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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in April 2005.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2005.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/412.html


KY BERNET I K A — V OL UME 4 1 ( 2 0 0 5 ) , N UM B ER 2 , PAGE S 1 2 9 – 1 4 2

GENERALIZED HOMOGENEOUS, PRELATTICE
AND MV–EFFECT ALGEBRAS

Zdenka Riečanová and Ivica Marinová

We study unbounded versions of effect algebras. We show a necessary and sufficient
condition, when lattice operations of a such generalized effect algebra P are inherited
under its embeding as a proper ideal with a special property and closed under the effect
sum into an effect algebra. Further we introduce conditions for a generalized homogeneous,
prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect
algebra P is a union of generalized MV-effect algebras and every generalized homogeneous
effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz
decomposition property (blocks). Properties of sharp elements, the center and center of
compatibility of P are shown. We prove that on every generalized MV-effect algebra there
is a bounded orthogonally additive measure.

Keywords: effect algebra, generalized effect algebra, generalized MV-effect algebra, prelat-
tice and homogeneous generalized effect algebra

AMS Subject Classification: 06D35, 03G12, 03G25, 81P10

1. BASIC DEFINITIONS AND FACTS

In 1994, Foulis and Bennett [3] have introduced a new algebraic structure, called
an effect algebra. Effects represent unsharp measurements or observations on the
quantum mechanical system. For modelling unsharp measurements in Hilbert space,
the set of all effects is the set of all selfadjoint operators T on a Hilbert space H
with 0 ≤ T ≤ 1. In a general algebraic form an effect algebra is defined as follows:

Definition 1.1. A partial algebra (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are
two distinguished elements and ⊕ is a partially defined binary operation on P which
satisfies the following conditions for any a, b, c ∈ E:
(Ei) b⊕ a = a⊕ b, if a⊕ b is defined,

(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c), if one side is defined,

(Eiii) for every a ∈ P there exists a unique b ∈ P such that a⊕ b = 1,

(Eiv) if 1⊕ a is defined then a = 0.

From axioms of an effect algebra it follows immediately:
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Cancellation law. In an effect algebra (E;⊕, 0, 1) for all a, b, c ∈ E with defined
a⊕ b and a⊕ c it holds

(CL) a⊕ b = a⊕ c implies b = c.

Cancellation law guarantees that in every effect algebra E the partial binary
operation ª and the relation ≤ can be defined by

(ED) a ≤ c and cª a = b iff a⊕ b is defined and a⊕ b = c.

Under the partial order defined by (ED), 0 is the least and 1 the greatest element
of E. Hence every effect algebra is a bounded poset. Moreover, a ⊕ b is defined iff
a ≤ b′.

Unbounded versions (mutually equivalent) of effect algebras were studied by Fou-
lis and Bennett (cones), Kalmbach and Riečanová (abelian RI-semigroups), Hed-
ĺıková and Pulmannová (cancellative positive partial abelian semigroups). Their
common definition is the following:

Definition 1.2. A partial algebra (E;⊕, 0) is called a generalized effect algebra if
0 ∈ E is a distinguished element and ⊕ is a partially defined binary operation on E
which satisfies the following conditions for any a, b, c ∈ E:

(GEi) a⊕ b = b⊕ a, if one side is defined,

(GEii) (a⊕ b)⊕ c = a⊕ (b⊕ c), if one side is defined,

(GEiii) a⊕ 0 = a for all a ∈ E,

(GEiv) a⊕ b = a⊕ c implies b = c (cancellation law),

(GEv) a⊕ b = 0 implies a = b = 0.

We often denote a generalized effect algebra briefly by E. In every generalized
effect algebra E the partial binary operation ª and relation ≤ can be defined by
(ED). Then ≤ is a partial order on E under which 0 is the least element of E. The
following proposition with a trivial verification indicates the relation between effect
algebras and generalized effect algebras.

Definition 1.3. [14] Let (P ;⊕, 0) be a generalized effect algebra. If Q ⊆ P is
such that 0 ∈ Q and for all a, b, c ∈ Q with a ⊕ b = c if at least two of a, b, c are in
Q then a, b, c ∈ Q, then Q is called a sub-generalized effect algebra of P .

Note that every sub-generalized effect algebra Q of a generalized effect algebra P
is a generalized effect algebra in its own right.

Proposition 1.1. If (E;⊕, 0) is a generalized effect algebra and there is 1 ∈ E
such that for all a ∈ E there is b ∈ E with a ⊕ b = 1 then (E;⊕, 0, 1) is an effect
algebra. Conversely, if (E;⊕, 0, 1) is an effect algebra then partial operation ⊕
satisfies axioms (GEi) – (GEv) of a generalized effect algebra.
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Let us note that if for an effect algebra (E;⊕, 0, 1) we define on E a partial
operation ª and a partial order ≤ by condition (ED) then (E;≤,ª, 0, 1) is a D-poset
introduced by Kôpka and Chovanec [12] and (E;ª, 0, 1) is a D-algebra defined by
Gudder [4]. Moreover, using condition (ED) for generalized effect algebra (E;⊕, 0)
we obtain generalized D-poset (E;ª, 0) studied by Hedĺıková and Pulmannová [6].
Conversely, for mentioned partial algebras with operation ª we can derive a partial
operation ⊕ using the same condition (ED) and we obtain effect algebras (E;⊕, 0, 1)
or generalized effect algebras (E;⊕, 0).

It has been shown in [18] and an alternative result for generalized D-poset in [6]
that every generalized effect algebra is an order ideal with special properties of an
effect algebra. These results extend similar results which have been obtained for
particular structures, namely that: (i) generalized orthomodular lattices are order
ideals of orthomodular lattices (proved by Janowitz [7]), (ii) (weak) generalized
orthomodular posets are order ideals of orthomodular posets (proved by Mayet–
Ippolito [13]).

Recall that a nonvoid subset I of a partially ordered set L is an order ideal if
a ∈ L, b ∈ I and a ≤ b then a ∈ I.

Let (P ;⊕, 0) be a generalized effect algebra. Let P ∗ be a set disjoint from P with
the same cardinality. Consider a bijection a 7→ a∗ from P onto P ∗ and let us denote
P ∪̇P ∗ by E. Define a partial binary operation ⊕∗ on E by the following rules. For
a, b ∈ P

(i) a⊕∗ b is defined if and only if a⊕ b is defined, and a⊕∗ b = a⊕ b

(ii) b∗⊕∗ a and a⊕∗ b∗ are defined iff bªa is defined and then b∗⊕∗ a = (bªa)∗ =
a⊕∗ b∗.

Theorem 1.1. [2, p. 18] For every generalized effect algebra P and E = P ∪̇P ∗

the structure (E;⊕∗, 0, 0∗) is an effect algebra. Moreover, P is a proper order ideal
in E closed under ⊕∗ and the partial order induced by ⊕∗, when restricted to P ,
coincides with the partial order induced by ⊕. P is a sub-generalized effect algebra
of E and for every a ∈ P , a⊕ a∗ = 0∗.

Since the definition of ⊕∗ on E = P ∪̇P ∗ coincides with ⊕- operation on P , it will
cause no confusion if from now on we will use the notation ⊕ also for its extension
on E.

2. PRELATTICE GENERALIZED EFFECT ALGEBRAS
AND SHARP ELEMENTS

Assume that P is a generalized effect algebra. For the effect algebra E = P ∪̇P ∗

constructed in Theorem 1.1 the partial order on E, when restricted to P , coincides
with the original partial order on P . In spite of this fact, the lattice operations join
and meet of elements a, b ∈ P (a ∨P b, a ∧P b) need not be preserved for E, if they
exist in P .
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Example 2.1. Let P = {0, a, b, a⊕ b, b⊕ b} be a generalized effect algebra and let
E = P ∪̇P ∗ be an effect algebra constructed in Theorem 1.1. Obviously, a⊕b = a∨P b,
while a ∨E b does not exist.

The following theorem establishes a necessary and sufficient condition for the
inheritance of a ∨P b, for a, b ∈ P , by the effect algebra E = P ∪̇P ∗.

Theorem 2.1. Let P be a generalized effect algebra and E = P ∪̇P ∗. For every
a, b ∈ P with a ∨P b existing in P the following conditions are equivalent

(i) a ∨E b exists and a ∨E b = a ∨P b.

(ii) For every c ∈ P the existence of a ⊕ c and b ⊕ c implies the existence of
(a ∨P b)⊕ c.

P r o o f . (i) ⇒ (ii): If a ⊕ c and b ⊕ c exists in P then a ≤ c∗ and b ≤ c∗ which
gives a ∨E b ≤ c∗ and hence (a ∨E b)⊕ c = (a ∨P b)⊕ c exists in P .

(ii)⇒ (i): By the assumptions for all c, d ∈ P we have: a, b ≤ d implies a∨P b ≤ d,
as well as a, b ≤ c∗ implies a ∨P b ≤ c∗, since (a ∨P b) ⊕ c exists in P . Thus
a ∨E b = a ∨P b. 2

In this section, it is of our interest to answer a question for which generalized
effect algebra P the effect algebra E = P ∪̇P ∗ from Theorem 1.1 is lattice ordered,
under which all joins and meets existing in P are preserved for E. We will call such
generalized effect algebra a prelattice generalized effect algebra.

It is rather surprising that a prelattice effect algebra P need not be lattice ordered.
In general, a prelattice generalized effect algebra P need not be a sublattice of the
lattice effect algebra E = P ∪̇P ∗.

Example 2.2. Let P = {0, a, b, a ⊕ a, b ⊕ b} be a generalized effect algebra. It is
easy to check that E = P ∪̇P ∗ is a lattice effect algebra in spite of the fact that P is
not a lattice, as, e. g., a ∨P b does not exist.

Theorem 2.2. Let P be a generalized effect algebra. Then E = P ∪̇P ∗ is a lattice
effect algebra preserving joins and meets existing in P if and only if the following
conditions are satisfied for all a, b ∈ P :

(i) a ∧P b exists.

(ii) If there is d ∈ P such that a, b ≤ d then a ∨P b exists.

(iii) For all c ∈ P the existence of a ∨P b, a ⊕ c and b ⊕ c implies the existence of
(a ∨P b)⊕ c.

(iv) Either a ∨p b exists or
∨{c ∈ P | a⊕ c and b⊕ c are defined} exists in P .

(v)
∨{c ∈ P | c ≤ b and a⊕ c is defined} exists in P .
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P r o o f . Let a, b ∈ P . If c ∈ E and c ≤ a, b then c ∈ P and hence a∧E b exists iff
a ∧P b exists, in which case a ∧E b = a ∧P b.

Let d ∈ P such that a, b ≤ d. Then the existence of a ∨E b implies a ∨E b ≤ d,
which gives a ∨E b ∈ P and hence there is a ∨P b and a ∨P b = a ∨E b. Conversely,
by (iii), the existence of a ∨P b implies that for all c ∈ P with a, b ≤ c∗ we have
a ∨P b ≤ c∗ and hence there is a ∨E b and a ∨E b = a ∨P b.

If there is no d ∈ P with a, b ≤ d then a∨P b does not exist and then a∨E b exists
iff there is x ∈ P such that x =

∨{c ∈ P | a⊕ c and b⊕ c are defined}, in which case
a ∨E b = x∗. Hence a ∨E b exists by (iv).

Finally, a∗ ∧E b exists iff there is y ∈ P such that y =
∨{c ∈ P | c ≤ b and a⊕ c

is defined}. In this case a∗ ∧E b = y. Thus, using d’Morgan laws, we obtain that E
is a lattice effect algebra iff (i) – (v) are satisfied for every pair a, b ∈ P . 2

Note that if for a, b ∈ P in Theorem 2.2 the element a ∨P b exists then the the
existence of

∨{c ∈ P | a ⊕ c and b ⊕ c are defined} in P is not necessary to obtain
E = P ∪̇P ∗ lattice ordered. For instance, this occurs when P = [0,∞) with usual
addition.

Definition 2.1. A generalized effect algebra P satisfying conditions (i) – (v) of
Theorem 2.2 is called a prelattice generalized effect algebra.

Theorem 2.3. Let P be an effect algebra and let E = P ∪̇P ∗. Then

(i) 1∗ is an atom of E.

(ii) a⊕ 1∗ = (a′)∗, for every a ∈ P .

(iii) a⊕ b∗ = (bª a)∗, for all a, b ∈ P with a ≤ b.

(iv) E ∼= P × {0, 1∗}.
(v) E is a lattice effect algebra iff P is a lattice effect algebra, in which case P is

a sublattice of E.

(vi) E is a distributive or modular effect algebra or MV-effect algebra iff P has
these properties.

P r o o f . (i) Since for a ∈ P the existence of a ⊕ 1 implies a = 0, we obtain that
the condition a ≤ 1∗ implies a = 0. Moreover, for all a ∈ P we have 1∗ ≤ a∗ and
hence 1∗ is an atom of E.

(ii) Let a ∈ P . Then a ≤ 1 = (1∗)∗, hence a ⊕ 1∗ exists in E and a ⊕ 1∗ =
(1ª a)∗ = (a′)∗.

(iii) If a, b ∈ P with a ≤ b then a ≤ (b∗)∗ which gives the existence of a ⊕ b∗.
Further, (a⊕ b∗)∗ = 0∗ ª (b∗ ⊕ a) = (0∗ ª b∗)ª a = bª a, hence a⊕ b∗ = (bª a)∗.

(iv) Let us define a map ϕ : E → P×{0, 1∗} as follows: for a ∈ P let ϕ(a) = (a, 0)
and ϕ(a∗) = (a′, 1∗). Evidently ϕ is a bijection of E onto P × {0, 1∗}. Further, if
a, b ∈ P and a ⊕ b is defined in P then ϕ(a ⊕ b) = (a ⊕ b, 0) = (a, 0) ⊕ (b, 0) =
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ϕ(a) ⊕ ϕ(b). If a ∈ P , b∗ ∈ P ∗ and a ⊕ b∗ is defined in E then by (iii) we have
ϕ(a⊕b∗) = ϕ((bªa)∗) = ((bªa)′, 1∗) = (b′⊕a, 1∗) = (b′, 1∗)⊕(a, 0) = ϕ(a)⊕ϕ(b∗).
If a∗, b∗ ∈ P ∗ then a∗ ⊕ b∗ does not exist. This proves that ϕ is an isomorphism.

(v) Evidently, a lattice effect algebra P satisfies conditions (i) – (v) of Theorem 2.2,
which implies that E = P ∪̇P ∗ is a lattice effect algebra in which P is a sublattice.
Conversely, if E is a lattice then P is a sublattice of E, since P is a bounded poset.

(vi) This follows by the fact that E is a direct product of P and the Boolean
algebra {0, 1∗}.

Recall that an element z of an effect algebra E is sharp if z ∧ z′ = 0. It has been
proved in [9] that in every lattice effect algebra E the set S(E) = {z ∈ E | z∧z′ = 0}
is an orthomodular lattice. Moreover, S(E) is a sub-lattice and a sub-effect algebra
of E. 2

Definition 2.2. An element z of a generalized effect algebra P is called a sharp
element if for all e ∈ P the conditions e ≤ z and z ⊕ e is defined imply that e = 0.
Let S(P ) = {z ∈ P | z is sharp element of P}.

For the definition of a (weak) generalized orthomodular poset (introduced by
A. Mayet–Ippolito [13]) we refer the reader to [2, p. 39]. Relation between general-
ized effect algebra and (weak) generalized orthomodular poset are shown in Theo-
rem 1.5.13, Lemma 1.5.14 and Theorem 1.5.17 in [2].

Theorem 2.4. Let P be a prelattice generalized effect algebra and let S(P ) =
{z ∈ P | z is a sharp element of P}. Let E = P ∪̇P ∗. Then

(i) S(P ) = S(E) ∩ P .

(ii) If z1, z2 ∈ S(P ) and z1 ⊕ z2 is defined in E then z1 ⊕ z2 ∈ S(P ).

(iii) S(P ) is a prelattice generalized effect algebra and S(E) = S(P )∪̇(S(P ))∗,
when S(E) is considered as lattice effect algebra and (S(P ))∗ = {z∗ | z ∈
S(P )}.

(iv) S(P ) is a generalized orthomodular poset being a proper ideal in the ortho-
modular lattice S(E), closed under orthogonal joins and for every z ∈ S(E)
either z ∈ S(P ) or 0∗ ª z ∈ S(P ).

P r o o f . (i) Since E is a lattice effect algebra, for e, z ∈ P we have e ≤ z ∧ z∗ iff
e ≤ z and z ⊕ e is defined. It follows that z ∧ z∗ = 0 iff for all e ∈ P the conditions
e ≤ z and z ⊕ e is defined imply e = 0. It follows that z ∈ S(P ) iff z ∈ S(E) ∩ P .

(ii) If z1, z2 ∈ S(P ) and z1 ⊕ z2 is defined in E then z1 ≤ z∗2 which gives that
z1 ∧ z2 ≤ z∗2 ∧ z2 = 0 and hence z1 ⊕ z2 = z1 ∨ z2 ∈ S(E) ∩ P because S(P ) ⊆ P , P
is closed under ⊕ and S(E) is a sublattice of E.

(iii) Since S(E) is a sublattice and a sub-effect algebra of a lattice effect algebra
E we may consider S(E) as a lattice effect algebra in its own right. Further, by (i)
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and (ii), S(P ) is a proper order ideal in S(E) closed under ⊕. If we set (S(P ))∗ =
{z∗ | z ∈ S(P )} then S(E) = S(P )∪̇(S(P ))∗ and by [2, Proposition 1.2.7] we obtain
that the effect algebra S(P )∪̇(S(P ))∗ coincides with S(E).

(iv) This follows by (ii) and (iii) and the facts that for all z1, z2 ∈ S(E) with
z1 ≤ z∗2 we have z1∧z2 = 0 and z1⊕z2 = z1∨z2, under which S(E) = S(P )∪̇(S(P ))∗.

2

3. GENERALIZED MV–EFFECT ALGEBRAS AND BLOCKS OF
PRELATTICE GENERALIZED EFFECT ALGEBRAS

In [11] compatibility of elements a, b of a D-poset (effect algebra) E was introduced
(denoted by a ↔ b). In [12] it has been proved that in a D-lattice (lattice effect
algebra) a ↔ b iff (a ∨ b)ª b = aª (a ∧ b)).

Lemma 3.1. Let E be a lattice effect algebra and let a, b ∈ E. The following
conditions are equivalent:

(i) a ↔ b.

(ii) (aª (a ∧ b))⊕ (bª (a ∧ b)) is defined.

P r o o f . Since E is a lattice effect algebra, for all a, b ∈ E we have 0 = (a ∧ b)ª
(a ∧ b) = (aª (a ∧ b)) ∧ (bª (a ∧ b)), see [2, p. 70].

Assume that a ↔ b. Then a∨b = b⊕(aª(a∧b)) = (a∧b)⊕(bª(a∧b))⊕(aª(a∧b))
which implies (ii). Conversely (ii) implies (aª (a∧ b))⊕ (bª (a∧ b)) = (aª (a∧ b))∨
(bª (a∧b)) ≤ (a∧b)′ which gives that (a∧b)⊕ (aª (a∧b))⊕ (bª (a∧b)) = [(aª (a∧
b))⊕(a∧b)]∨ [(bª(a∧b))⊕(a∧b)] = a∨b which implies that a∨b = b⊕(aª(a∧b)).

If P is a prelattice generalized effect algebra then elements a, b ∈ P are compatible
in the lattice effect algebra E = P ∪̇P ∗ iff (a ª (a ∧ b))⊕ (b ª (a ∧ b)) exists. Since
in this case we have (aª (a ∧ b))⊕ (bª (a ∧ b)) ∈ P , it make sense to call elements
a, b compatible in P . In this case a ∨ b ∈ P since a ∨ b = b⊕ (aª (a ∧ b)). 2

Definition 3.1. Elements a, b of a prelattice generalized effect algebra P are called
compatible if (aª (a ∧ b))⊕ (bª (a ∧ b)) is defined.

A lattice effect algebra E is called an MV-effect algebra if every pair of elements
a, b ∈ E is compatible. In [16] has been shown that every lattice effect algebra
E is a set-theoretical union of maximal subsets of pairwise compatible elements,
called blocks. Moreover, blocks of E are maximal sub MV-effect algebras as well as
sublattices of E. It is worth noting that every MV-effect algebra M can be organized
into an MV-algebra (extending the partial binary operation ⊕ onto total operation
⊕ by a⊕b = a⊕ (a′ ∧ b) for all a, b ∈ M ([1, 5, 12]). Thus every lattice effect algebra
E is a union of MV-algebras. If that E is an orthomodular lattice (see [10]) then
every block of E is a Boolean algebra.

In what follows for Q ⊆ P we will denote by Q∗ the set {y∗ ∈ P ∗ | y ∈ Q}.
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Theorem 3.1. Let P be a prelattice generalized effect algebra and E = P ∪̇P ∗.
Let M ⊆ E be a block of E. Then

(i) M ∩ P ∗ = (M ∩ P )∗.

(ii) M ∩ P is a maximal pairwise compatible subset of P and a sublattice of E.
Conversely, if Q is a maximal subset of pairwise compatible elements of P then
Q∪̇Q∗ is a block of E.

(iii) M ∩ P is a prelattice generalized effect algebra and (M ∩ P )∪̇(M ∩ P )∗ = M .

P r o o f . (i) For x, y ∈ E we have x ↔ y iff x ↔ y∗ (see [16]) which gives y ∈ M iff
y∗ ∈ M and therefore y ∈ M∩P iff y∗ ∈ M∩P ∗. It follows that M∩P ∗ = (M∩P )∗.

(ii) Let x ∈ P and x ↔ y for all y ∈ M ∩P . Then x ↔ y∗ for all y ∈ M ∩P ∗ and
thus x ↔ y for all y ∈ M which gives x ∈ M by maximality of M . Further, by [16],
if x ↔ y and x ↔ z then x ↔ y ∨ z and x ↔ y ∧ z, therefore M ∩ P is a sublattice
of E, because y, z ∈ P and y ↔ z implies y ∨E z ∈ P . If Q is a maximal subset
of pairwise compatible elements of P then Q∪̇Q∗ is a maximal subset of pairwise
compatible elements of E, hence Q∪̇Q∗ is a block of E (see [16]).

(iii) M∩P is a generalized effect algebra since both M and P are generalized effect
algebras. Further, P satisfies conditions (i) – (v) of Theorem 2.2 by the assumption
that P is prelattice and M satisfies these conditions, since M is a lattice. Therefore
M ∩P is a prelattice generalized effect algebra. Obviously M = (M ∩P )∪̇(M ∩P )∗

as M ∩ P ∗ = (M ∩ P )∗ by (i). 2

Corollary 3.1. Every prelattice generalized effect algebra P is a union of maximal
subsets of pairwise compatible elements of P .

P r o o f . If P is a prelattice effect algebra then E = P ∪̇P ∗ is a lattice effect algebra
and by [16] we have E =

⋃{M ⊆ E |M is a block of E}. Therefore P =
⋃{M∩P |M

is a block of E}. The rest follows by Theorem 3.1, (ii). 2

Definition 3.2. A maximal subset of pairwise compatible elements of a prelattice
generalized effect algebra P is called a block of P . A prelattice generalized effect
algebra with a unique block is called a generalized MV-effect algebra.

Theorem 3.2. For a generalized effect algebra P the following conditions are
equivalent:

(i) P is a generalized MV-effect algebra.

(ii) E = P ∪̇P ∗ is an MV-effect algebra.

(iii) P is a prelattice generalized effect algebra and for all a, b ∈ P the sum (a ª
(a ∧ b))⊕ (bª (a ∧ b)) exists in P .

The p r o o f is straightforward.
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Theorem 3.3. A generalized effect algebra P is a generalized MV-effect algebra
iff the following conditions are satisfied

(i) P is a lattice.

(ii) For all a, b, c ∈ P the existence of a ⊕ c and b ⊕ c implies the existence of
(a ∨P b)⊕ c.

(iii)
∨{c ∈ P | a⊕ c exists and c ≤ b} exists in P , for all a, b ∈ P .

(iv) (aª (a ∧ b))⊕ (bª (a ∧ b)) exists for all a, b ∈ P .

P r o o f . Obviously conditions (i) – (iii) imply conditions (i) – (v) of Theorem 2.2
hence P is a prelattice generalized effect algebra and condition (iv) implies that it
has a unique block.

Conversely, if P is a generalized MV-effect algebra then obviously (ii) – (iv) are
satisfied. Let a, b ∈ P then a ∧P b exists by Theorem 2.2, (i) and a ∧P b = a ∧E b.
Further, there is (aª(a∧b)) ≤ (a∧b)∗ and since E = P ∪̇P ∗ is a lattice effect algebra
we obtain [(aª (a∧b))⊕ (bª (a∧b))]⊕ (a∧b) = [(aª (a∧b)∨(bª (a∧b))]⊕ (a∧b) =
a ∨ b ∈ P . 2

Theorem 3.4.

(i) Every prelattice generalized effect algebra is a union of generalized MV-effect
algebras (blocks).

(ii) A generalized MV-effect algebra P is an MV-effect algebra iff there exists an
element 1 ∈ P such that for every a ∈ P there exists a unique b ∈ P for which
a⊕ b = 1.

The p r o o f is straightforward.

Example 3.1. The set P1 = {0, 1, 2, 3, . . . } of nonnegative integers with usual
addition and the set P2 = 〈0,∞) of nonnegative real numbers with usual addition
are examples of generalized MV-effect algebras. It is easy to see that E1 = P1∪̇P ∗1
and E2 = P2∪̇P ∗2 are linearly (totally) ordered MV-effect algebras.

More generally, the positive cone G+ of any partially ordered abelian group
(G; +, 0,≤) is a generalized effect algebra.

Example 3.2. Let H 6= ∅ and for every κ ∈ H let either Pκ = P1 or Pκ = P2

defined in Example 3.1. The cartesian product
∏

κ∈H Pκ with 0 and ⊕ defined “co-
ordinatewise” is a prelattice generalized effect algebra. First, it is easy to check that
P =

∏
κ∈H Pκ is a lattice in which ≤ and lattice operations are defined “coordinate-

wise” too, and every Pκ is a lattice. Further, ⊕ on P is a total binary operation.
This proves that conditions (i) – (iv) from Theorem 2.2 are satisfied in P . Finally,
for all a, b ∈ P we have

∨{c ∈ P | c ≤ b and a ⊕ c is defined} = b ∈ P . By Theo-
rem 2.2, E = P ∪̇P ∗ is a lattice effect algebra preserving joins and meets existing in
P . Moreover, by Theorem 3.2, E is an MV-effect algebra.
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A state on an effect algebra (E;⊕, 0, 1) is a mapping ω : E → [0, 1] ⊆ (−∞,∞)
such that ω(0) = 0, ω(1) = 1 and ω(a⊕ b) = ω(a) + ω(b) for all a ≤ b′, a, b ∈ E.

Theorem 3.5. Let (P ;⊕, 0) be a generalized effect algebra and let m : P → [0,∞)
be a bounded mapping such that m(a⊕b) = m(a)+m(b) for all a, b ∈ P with defined
a ⊕ b. Then there is a state ω on E = P ∪̇P ∗ extending m

k0
, iff k0 = sup{m(a) | a ∈

P} 6= 0.

P r o o f . Let k0 = sup{m(a) | a ∈ P} 6= 0. For every a ∈ P let ω(a) = m(a)
k0

and ω(a∗) = k0−ω(a)
k0

. Then ω(0) = 0 and ω(0∗) = k0−m(0)
k0

= 1, because m(0) =
m(0 ⊕ 0) = 2m(0), which gives m(0) = 0. Further, for a, b ∈ P with a ≤ b∗ we
have ω(a ⊕ b) = m(a⊕b)

k0
= ω(a) + ω(b) and for a, b with a ≤ b we have ω(a ⊕ b∗) =

ω((bª a)∗) = k0−m(bªa)
k0

= 1− m(b)
k0

+ m(a)
k0

= ω(b∗) + ω(a). This proves that ω is a
state on E.

It is well known that on every MV-effect algebra (MV-algebra) there is a state.2

Theorem 3.6. On every generalized MV-effect algebra P there is a bounded map-
ping m : P → [0, 1] such that m(a⊕ b) = m(a) + m(b) for all a, b ∈ P with defined
a⊕ b.

Finally, note that the notion of a central element of a generalized effect algebra
P has been introduced in [14]. Recall that z ∈ P is central iff P is isomorphic to
a direct product of [0, z] and Qz = {x ∈ P |x ∧ z = 0}. Moreover z ∈ P is central
element of P iff it is a central element of E = P ∪̇P ∗ iff E is isomorphic to the
direct product [0, z]× [0, z∗] and then for Qz defined above we have Qz = P ∩ [0, z∗]
(see [14, Section 5]). Thus if C(E) = {z ∈ E | z is central element of E} and
C(P ) = {z ∈ E | z is central element of P} then C(P ) = C(E) ∩ P .

For a lattice effect algebra E the subset B(E) =
⋂{M ⊆ E |M is a block of E}

is called a compatibility center of E. By Theorem 3.1, for a prelattice generalized
effect algebra P and lattice effect algebra E = P ∪̇P ∗ we obtain that B(E) ∩ P =⋂{M ∩ P |M is a block of E}. We will call B(E) ∩ P a compatibility center of
P and denote it by B(P ). Since for every lattice effect algebra E the equality
C(E) = S(E) ∩B(E) holds (see [15, Theorem 2.5, (iv)]), we obtain:

Theorem 3.7. For every prelattice generalized effect algebra P the condition
C(P ) = S(P ) ∩ B(P ) is satisfied. If P is a generalized MV-effect algebra then
C(P ) = S(P ).

As a consequence of Theorem 3.7 we obtain that an element z of a prelattice
generalized effect algebra P is central iff z is a sharp element of P compatible with
every element of P . Because D ⊆ P is a block of P iff there is a block M of E =
P ∪̇P ∗ such that D = M ∩P and M ∩P ∗ = (M ∩P )∗ = D∗ we obtain that B(P ) is
a generalized MV-effect lagebra such that the MV-algebra B(E) = B(P )∪̇(B(P ))∗.
Moreover, the center C(P ) is a proper order ideal in the Boolean algebra C(E)
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closed under ⊕ and such that for every z ∈ C(E) either z ∈ C(P ) or 0∗ ª z ∈ C(P )
and thus C(E) = C(P )∪̇(C(P ))∗ = (C(E) ∩ P )∪̇(C(E) ∩ P ∗), hence C(P ) is a
generalized Boolean algebra.

4. GENERALIZED HOMOGENEOUS EFFECT ALGEBRAS

A certain class of effect algebras called homogeneous effect algebras has been in-
troduced by G. Jenča in [8]. Recall that an effect algebra E satisfies the Riesz
decomposition property if for u, v1, v2 ∈ E such that u ≤ v1⊕ v2 there are u1, u2 ∈ E
such that u1 ≤ v1, u2 ≤ v2 and u = u1⊕u2. An effect algebra is called homogeneous
if for all u, v1, v2 ∈ E such that u ≤ v1 ⊕ v2 ≤ u′ there are u1 ≤ v1 and u2 ≤ v2

such that u = u1⊕u2. In [8] it has been proved that every homogeneous effect alge-
bra is a union of maximal sub-effect algebras with the Riesz decomposition property,
called blocks. The class of homogeneous effect algebras includes orthoalgebras and
lattice effect algebras (hence as a subclass MV-effect algebras, orthomodular lat-
tices, Boolean algebras and orthomodular posets). If a homogeneous effect algebra
E is a lattice effect algebra then blocks are MV-effect algebras (see [16]). If E is an
orthomodular lattice then blocks are Boolean algebras (see [10]).

Definition 4.1. A generalized effect algebra P is called a generalized homogeneous
effect algebra iff the following conditions are satisfied for all a, b, c ∈ P :

(i) If (b⊕ c)⊕a is defined and a ≤ b⊕ c then there are b1, c1 ∈ P such that b1 ≤ b,
c1 ≤ c and a = b1 ⊕ c1.

(ii) If (cª b)⊕a is defined and a ≤ cª b then there are b1, c1 ∈ P such that b1 ≤ b,
c1 ⊕ c is defined and a = b1 ⊕ c1.

Theorem 4.1. Let P be a generalized effect algebra and E = P ∪̇P ∗ be defined
as in Theorem 1.1. The following conditions are equivalent:

(i) E is a homogeneous effect algebra.

(ii) P is a generalized homogeneous effect algebra.

P r o o f . Let x, y, z ∈ E and x ≤ y ⊕ z ≤ x∗. Then, because for b, c ∈ P only
b⊕ c or b⊕ c∗ can be defined (b∗ ⊕ c∗ never can be) and for no a ∈ P the inequality
a∗ ≤ a holds, we obtain that there are a, b, c ∈ P such that x = a, y = b and either
z = c or z = c∗. Further, the conditions a ≤ b ⊕ c∗ ≤ a∗ are equivalent to the
conditions a ≤ (b ⊕ c∗)∗ ≤ a∗ and hence to a ≤ (c ª b) ≤ a∗ which is equivalent to
the conditions a ≤ c ª b and (c ª b) ⊕ a is defined. Moreover, c1 ≤ c∗ iff c1 ⊕ c is
defined. This proves that (i) and (ii) are equivalent. 2

By Theorems 1.1 and 4.1 every homogeneous generalized effect algebra P is a
proper order ideal in a homogeneous effect algebra E such that P is closed under ⊕
and for every x ∈ E exactly one of elements x, x∗ is in P .
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Definition 4.2. A generalized effect algebra E is called a generalized effect alge-
bra with hereditary Riesz decomposition property (HRDP for short) if the following
conditions are satisfied for all a, b, c ∈ P :

(i) If a ≤ b⊕ c then there are b1, c1 ∈ P such that b1 ≤ b, c1 ≤ c and b1 ⊕ c1 = a.

(ii) If (c ª b) ⊕ a is defined then there are b1, c1 ∈ P such that b1 ≤ b, c1 ⊕ c is
defined and b1 ⊕ c1 = a.

(iii) If cª b ≤ a then there are b1, c1 ∈ P such that b1 ≤ b, c1 ≥ c and a = c1 ª b1.

Theorem 4.2. Let P be a generalized effect algebra and E = P ∪̇P ∗ be defined
as in Theorem 1.1. The following conditions are equivalent:

(i) E is an effect algebra with RDP.

(ii) P is a generalized effect algebra with HRDP.

P r o o f . Let x, y, z ∈ E. Then x ≤ y ⊕ z iff there are a, b, c ∈ P such that x = a,
y = b, and z ∈ {c, c∗} or x = a∗, y = b and z = c∗. Further, (cª b)⊕ a is defined iff
a ≤ (c ª b)∗ = b ⊕ c∗. Finally, c ª b ≤ a iff a∗ ≤ (c ª b)∗ = b ⊕ c∗. Moreover, if E
has RDP property then: (1) a ≤ b⊕ c implies the existence of b1, c1 ∈ P such that
b1 ≤ b, c1 ≤ c and a = b1⊕ c1, (2) a ≤ b⊕ c∗ implies the existence of b1 ∈ P , c1 ∈ P
such that b1 ≤ b, c1 ≤ c∗ and a = b1 ⊕ c1, under which c1 ≤ c∗ iff c1 ⊕ c is defined.
(3) a∗ ≤ b⊕ c∗ implies that there are b1 ∈ P and c∗1 ∈ P ∗ such that b1 ≤ b, c∗1 ≤ c∗

and a∗ = b1⊕ c∗1 = (c1ª b1)∗ or, equivalently, a = c1ª b1, under which c1 ≥ c. This
proves that E has RDP iff P is a generalized effect algebra with HRDP. 2

Definition 4.3. Let (P ;⊕, 0) be a generalized effect algebra. If P is homogeneous
and Q is a maximal sub-generalized effect algebra of P with HRDP then Q is called
a block of P .

Theorem 4.3. Let P be a generalized homogeneous effect algebra and let E =
P ∪̇P ∗.

(i) Q ⊆ P is a block of P iff there is a block D of E such that Q = D ∩ P .

(ii) P is a union of its maximal sub-generalized effect algebras with HRDP (blocks).

P r o o f . (i) If D ⊆ E is a block of E then x ∈ D iff x∗ ∈ D and D is closed under
⊕ (see [8]). It follows that 0 ∈ D ∩ P and D ∩ P is a sub-generalized effect algebra
of P . Moreover, D = D ∩ (P ∪̇P ∗) = (D ∩ P )∪̇(D ∩ P ∗) = (D ∩ P )∪̇(D ∩ P )∗. By
Theorem 4.2, D ∩ P has the HRDP iff D has the RDP. If D ∩ P ⊆ Q1 ⊆ P and Q1

is a block of P then D1 = Q1∪̇Q∗1 ⊆ E is a block of E by Theorem 4.2 and D ⊆ D1

which implies that D = D1 and hence D ∩ P = Q1.

(ii) Since E =
⋃{D ⊆ E |D is a block of E}, we obtain that P =

⋃{P ∩D |D is
a block of E} = {Q ⊆ P |Q is a block of P} by (i). 2
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Theorem 4.4. Every prelattice generalized effect algebra and, in particular, every
generalized MV-effect algebra is homogeneous. Every generalized MV-effect algebra
is a generalized effect algebra with HRDP. Every generalized effect algebra with
HRDP is homogeneous.

P r o o f . In [8] has been proved that every lattice effect algebra and hence also
every MV-effect algebra are homogeneous. It follows by Theorem 4.1 that every
prelattice generalized effect algebra is a generalized homogeneous effect algebra and
since every MV-effect algebra has a unique block (which has RDP), every generalized
MV-effect algebra has HRDP, by Theorem 4.3, (i). The rest is obvious. 2

A lattice effect algebra E is an MV-effect algebra iff for every c ∈ S(E) the
interval [0, c] is closed under ⊕ and, with inherited ⊕, it is an MV-effect algebra in
its own right.

Remark 4.1. Let P be a prelattice generalized effect algebra.

(i) If for every x ∈ S(P ) the interval [0, x] is closed under ⊕ and it is (with
inherited ⊕) an MV-effect algebra then, in general, P need not be a generalized
MV-effect algebra.

(ii) If P has RDP: a ≤ b⊕c implies the existence of b1 ≤ b, c1 ≤ c with b1⊕c1 = a,
then, in general, P need not have HRDP.

Example 4.1. Let P = {0, a, b, c, a⊕c, b⊕c} be a generalized effect algebra. Then
E = P ∪̇P ∗ is a lattice effect algebra preserving joins existing in P , hence P is a
prelattice generalized effect algebra. Moreover, for every x ∈ P the interval [0, x] is
closed under ⊕ and it is a Boolean algebra and hence an MV-effect algebra. In spite
of that, E is not an MV-effect algebra because a⊕c 6↔ b⊕c since (a⊕c)∧ (b⊕c) = c
and ((a⊕ c)ª c)⊕ ((b⊕ c)ª c) is not defined in P (resp. E). Further, P does not
have HRDP since a ≤ c∗ = (b⊕ c)∗ ⊕ b while a ∧ b = 0 = a ∧ (b⊕ c)∗. Evidently P
has RDP.

ACKNOWLEDGEMENT

This work was supported by grant G-1/0266/03 of Ministry of Education of the Slovak
Republic and by Science and Technology Assistance Agency, Slovakia, under the contract
No.APVT-51-032002 and COST Action 274.

(Received April 27, 2004.)

REFE REN CES

[1] C.C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88
(1958), 467–490.
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[8] G. Jenča: Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001),

81–98.
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[12] F. Kôpka and F. Chovanec: Boolean D-posets. Tatra Mt. Math. Publ. 10 (1997),

183–197.
[13] A. Mayet–Ippolito: Generalized orthomodular posets. Demonstratio Mathematica 24

(1991), 263–274
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