The use of adaptive control (cf. [15]) in this problem is illustrated in Figures

5–8. For comparison with the feedback control (50) we present simulation results
with the same parameter values K and r, and for the same disturbance realization
of v(·), as those used in the preceding simulations. As can be seen, the adaptive
control results in improved behavior, that is, a more rapidly convergent biomass and
increased long-term yield (albeit, for “small” initial biomass, replenishing is required
at the outset).

For a detailed discussion and a multi-species example see [16], [36].

Fig. 8. Accumulative yields for x(0) = 0.276.

8. EXAMPLE: STABILIZING EMPLOYMENT IN A FLUCTUATING RE-
SOURCE ECONOMY

Now we consider a resource management problem in which the management objec-
tive is the suppression of fluctuations in resource economics. In particular, we desire
to stabilize the employment level of fishermen in an open-access common-property
fishery subject to uncertain fluctuations in the resource level and in the value of the
resource. This is to be accomplished by using a subsidy/tax policy based on current
resource and employment levels.

Unlike in the previous example, here we adopt a discrete model. We consider an
uncertain density-dependent resource described by a difference equation

N(k + 1) = F [N(k), v(k, N(k), l(k))]−H[N(k), l(k)] (54)
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where k ∈ {. . . , −1, 0, 1, . . .} is the time, N(k) is aggregate stock size at time k,
F (·) : IR2 → IR is the resource growth function, and l(k) is the fishing effort during
period [k, k + 1). The uncertainty in the system is modelled by v(·) which depends
on time, stock level and fishing effort; H(·) : IR2 → IR is the catch during period
[k, k + 1).

We assume again that the growth function is of the logistic type

F [N(k), v(k, N(k), l(k))] = N(k)
[
1 + (r + v(k, N(k), l(k)))

(
1− N(k)

K

)]
(55)

where r and K are positive constants, while the harvest rate is of the form

H[N(k), l(k)] =
l(k)N(k)
a+ l(k)

(56)

for l(k) ≥ 0, and a is a positive constant. Finally, we take the growth uncertainty
to be bounded by a known constant v̄ < r, that is,

|v(k, N(k), l(k)) | ≤ v̄ . (57)

Next we investigate the possible range of stock levels for the fishery model (54) – (57).
In particular, it is readily shown that

N(k) ∈ (0,K] =⇒ N(k + l) ∈ (0, K] (58)

for non-negative fishing effort, l(k) ≥ 0, provided

r + v̄ ≤ 1 . (59)

Since one major goal of regulation is the avoidance of species extinction, we
restrict the subsequent treatment to the case for which this can be assured; namely
N(0) ∈ (0, K] and condition (59).

Next we postulate a regulatory agency which can employ a subsidy/tax policy
with the aim of supressing employment fluctuations ascribable to varying economic
conditions in an open-access fishery. The model of the entry/exit behavior of fisher-
men is based on the assumption that the change in the number of employed fishermen
depends on the short-term revenues which they can receive. Let π denote the value
of unit resource and c the cost of unit fishing effort. With fishing effort l(k) equiv-
alent to the number of fishermen employed (labor-intensive fishing), the entry/exit
behavior is modelled by

l(k + 1) = l(k) + t l(k)
[
πN(k)
a+ l(k)

− c

]
(60)

where t > 0 is an entry coefficient. Thus, the number of employed fishermen increases
as long as the enterprise is profitable; it decreases when cost exceeds profit.
We assume that

tc ≤ 1 (61)
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so that, since N(k) ≥ 0,
l(k) ≥ 0 =⇒ l(k + 1) ≥ 0 ; (62)

that is, the fishing effort (employment level) remains non-negative.
Now we consider bounded fluctuations in the value (price) of the resource. The

entry/exit equation (66) is modified to reflect this price uncertainty:

l(k + 1) = l(k) + t l(k)
[
(π + w(k))

N(k)
a+ l(k)

− c

]
(63)

with
|w(k)| ≤ w̄ ≤ π (64)

where w̄ is a known (assumed) bound.
Thus, both the resource growth rate and the value of the resource are subject to

unknown but bounded variations with known bounds. And while we suppose that
N(k) and l(k) are known, due to uncertainties v(·) and w(·), the resource manager
cannot predict their future values. However, as stated above, he can control the
entry/exit behavior so as to drive it to and maintain it “near” a target level, ls, by
supporting (subsidy) or penalizing (tax) the fishermen. Thus, the model reflecting
such social control becomes

l(k + 1) = l(k) + t l(k)
[
(π + w(k))

N(k)
a+ l(k)

− c+ u(k)
]

(65)

where u(k) > 0 denotes a subsidy and u(k) < 0 a tax.
On letting

x(k) := l(k)− ls

equation (65) becomes

x(k + 1) = f(k, x(k)) + C(k, x(k)) [u(k) + e(k, x(k), u(k))] (66)

where
f(k, x) := x+ t(x+ ls)

[
N(k)

a+x+ls
− c

]

C(k, x) := t(x+ ls)

e(k, x, u) := w(k)N(k)
a+x+ls

.

On applying the results given in Sec. 3.1, the stabilizing control is

u(k) = −f(k, x(k) /C(k, x(k)) . (67)

Now one can show that use of control (67) assures the non-negativity of fishing
effort, that is,

l(k) ≥ 0 for all k > 0 (68)

for all possible realizations of the uncertainties v(·) and w(·), if

r + v̄ ≤ 1 , t w̄ K < ls , (69)
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provided
N(0) ∈ (0, K], l(0) ≥ 0 . (70)

To illustrate the efficacy of control (67), we present simulation results for the
system with parameter values

r = 0.25, K = 1000, a = 500, π = 1, c = 1, t = 0.7 ,

uncertainty bounds
v̄ = 0.1, w̄ = 0.1

and uncertainty realizations

v(k, N(k), l(k)) = v̄ sin 0.2 k

w(k) = w̄ sin 0.5 k

with initial values
N(0) = 700, l(0) = 50 .

In the absence of disturbances, employment stabilizes at l = 61.6 with corre-
sponding stock level N = 562. The resource manager prefers a higher employment
level, namely, ls = 80; the corresponding steady-state stock level of the undisturbed
controlled system is N = 448.

Figures 9 and 10 show the behavior of the stock level and of the employment
level in the presence of the assumed uncertainty realizations for the system without
and with control (67). Clearly, the use of the proposed subsidy/tax policy serves to
suppress the fluctuations in employment, albeit with increased intensity of resource
utilization.

Fig. 9. Stock level.
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Fig. 10. Employment level.

Detailed derivations as well as further discussions can be found in [30]. More
complex systems allowing for labor as well as capital intensive fishery sectors are
treated in [28], [31].

(Received April 27, 1995.)
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