
Kybernetika
VOLUME 38 (2002), NUMBER 2

The Journal of the Czech Society for
Cybernetics and Information Sciences

Published by:

Institute of Information Theory
and Automation of the Academy
of Sciences of the Czech Republic

Editor-in-Chief:

Milan Mareš
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STATISTICAL INFERENCE FOR FAULT DETECTION:
A COMPLETE ALGORITHM
BASED ON KERNEL ESTIMATORS

Piotr Kulczycki

This article presents a new concept for a statistical fault detection system, including the
detection, diagnosis, and prediction of faults. Theoretical material has been collected to
provide a complete algorithm making possible the design of a usable system for statistical
inference on the basis of the current value of a symptom vector. The use of elements of
artificial intelligence enables self-correction and adaptation to changing conditions. The
mathematical apparatus is founded on the methodology of testing statistical hypotheses,
and on kernel estimators; the theoretical aspects have been documented by mathematical
theorems. The work is oriented towards the problem of fault detection in dynamic systems
under automatic control, but the basic formula is of a universal nature and can be used in
a broad range of applications, including those outside the scope of engineering.

1. INTRODUCTION

The increasing capabilities and universality of the computer installations used in
contemporary technical devices have created conditions conducive to the rapid de-
velopment of methods to detect faults appearing in systems working in the real-time
regime. Indeed, it can now safely be stated that the construction of more and
more robust systems, with an increased level of security against the consequences of
any breakdowns that may occur, is the third stage – following the classic feedback
control technique and optimal control – in the development of automatic control
engineering. Although fault detection plays a superordinate role in the hierarchy of
the individual layers of control, from the perspective of total system utility it has
proven most advantageous to adapt the methodology used in this respect to the con-
ditions prevailing in the lower layers. The result in practice is an enormous, indeed
excessive heterogeneity of concepts used in the design of fault detection systems
[2, 5, 9, 14, 18, 24]. Among the most universal are statistical methods. These very
often consist in generating a certain group of variables that characterize the state of
technical performance of the device, and then making a statistical inference, on the
basis of their current values, as to whether or not the device is working properly,
and in the event of a negative response, what is the nature of the malfunction.

The present paper provides all the material needed to design a universal statistical



142 P. KULCZYCKI

inference system, including:

1. detection of faults, i. e. the discovery that a malfunction has occurred in the
system under supervision;

2. diagnosis of faults, which means the recognition of the malfunction;

3. prediction of faults, referring to the anticipation of the risk that a malfunction
will occur in the immediate future (along with its presumed classification).

The idea for the system to be proposed here is based on the procedures of mathe-
matical statistics, with particular emphasis on the methodology of kernel estimators.
Elements of artificial intelligence are also used, based on the neural networks tech-
nique, for purposes of self-correction and adaptation. The following sections provide
a full set of formulas defining the structure and the detailed form of the functions
and parameter values, which consequently enable the efficient design of a usable
fault detection system, without the need for laborious particularized research.

2. FORMULATION OF THE PROBLEM

In the statistical inference system here investigated, one assumes the successive avail-
ability for measurement of the so-called symptom vector Z, that is, a finite number
of variables whose current values and/or relations among its individual coordinates
would be dependent on the technical state of the system under supervision. It is
a prerequisite, then, that both proper operating conditions and any type of diag-
nosed fault be associated with the most highly diversified value sets and/or relations
among the coordinates of this vector. (The detailed form of these sets and relations
need not be known a priori: its identification is an integral part of the procedure here
proposed.) The particular coordinates of the symptom vector Z may be coordinates
of control, state and response, the current values of the measurable parameters, and
a range of other quantities that are characteristic for the given device (e. g. its out-
put capacity, temperature, fuel consumption, etc.), as well as their functions (e. g.
differences, powers, etc.).

The current measurements of the values of the symptom vector Z will be the
basis for statistical inference, conducted by testing the hypotheses:

H0 – proper system operation (1)

in the event of detection, as well as

Hk – the occurrence of the kth type of fault (2)

for the diagnosis of a finite number (k = 1, 2, . . . , d) of its differentiable types. It
should be emphasized that the range of malfunctions that can be discovered during
detection is not limited to the set of faults subject to diagnosis. The following
assumptions are accepted:

(A) Z denotes an n-dimensional discrete stochastic process defined on the proba-
bility space (Ω, Σ, P ) and the set IN \ {0};
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(B) in either case, whether under proper operating conditions or when any type of
fault to be diagnosed is occurring, the process Z has stationary one-dimensional
distributions (though they may be different for each case);

(C) the bounded mapping f0 : IRn → [0,∞) of the class C2, with bounded second
derivative, constitutes the density function of the distribution of the random
variables Z(·, j) for j ∈ IN \ {0}, when the system is operating properly;

(D) the bounded mapping fk : IRn → [0,∞) (k = 1, 2, . . . , d) of the class C2, with
bounded second derivatives, represents the density function of the distribution
of the random variables Z(·, j) for j ∈ IN \ {0}, whenever the kth type of fault
to be diagnosed occurs.

Assumption (B) implies that for every j ∈ IN \{0} the random variables Z(·, j) have
identical distributions. Moreover, if f : IRn → IR denotes a Borelian function, then
this fact also concerns the stochastic process Y ≡ f ◦ Z, i. e. for any j ∈ IN \ {0}
the distributions of the random variables Y (·, j) are the same.

3. A REVIEW OF THE ESTIMATORS APPLIED

3.1. Kernel estimator of density function

Let the n-dimensional random variable X be given, whose distribution has the den-
sity function f . Its kernel estimator f̂ : IRn → [0,∞) is calculated on the basis of
the m-element simple random sample x1, x2, . . . , xm, acquired experimentally from
the variable X, and is defined in its basic form by the formula

f̂(x) =
1

mhn

m∑

i=1

K

(
x− xi

h

)
, (3)

where the function K : IRn → [0,∞), which is Borelian, radially symmetrical rel-
ative to zero, and has a weak global maximum at this point, fulfills the condition∫

IRn K(x) dx = 1 and is called the kernel, whereas the positive coefficient h is known
as the smoothing parameter. The form of the kernel K and the value of the smooth-
ing parameter h is selected most often on the basis of the criterion of the minimum
mean square error. In that case one assumes additionally the condition f ∈ C2, and
the boundedness of the functions f and f ′′.

It turns out that the form of the function K has no essential importance from the
statistical point of view, and for that reason it becomes possible, in selecting this
function, to take into account primarily the desired properties of the kernel obtained,
e. g. the class of regularity, the boundedness or unboundedness of the support, or
other features essential in the case of a particular problem. In practice, the normal
kernel

K(x) = (2π)−n/2e−‖x‖
2/2 (4)

is in general use. The estimator obtained by its application is of the class C∞ and
furthermore takes on positive values.
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Fixing the value of the smoothing parameter h is of vital importance for the qual-
ity of the estimator obtained. In practice one uses a criterion whose implementation
can be reduced to the formula

h =
(

c
1
m

)1/(n+4)

, (5)

whereas for normal kernel (4):

c =
4

2n + 1
. (6)

In particular applications the linear transformation X ≡ R Y is used, while most
often the diagonal version of the matrix R is sufficient:

R = [ri,j ] =

{ √
V ar(Xi) when i = j

0 when i 6= j,
(7)

where V ar(Xi) denotes the variance of the ith coordinate of the random variable X.
In a similar manner, positive results can be gained from the so-called modification
of the smoothing parameter, which is performed as follows:

(A) the kernel estimator f̂ is specified in accordance with the scheme presented
earlier;

(B) the modifying parameters si > 0 (i = 1, 2, . . . ,m) of the form

si =

(
f̂(xi)
s∼

)p

(8)

are calculated, where most often p = −1/2, while s∼ is the geometric mean of the
numbers f̂(x1), f̂(x2), . . . , f̂(xm), given by the logarithmic equation

log(s∼) = m−1
m∑

i=1

log(f̂(xi)); (9)

(C) the kernel estimator is defined, which, after taking into account linear trans-
formation as well, ultimately assumes the form

f̂(x) =
1

mhn det(R)

m∑

i=1

1
sn

i

K

(
R−1 x− xi

hsi

)
. (10)

Definition (3) is a particular case of formula (10), where R is a unit matrix and
p = 0 , which implies si ≡ 1. A primary advantage of the modification procedure, in
addition to the considerable improvement of the statistical quality of the estimator,
is its greatly reduced sensitivity to strongly conditioned – in the case of kernel
estimators – fixing of the value of the parameter h. Thus the approximate formula
(5) most often proves in practice to be entirely sufficient.
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Finally, the last parameter that needs to be determined is the size of the sample m,
and in particular its dependency on the dimension of the tested random variable n.
Table 1 shows the minimum sizes of the sample m∗ needed to assure 10 % precision
at point zero for the normal standard distribution. These values should be treated
as an absolute minimum; however, thanks to the capabilities of current computer
systems and the automation of metrological processes, the rapidly rising minimum
sample size need not constitute an essential barrier in contemporary applications,
even when the dimension of the tested random variable approaches 10.

Table 1.

n m∗ n m∗
1 4 6 2790
2 19 7 10700
3 67 8 43700
4 223 9 187000
5 768 10 842000

If the value of the parameter h is made dependent on the size of the sample m,
in such a way that

lim
m→∞

h = 0 (11)

lim
m→∞

mhn = ∞, (12)

the estimator thus obtained is strongly consistent at every point of continuity of
the function f , which means that at these points the value of the estimator f̂(x)
is convergent with probability 1 to the estimated value f(x).1 From the statistical
point of view, then, the largest possible sample size is desirable, though in practice
a certain compromise is necessary, taking into account the calculational aspects,
especially time limitations.

Ultimately formulas (3) – (10) provide a full set of rules enabling the specification
of the kernel estimator of the density function of the n-dimensional random variable.
A broader discussion of the issues presented in the foregoing section, including also
the general forms of dependencies (5) and (7), can be found in [6, 20, 23, 25].

3.2. Kernel estimator of distribution function

The mapping F̂ : IR → [0, 1] given as F̂ (x) =
∫ x

−∞ f̂(y) dy constitutes the natural
kernel estimator of the distribution function of the real random variable X. When
the kernel K has the primitive function I, that is I(x) =

∫ x

−∞K(y) dy, then after
the application of the linear transformation and the modification of the smoothing
parameter, this estimator takes on the form

F̂ (x) =
1
m

m∑

i=1

I

(
x− xi

Rhsi

)
. (13)

1In the case of kernel estimators, properties of an asymptotic nature are of fundamental impor-
tance, since these estimators are typically used when the random sample is of large size.
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If condition (11) is fulfilled, then this estimator is strongly consistent. In the case
of the estimator of the distribution function, the exponential kernel

K(x) =
e−x

(1 + e−x)2
(14)

can be recommended, since its primitive function has the convenient form

I(x) =
1

1 + e−x
(15)

and fulfills all the conditions formulated here. The parameter c required in formula
(5) is here

c =
4

π7/2
. (16)

A more detailed discussion of estimator (13), along with a proof of its strong con-
sistency, can be found in [16].

3.3. Kernel estimator of quantile

The term quantile of the rth order of the real random variable X, provided that
0 < r < 1, is used for any number q ∈ IR fulfilling the equation F (q) = r, where
F designates the distribution function. The quantile divides the space of the values
of the random variable X into two subsets, (−∞, q] and [q,∞), such that their
probabilities are r and 1 − r, respectively. On the basis of dependence (13), the
kernel estimator of the quantile of the rth order, denoted by q̂, can be given as a
solution of the equation

1
m

m∑

i=1

I

(
q̂ − xi

Rhsi

)
= r. (17)

When the kernel K is positive, and condition (11) is fulfilled, then this estimator is
strongly consistent. Here also, exponential kernel (14) is recommended. These issues,
along with the relevant proofs, were introduced in [16]; the statistical properties are
described in [11]. A review of differing concepts can be found in [19, 22].

3.4. Statistical forecasting (trend estimation)

The quantity whose future values are the object of statistical prognostic investigation
is treated as a discrete real stochastic process Y . If at the moment j one has at hand
a sequence of values of the process Y empirically obtained for 1, 2, . . . , j, known as
“observations” and denoted by y1, y2, . . . , yj , then by making use of the available
statistical methodology it is possible to calculate the forecast ŷs

j , i. e., the estimator
of the value of the stochastic process Y for the moment j + s, while the parameter
s ∈ IN \ {0} is called the anticipation of the forecast. In a case where the object of
interest is not the strict calculation of the future values of the process Y , but rather
only the identification of the trend of the changes, then the classic linear regression
method [1] is the basic mathematical tool. In such case the forecast ŷs

j is obtained
from the formula

ŷs
j = CT

j

[
1
−s

]
, (18)
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where

Cj = D−1
j dj (19)

Dj =
j−1∑

k=0

wk

[
1 −k
−k k2

]
(20)

dj =
j−1∑

k=0

wk yj−k

[
1
−k

]
, (21)

while the constant w ∈ (0, 1] is known as the deactualization parameter. After the
next observation yj+1 has been obtained at the moment j + 1, the forecast can be
updated by means of the formulas

ŷs
j+1 = CT

j+1

[
1
−s

]
(22)

Cj+1 = D−1
j+1dj+1, (23)

while the matrices Dj and dj are changed in accordance with the dependencies

Dj+1 = Dj + wj

[
1 −j
−j j2

]
(24)

dj+1 = w

[
1 0
−1 1

]
dj +

[
1
0

]
yj+1. (25)

The specification of a concrete value for the anticipation parameter s essentially
results from the application conditions; it should be recalled, however, that as its
value increases, the forecast obtained becomes less precise. In practice the deactu-
alization parameter w is assumed in such a way that w ∈ [0, 8; 0, 99], and there is a
particular preference for w = 0, 95. A decrease in this value improves the likelihood
that the model will adapt to changes taking place, but it also increases its sensitivity
to interference; the opposite would result from increasing the value of the parameter
w. The number of available observations should be no less than 15.

A review of statistical forecasting methodology can be found in [1, 26].

4. DESIGNING A STATISTICAL INFERENCE SYSTEM

4.1. Diagnosis of faults

Diagnosis is accomplished by successively testing a finite number of the hypotheses
H1, H2, . . . , Hd, stating the occurrence of the assumed types of faults, as against the
same alternative hypothesis H0, representing proper operating conditions; in other
words, diagnosis will consist in the independent testing of the truth of d pairs of
hypotheses, of the form Hk versus H0. Accordingly, for any fixed k = 1, 2, . . . , d, let
the following random samples be given, composed from the experimentally obtained
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values of the symptom vector Z:

zk
1 , zk

2 , . . . , zk
mk

– in the event of the occurrence of the kth type
of fault to be diagnosed (26)

z0
1 , z0

2 , . . . , z0
m0

– for proper operating conditions (27)

and

Z(ω, j) – the current value (at the moment j) of the symptom vector. (28)

The procedure for accepting the hypothesis Hk or H0 will now be presented. The
statistic Sk : Ω× IN \ {0} → [0,∞) will be considered, as defined by the formula

Sk(ω, j) = fk(Z(ω, j)), (29)

where the Borelian mapping fk : IRn → [0,∞) denotes the density function of the
one-dimensional distributions of the symptom vector Z assuming the occurrence of
the kth type of fault to be diagnosed. (A detailed description of the specification
procedure of the kernel estimator of this function is presented in Section 3.1.) The
form of the statistic when defined in this way makes it possible to identify possible
changes involving not only the values of the individual coordinates of the symptom
vector, but also, and especially, the complex relations that occur among them. For
any fixed value j, representing the corresponding moment in time, the value of the
statistic Sk can be referred to the probability that the current value of the symptom
vector will occur under the condition that the kth type of fault to be diagnosed has
appeared. Thus low values for this statistic are an indication in favor of accepting
the hypothesis H0, i. e. this should happen along with the relation

Sk(ω, j) ∈ Ak, (30)

where
Ak = (−∞, ak]. (31)

In the opposite case, if
Sk(ω, j) ∈ Bk (32)

for
Bk = IR \Ak, (33)

then the hypothesis Hk should be accepted. In order to calculate the critical value
ak the basic formula for statistical decision theory, the Bayes rule, has been used [3].
In Appendix A it is shown that if ak > 0 and bk > 0 denote the losses resulting from
non-detection of the kth type of fault and from the corresponding false alarm, re-
spectively, then the optimal critical value ak in the sense of this rule can be obtained
from the criterion

Ffk◦Z|0 (ak) +
ak

bk
Ffk◦Z|k (ak) = 1, (34)

where Ffk◦Z|0 , Ffk◦Z|k denote the distribution functions of the random variables
fk ◦Z for proper operating condition and the occurrence of the kth type of fault to
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be diagnosed, respectively. In practice, the functions fk and Ffk◦Z|0 , Ffk◦Z|k are
available only in the form of the corresponding estimators f̂k, F̂f̂k◦Z|0 , F̂f̂k◦Z|k , and
therefore dependence (34) takes on the form of the following equation:

F̂f̂k◦Z|0 (âk) +
ak

bk
F̂f̂k◦Z|k (âk) = 1, (35)

while its argument âk constitutes an estimator of the quantity ak. Appendix B
contains a theorem stating that if the values of the smoothing parameters are made
dependent on the samples sizes in such a way that the conditions (11) – (12) are
fulfilled, then this estimator is strongly consistent, which indicates the formal cor-
rectness of the fault diagnosis procedure proposed here. If the left side of dependence
(35) is treated as the function gk : IR → IR of the variable âk, then applying crite-
rion (35) one should find the solution of the equation gk(âk) = 1. In that case, the
following formulas are true:

lim
âk→−∞

gk(âk) = 0 (36)

lim
âk→∞

gk(âk) = 1 +
ak

bk
> 1. (37)

The function gk is continuous, which results from the continuity of the kernel esti-
mator of the distribution function. Taken together with conditions (36) – (37), this
states the existence of a solution for equation (36). If the kernel K with positive
values is used in estimating the distribution function, then the function gk is further-
more strictly increasing, which implies the uniqueness of this solution, and makes it
possible to apply effective numerical procedures; in particular, this solution can be
calculated using the Newton method [7] as the limit of the sequence

{
âl

k

}∞
l=1

defined
by the formulas

â1
k = 0 (38)

âl+1
k = âl

k +
1− F̂f̂k◦Z|0 (âl

k)− ak

bk
F̂f̂k◦Z|k (âl

k)

f̂f̂k◦Z|0 (âl
k) + ak

bk
f̂f̂k◦Z|k (âl

k)
for l = 1, 2, . . . , (39)

where the denotations f̂f̂k◦Z|0 , f̂f̂k◦Z|k additionally introduced here constitute the

density functions of the random variables f̂k ◦ Z for proper operating conditions
and the occurrence of the kth type of fault to be diagnosed, respectively (note that
the estimator of the density function constitutes a derivative of the estimator of the
distribution function).

Since the random variables f̂k ◦Z take on only positive values, then the primitive
function I can be slightly modified to I∗ given as

I∗(x) =

{
0 for x < 0
I(x)−I(0)

1−I(0) for x ≥ 0
, (40)

in which case the kernel estimators of the distribution function have the support of
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the form [0,∞), adequate to this situation. The derivative of this kernel is then

K∗(x) =

{
0 for x < 0
K(x)

1−I(0) for x ≥ 0
(41)

and the kernel modified in this way should be used to calculate the estimators of the
density functions required in algorithm (38) – (39).

The procedure leading to the acceptance of the hypothesis Hk or H0 thus consists
of three phases. To begin with, random samples (26) – (27) should be obtained
experimentally, while in the first case it may become necessary to simulate the
conditions of the occurrence of the given type of diagnosed fault. The second step
involves calculating, on the basis of these samples, the elements of the decision-
making process: the functions fk, and therefore the statistic Sk and the critical
value ak. Finally, the third phase – the only one performed in real time – leading to
the acceptance of the hypothesis H0 or Hk consists merely in inserting the current
value of symptom vector (28) to formula (29) and then determining whether relation
(30) or (32) is true.

4.2. Detection of faults

The detection of faults will depend on using the current values of the symptom
vector to test successively the hypothesis stating that the system under supervision
is operating properly. In view of the assumed full spectrum of malfunctions to be
detected, implying significant non-specificity of the possible alternative hypothesis
and the probability of an error of the second kind, a test of significance has been
designed for the needs of detection, according to the principles of the Neyman-
Pearson theory [8]. Once again, statistical random samples will be used, as defined
for the needs of diagnosis by formulas (27) and (28). If the distribution functions of
the random variables from which these samples originate are denoted by F0 and G,
then the hypothesis H0 stating their identity is to be tested:

H0 : G ≡ F0. (42)

It has been assumed that from the practical point of view this formal form is equiva-
lent to expression (1), which describes the applicational aspects. Thus the detection
procedure presented below constitutes a test of consistency in the situation when
one of the samples is one-element; the statistical properties of such a test have been
presented in [13].

Just as in the case of diagnosis, the verification procedure will be divided here
into three phases: experimental acquisition of random sample (27), calculation on
that basis of the statistic and the critical set, and finally, testing the hypothesis H0

while the system is in operation, based on the current value of symptom vector (28).
The statistic S0 : Ω × IN \ {0} → [0,∞) applied for this purpose is defined by the
formula

S0(ω, j) = f0(Z(ω, j)), (43)

while the Borelian mapping f0 : IRn → [0,∞) denotes the density function of the one-
dimensional distributions of the symptom vector Z in the case of proper operation of
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the system under supervision (for the specification of its kernel estimator, see Section
3.1). The assumed form of the statistic makes it possible to recognize the changes
taking place both in the individual coordinates of the symptom vector and in their
mutual relations. The value of this statistic is associated with the probability of the
occurrence of the current symptom vector under proper operating conditions, which
implies the left-sided form of the critical set

A0 = (−∞, a0], (44)

where the critical value a0 is calculated in such as way as to fulfill the condition

Ff0◦Z|0 (a0) = α0 (45)

for the fixed level of significance α0 ∈ (0, 1) representing the probability of an error
of the first kind, which in this case means a false alarm. The critical value a0 can
thus be estimated by using the quantile of the order α0 of the distribution of the
random variables f0 ◦ Z(·, j) under proper operating conditions. Ultimately, if

S0(ω, j) ∈ A0, (46)

then it should be inferred that the hypothesis H0 stating the proper operation of
the system is false, whereas when

S0(ω, j) /∈ A0 (47)

there is no basis to reject this hypothesis.
In statistical practice the density function f0 and the distribution function Ff0◦Z|0

are replaced by their estimators f̂0 and F̂f̂0◦Z|0 ; thus dependence (45) can be written
in the form of the equation

F̂f̂0◦Z|0 (â0) = α0, (48)

while its solution â0 constitutes an estimator of the quantity a0 from criterion (45).
In Appendix C it is shown that if the values of the smoothing parameters are made
dependent on the samples sizes in such a way as to guarantee the fulfillment of
conditions (11) – (12), then this estimator is strongly consistent. This proves the
formal correctness of the fault detection procedure presented here.

A useful concept for calculating the value of the quantile estimator, and thus the
quantity â0, was presented in Section 3.3. In practice, if one uses a positive kernel
K, this value may be calculated by means of the Newton method [7] as the limit of
the sequence

{
âl
0

}∞
l=1

defined by the formulas:

â1
0 = 0 (49)

âl+1
0 = âl

0 +
r − F̂f̂0◦Z|0 (âl

0)

f̂f̂0◦Z|0 (âl
0)

for l = 1, 2, . . . . (50)

Here, also, in view of the fact that the random variable f̂0 ◦ Z takes on positive
values, one should use a modified version of the kernel and its primitive funtion
defined by formulas (41) and (40).
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Thanks to the similarity of the mathematical apparatus used for detection and
diagnosis, specialized procedures can be used in the latter case in order to reinforce
the detection test, which is universal and thus less conveniently conditioned. Namely,
the procedures for diagnosis will be much more effective in discovering the type of
fault assigned to them than the detection test, which does not make use of detailed
characterizations of the conditions for the occurrence of these faults. It will be
advantageous, then, to introduce for the needs of detection the modified hypothesis
H∗

0 of the form
H∗

0 = H0∧ ∼ H1∧ ∼ H2 ∧ . . .∧ ∼ Hk, (51)

which in practice means that the proper operation of the supervised system would be
confirmed by a positive result from the verification of the hypothesis H0 (previously
the detection concept) and negative results from diagnosis tests. From the theoretical
point of view, this change does not introduce any new elements, since the rejection of
the hypotheses Hk tested in the course of diagnosis would be equivalent to accepting
the alternative hypothesis H0, and so ∼ Hk = H0. In practice, on the other hand,
this modification increases the effectiveness of the detection system.

For purposes of detection a test of significance has been designed. The result of
such a test can only be the rejection of the hypothesis H0, but no decision is made
whether to accept it. From the perspective of application this is of no essential
importance, since both accepting and not rejecting the hypothesis H0 produce in
practice the same result: taking no action. There is, however, a certain drawback
in the absence of the possibility to fix the level of significance α0 by comparing
the economic consequences of errors of the first and second kind. However, the
hypothesis H0, verified in the course of detection, is likewise an alternative hypothesis
for the diagnosis tests; thus the value of the parameter α0 may be compared with
the constants βk – the probability of an error of the second kind for the kth test of
diagnosis. Ultimately, as a preliminary estimate it is proposed to assume

α0 = min
k=1,...,d

βk, (52)

due to the previously mentioned lesser effectiveness of the universal detection test.
Any possible increase in value (52) improves the sensitivity of the detection system,
but at the cost of a greater number of false alarms; a reduction produces the opposite
effect. The parameters βk can easily be calculated in the course of solving equations
(35), with due regard for the fact that the value of the first factor on its left side is
equal to 1− βk.

4.3. Prediction of faults

The idea of the prediction system involves successively analyzing the evolution of
the symptom vector and making inferences on the basis as to the possibility that
improper operating conditions will occur in the future. Both the mere appearance
of a fault (the scope of detection) and the particular types subject to diagnosis
are predicted. The methodology used combines elements of the theory of testing
hypotheses applied in Sections 4.1 and 4.2 for purposes of detection and diagnosis
with statistical forecasting (Section 3.4). The object of verification is the supposition
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that the values of the statistics S0 and S1, S2, . . . , Sd defined by dependencies (43)
and (29) will belong in the future to the sets A0 and A1, A2, . . . , Ad or B1, B2, . . . , Bd,
given by formulas (44) and (31) or (33).

Accordingly, let s0 ∈ IN\{0} represent the anticipation with which the appearance
of a system fault (in the detection sense) is predicted. Treating at the moment
j ∈ IN \ {0} the previous values of the statistic S0:

S0(ω, 1), S0(ω, 2), . . . , S0(ω, j) (53)

as the observations y1, y2, . . . , yj (see Section 3.4), one can calculate the forecast ŷs0
j ,

which represents the estimator of the statistic S0 for the moment j + s0. Therefore,
if there occurs the relation

ŷs0
j ∈ A0, (54)

then it should be supposed that in the future the hypothesis H0 will be false, or
more precisely, it can be inferred that in s0 time units a fault will appear. In the
opposite case, when

ŷs0
j /∈ A0, (55)

there is no basis to reject the judgment that the supervised device will be operating
properly in s0 time units.

Similarly, for each k = 1, 2, . . . , d let the parameter sk ∈ IN \ {0} represent the
anticipation with which the occurrence of the kth type of diagnosed fault is predicted.
At any moment j ∈ IN \ {0} the past values of the statistic Sk:

Sk(ω, 1), Sk(ω, 2), . . . , Sk(ω, j), (56)

are treated in the forecasting process as the observations y1, y2, . . . , yj . Calculating
the forecast ŷsk

j for the anticipation sk , one obtains the estimator of the statistic
Sk for the moment j + sk. Therefore, if the relation

ŷsk
j ∈ Bk (57)

appears, then the future truth of the hypothesis Hk is expected, and therefore one
infers that in sk time units the kth type of fault to be diagnosed will occur. In the
opposite case, i. e. when

ŷsk
j ∈ Ak, (58)

that supposition should be rejected.
The concept of the modified hypothesis H∗

0 , as described by formula (51), can be
transposed to the problem of fault prediction in a natural way.

The realization of the idea of prediction presented above ultimately requires, in
the general case, separate predicting of the value d + 1 of the stochastic processes:
one regarding the appearance of a system fault (detection) and d associated with
the particular types to be diagnosed. The choice of a particular forecasting method
is determined by the specific factors conditioning the problem of fault prediction,
calculating speed, and the possibility of updating data within the procedure used.
On the other hand, it is not so much the actual precision of the forecast that most
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matters for fault prediction, but only correct trend identification. Under such con-
ditions, the classic regression method, even in its basic form, turns out to be partic-
ularly well suited to the problem of fault prediction. In Section 3.4 formulas were
presented enabling the calculation of the forecasts ŷs0

j and ŷs1
j , ŷs2

j , . . . , ŷsd
j for this

method, whereas what follows will discuss the specific aspects of the choice of an-
ticipation and deactualization parameters, and of the minimum number of available
observations.

The choice of values for the anticipation parameters sk results from the technolog-
ical conditions of the system under supervision. In practice this means choosing the
minimum time needed to stop the device, or at least to change the working regime in
a matter appropriate to the type of fault forecasted. The postulate of minimization
is formulated with regard to the precision of the forecast. If the modified hypothesis
(51) is used, then it is advisable to introduce the boundary

sk ≤ s0 for k = 1, 2, . . . , d. (59)

The value of the deactualization parameter can be chosen according to the uni-
versal rules presented in Section 3.4. The natural conditions surrounding the fault
prediction process, where the essence of the phenomena being analyzed often consists
in dramatic changes taking place in the supervised system, while the technological
conditions require relatively large anticipation, may nevertheless require difficult
compromises.

Finally, as mentioned in Section 3.4, the minimum number of available observa-
tions should be no less than 15. The system proposed here presents no particular
difficulties in meeting that requirement. It can easily be rendered that the number
of available observations was equal to the number of values of the symptom vector Z
obtained for proper operating conditions (27). Since in practice the dimension of this
vector is always greater than 1, according to the data shown in Table 1 the necessary
number of values to be obtained exceeds even 15 by several orders of magnitude.

5. SELF–CORRECTION

The kernel estimators technique, on the basis of which the methodology for the
statistical inference system here designed has been developed, also enables the in-
troduction of effective self-correction, which makes it possible to significantly im-
prove the quality of this system. The concept of self-correction is based on elements
of artificial intelligence, specifically neural networks. The procedure will consist of
two phases: one performed off-line before the system begins operation, and one on-
line, in reaction to erroneous indications during the supervision processes, which are
unavoidable in practice.

The kernel estimators of the density function (10) and distribution function (13)
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can be generalized to the forms

f̂(x) =
1

mhn det(R)

m∑

i=1

wi

sn
i

K

(
R−1 x− xi

hsi

)
(60)

F̂ (x) =
1
m

m∑

i=1

wiI

(
x− xi

Rhsi

)
, (61)

when the non-negative coefficients wi (i = 1, 2, . . . ,m) fulfill the condition

m∑

i=1

wi = m. (62)

In making the appropriate choice of their values, one should give preference to those
kernels which have the greatest impact on proper system indications, while the sig-
nificance of those which prevailed in erroneous decision-making can be gradually
eliminated. This corresponds to the learning process in a neural network. A com-
parison of basic forms (10) and (13) with generalized versions (60) and (61) indicates
that wi ≡ 1 should be accepted as the initial values.

The first phase is carried out off-line, on the basis of data obtained in the form
of random samples (26) and (27).

In the case of the diagnosis of the kth type of fault, the combination of formulas
(26) – (33) implies that the fulfillment of the condition

f̂k(zk
j ) ≤ ak for any j = 1, 2, . . . , mk, (63)

is an indication of an error of the first kind, i. e. neglecting this type of fault, whereas
the relation

f̂k(z0
j ) > ak for any j = 1, 2, . . . , m0, (64)

constitutes an error of the second kind, that is, a false alarm. In both cases one can
introduce a change in the coefficients wi, denoted for the kth type of diagnosed fault
as wk

i , altering the significance of particular kernels depending on their impact on
the appearance of an error. Thus for each index j at which condition (63) is fulfilled,
the auxiliary values w̃k

i are defined as

w̃k
i = wk

i


1 +

wk
i

(sk
i )

n Kk

(
R−1

k

zk
j−zk

i

hksk
i

)

mk∑
l=1

wk
i

(sk
l )

n Kk

(
R−1

k

zk
j−zk

l

hksk
l

)




pk

for every i = 1, 2, . . . , mk, (65)

whereas in the case of every j at which (64) is true:

w̃k
i = wk

i


1−

wk
i

(sk
i )

n Kk

(
R−1

k

zk
j−zk

i

hksk
i

)

mk∑
l=1

wk
i

(sk
l )

n Kk

(
R−1

k

zk
j−zk

l

hksk
l

)




pk

for every i = 1, 2, . . . ,mk, (66)
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where Kk, hk, Rk, sk
l or sk

i denote the kernel, the smoothing parameter, the transfor-
mation matrix, and the modifying parameters, respectively, used in the construction
of the estimators associated with the kth type of fault, while the positive exponent
pk states the intensity of the changes. As a preliminary value it is proposed to accept

pk = log mk; (67)

reducing or enlarging this value decreases or increases the intensity of the changes,
respectively. The coefficients w̃k

i must be normalized in order to assure condition
(64). Finally, one obtains the altered coefficients wk

i according to the formula

wk
i =

mw̃k
i

mk∑
l=1

w̃k
l

for every i = 1, 2, . . . , mk. (68)

After these have been specified, one should recalculate the critical values ak on the
basis of criterion (35), using kernel estimators in generalized forms (60) – (61). The
above procedure can be repeated until the sum of errors of the first and second kind
for the elements of random samples (26) and (27) has stabilized.

In the case of detection, the fulfillment of the relation

f̂0(z0
i ) ≤ a0 for any i = 1, 2, . . . , m0 (69)

indicates an error of the first kind. As above, it is possible to alter the coefficients
wi, denoted in the case of detection as w0

i . For every index j at which condition
(69) is fulfilled, one defines

w̃0
i = w0

i


1 +

w0
i

(s0
i )

n K0

(
R−1

0
z0

j−z0
i

h0s0
i

)

mk∑
l=1

w0
i

(s0
l )

n K0

(
R−1

0

z0
j−z0

l

h0s0
l

)




p0

for every i = 1, 2, . . . , m0, (70)

where K0, h0, R0, s0
l or s0

i mean the kernel, the smoothing parameter, the transfor-
mation matrix, and the modifying parameters, respectively, used in the construction
of the estimators for detection; and after normalization

w0
i =

mw̃0
i

mk∑
l=1

w̃0
l

for every i = 1, 2, . . . ,m0, (71)

while, as before, it is proposed to accept initially

p0 = log m0. (72)

The number of repetitions of the above procedure for detection should be the maxi-
mum among the number of repetitions postulated previously for the individual types
of faults to be diagnosed. After each repetition the altered value should be calculated
for the level of significance a0.
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The second phase of the self-correction is performed on-line, on the basis of the
current value of the symptom vector. This is done according to the scheme presented
above, while in the event that an error occurs, the current value of the symptom
vector (28) is inserted into the appropriate place in the elements of random samples
(26) and (27) in order to check conditions (63) – (64) and (69). In view of the
likely incidental nature of such an event, it is not necessary to update the levels of
significance. For this same reason one may recommend at least doubling exponents
(67) and (72). If the deactualization parameters used in forecasts are other than one,
the prediction algorithm on its own accord adjusts itself to the on-line self-correction
procedure.

The concept presented above for the self-correction of the system designed in Sec-
tions 3 and 4 makes it possible to eliminate off line the non-representative elements
obtained in random samples (26) – (27), and adapt on line to changing conditions.

6. EXPERIMENTAL VERIFICATION

The proper operation of the statistical inference system worked out in this paper has
been verified experimentally. The supervised object was a mechanical system, sub-
jected to a robust time-optimal control [10, 12, 15, 17], whose dynamics are described
by the differential inclusion

ÿ(t) ∈ H(ẏ(t), y(t), t) + u(t), (73)

where y expresses the position of the object, u is a control with values limited to the
interval [−1, 1], and the function H represents a multi-valued discontinuous model
of resistance to motion in the form

H(ẏ(t), y(t), t) = v(ẏ(t), y(t), t)G(ẏ(t)), (74)

while v denotes a continuous mapping, and G is a piecewise continuous function,
additionally multivalued at the points of discontinuity. In the event that resistance
to motion is omitted, i. e. when H ≡ 0, inclusion (73) is reducible to a differential
equation expressing Newton’s second law of dynamics. This is a problem of funda-
mental importance in the control of industrial manipulators and robots. The random
time-optimal control takes on the values +1 or −1, depending on where among the
distinguished sets the system state is located; for details see [10, 12, 15, 17]. The
symptom vector was assumed in the following form:

Z(·) ≡


|u(·)|
|H(·)|
|ẏ(·)|


 , (75)

and therefore its coordinates designate successively the absolute values of control,
resistance to motion, and velocity. Diagnosis consisted in recognizing two assumed
types of faults. The first was assumed to be the reduction of the maximum absolute
value of the admissible control by the value ∆u ∈ [0, 1], which in practice indicates
a fault in the drive system. The second type of diagnosed fault was taken to be an
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increase in resistance to motion (its values are strongly dependent on velocity); in
practice, this would indicate that the displacement mechanisms are malfunctioning.
Thus the first type of fault to be diagnosed entailed recognizing changes in the value
of a single coordinate of the symptom vector, while the second involved the relations
among particular coordinates. In order to calculate the values of the detection and
diagnosis parameters, it was assumed that a1/b1 = a2/b2 = 50, whereas in the
case of prediction the anticipation parameters came to 100, and the deactualization
parameters were 0,98 (prediction of detection) and 0,95 (prediction of diagnosis).
The remaining quantities were generated in accordance with the suggestions made
in Sections 3 – 5.

The results of these experiments verified the concept presented in this paper and
confirmed the proper functioning of the statistical inference system here designed.
In cases where the manifesting symptoms were abrupt, the malfunction of the device
was promptly discovered and correctly recognized within the scope of detection and
diagnosis. Figure 1 illustrates the values of the detection statistic S0 and diagnosis
statistic S1 obtained in such a case and their forecasts. If, on the other hand, the
fault was accompanied by a slow progression of symptoms, it was forecasted with
a correct indication of the type of fault about to occur (prediction), and at the
appropriate moment it was discovered and recognized within the scope of detection
and diagnosis (see Figure 2). Self-correction also operated properly, preliminarily
eliminating nonrepresentative elements of the random samples and later adapting
the system to variable operating conditions.

The experience gathered from these experiments has made it possible to formulate
a number of conclusions pertaining to application.

During the application of the system presented here, it may prove advantageous
for the purpose of prediction to limit the values of the statistic S0. In such case, the
following quantities should be treated as observations:

min(S0(ω, 1), b0), min(S0(ω, 2), b0), . . . , min(S0(ω, j), b0), (76)

given that b0 > 0; this means the upper boundary of the statistic S0 to the number
b0. The purpose of this conception is to eliminate erroneous indications of predic-
tion resulting from the mere shifting of the symptom vector from areas assigned to
exceptionally large values of the statistic S0 to regions with values which, though
indeed smaller, do not in fact give grounds to presume that a fault has occurred.
A multiple of the critical value a0 can be proposed as the constant b0, specifically
b0 = 10a0. (In Figures 1 and 2 one can see the impact of the boundary b0 = 2 on
the forecast of the statistics S0.)

From the practical point of view, it may also prove advantageous to bound the
dimension of the symptom vector Z, for the purposes of individual diagnosis tests,
to only those coordinates which are of essential significance for the recognition of
the given type of fault. This means that for every k = 1, 2, . . . , d the definition of
statistic (29) should be generalized to the form

Sk(ω, j) = fk(gk(Z(ω, j))), (77)

where gk : IRn → IRnk (nk ∈ {1, 2, . . . , n− 1}) is a mapping of the spatial projection
IRn onto the subspace IRnk composed of the previously mentioned coordinates of the
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symptom vector that are essential for the given type of fault. Then fk : IRnk → IR
and – in accordance with Table 1 – the sizes of the random samples (26) are subject
to reduction.

For those types of diagnosed faults which are not preceded by clear-cut symptoms,
prediction can be omitted.
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Fig. 1. The fault detection process with abrupt changes.
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Fig. 2. The fault detection process in the case of slowly progressive symptoms.
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7. CONCLUSIONS

In the present paper the concept of a statistical fault detection system has been
presented for detection, diagnosis, and prediction associated with these two func-
tions. It is intended for application in real time, while the device under supervision
is performing its usual technological operations. In the statistical inference system
here designed, the successive availability of the symptom vector has been assumed,
that is, of a finite number of variables whose current values and/or the relations
between them are dependent on the technical state of the device being supervised.
The exact form of these relations need not be given a priori – its identification
constitutes an integral part of the procedure here proposed. No limitations have
been introduced on the form of the statistical patterns characterizing proper work-
ing conditions and the types of faults to be diagnosed; in particular, allowance is
made for the existence of local extremes. Detailed familiarity with the model of the
dynamic system being supervised is likewise not required. Allowance is also made
for the simultaneous occurrence of several different types of faults to be diagnosed.
The system here presented has the capacity to detect and recognize changes in the
values of particular coordinates of the symptom vector, and especially – due to the
application of kernel estimators – the complex qualitative and quantitative relations
existing among them. These changes may be abrupt, or – thanks to prediction –
slowly progressive. A procedure has also been introduced to eliminate less credible
data and adapt the system to variable working conditions. Finally, the demands on
the automatic control system executing the algorithm here designed do not exceed
the capacities of contemporary devices sufficiently advanced to apply fault detection
procedures. The possibilities of modern systems in practice limit the dimension of
the symptom vector to 7 – 9, while due to the global probability of error the number
of types of faults to be diagnosed should not exceed 3 – 5. The material presented
above is documented by mathematical theorems given in the appendices.

The present paper provides a complete algorithm enabling the construction of a
usable fault detection system in respect to statistical inference regarding the current
value of the symptom vector. This places the following demands on the designer:

(A) defining the symptom vector Z on the basis of the technological conditions
and the available methodology [2, 5, 9, 14, 18, 24];

(B) distinguishing d types of faults foreseen for diagnosis;

(C) specifying the quotients a1/b1, a2/b2, . . . , ad/bd representing the ratio of eco-
nomic losses resulting from neglecting particular types of faults to be diagnosed
against the corresponding false alarms;

(D) fixing the anticipation of the forecasts s0, s1, . . . , sd on the basis of technological
requirements; it is suggested that relation (59) be fulfilled;

(E) obtaining experimentally the sequence of values of the symptom vector when
the system is operating properly (27) and when the particular types of faults
to be diagnosed are occurring (26).

At that point – according to the design here presented – the following steps should
be taken:
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(F) using the foregoing sequences, specify the kernel estimators of the density
functions f0, f1, . . . , fd (following the instructions given in Section 3.1), and
therefore the forms of the statistics S0, S1, . . . , Sd;

(G) on the basis of the results obtained at items (E) and (F), calculate the se-
quences of values of the random variables f0 ◦ Z, f1 ◦ Z,. . . , fd ◦ Z assuming
the proper operation of the system, and the variables f1 ◦Z, f2 ◦Z,. . . , fd ◦Z
when respectively the 1st, 2nd,. . . , dth type of fault to be diagnosed is occur-
ring2;

(H) using these sequences, define the kernel estimators of the density functions
(Section 3.1) and the distribution functions (Section 3.2) of the variables f1◦Z,
f2◦Z, . . . , fd◦Z when the system is operating properly, and when respectively
the 1st, 2nd,. . . ,dth type of fault to be diagnosed is occurring;

(I) applying algorithm (38) – (39), calculate the critical values a1, a2, . . . , ad;

(J) by means of the sequences obtained at item (G), specify – applying algorithm
(49) – (50) – the kernel estimator of the quantile of the random variable f0 ◦Z
when the system is operating properly, and therefore the critical value a0; the
order of the quantile can be assumed on the basis of formula (52);

(K) as described in Section 5, establish the procedure for self-correction and per-
form the operations in the off-line phase;

(L) based on the sequences of values of the random variables f0 ◦ Z, f1 ◦ Z,. . . ,
fd ◦ Z for the case of proper system operation, as calculated at item (G), fix
the parameters of the prediction model (Sections 3.4 and 4.3) in the detection
sense and for the individual types of faults to be diagnosed.

When the fault detection system is working in real time, after obtaining the succes-
sive values of the symptom vector, one proceeds in turn to:

(M) obtain the current values of the statistics S0, S1, . . . , Sd, and then verify detec-
tion conditions (46) or (47), and diagnosis conditions (30) or (32);

(N) calculate the forecasts for these statistics and check the prediction conditions
in the detection sense (54) or (55) and diagnosis sense (57) or (58);

(O) update the prediction models (following the instructions in Sections 3.4 and
4.3);

(P) in the event of erroneous indication, improve the procedure for on-line self-
correction (Section 5).

The calculation algorithms for items (F) – (P) have been fully presented in Sec-
tions 3 – 5 of this article. References have also been given to the literature, enabling
the future creation of more sophisticated individualized versions.

Finally, the material presented here can also be designed using kernel estima-
tors in their conditional version [21]. In the event that particular coordinates of

2If – for the sake of example – z1
0 , z2

0 , . . . , zm0
0 means an m0-element sequence of the symptom

vector Z for proper operating conditions, then the sequence of values of the random variable e. g.
fk◦Z assuming such conditions should be understood to have the values fk(z1

0), fk(z2
0), . . . ,fk(zm0

0 ).
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the symptom vector should prove to be significantly dependent on other factors of
a variable nature (e. g. environmental temperature), this may lead to a major im-
provement in the system’s practical properties. This problem will be investigated in
future research projects.

APPENDICES

Appendix A: Proof of the optimality of the critical value for the diag-
nosis tests

In this appendix it will be shown that the optimal – in the Bayes sense – critical
value for the kth diagnosis test is given as the solution of equation (34).

The basic task of statistical decision theory [3] is the optimal selection of one
element from among all possible decisions on the sole basis of probabilistic informa-
tion about the state of nature (reality), especially when its actual state is unknown.
Let the following be given: N – a non-empty set of possible states of nature, D – a
non-empty set of possible decisions, and the loss function ` : IN ×D → IR ∪ {±∞},
in which its value `(ν, δ) is interpreted as losses resulting from making the decision δ
while in reality the state ν is occurring. If the probability space (N ,S,P) is defined
on the set N , and for every δ ∈ D the integral

∫
N `(ν, δ) dP(ν) exists, then the

mapping `b : D → IR ∪ {±∞} given as

`b(δ) =
∫

N
`(ν, δ) dP(ν) (78)

is called the Bayes loss function. Every element δb ∈ D such that

`b(δb) = inf
δ∈D

`b(δ) (79)

is known as a Bayes decision, while the above procedure is known as the Bayes rule.
Its underlying purpose is therefore to minimize the expected value of losses.

In the diagnosis problem here under consideration, for any fixed index k, it is
therefore assumed that the set of states of nature Nk is two-element: νk – the
occurrence of the kth type of fault to be diagnosed, and ν0 – proper system operation.
Similarly, the set of decisions that can possibly be made Dk takes on the form:
δk – accepting the hypothesis Hk stating that the kth type of fault to be diagnosed
has occurred, and δ0 – accepting the hypothesis H0 representing proper operation.
Therefore, if ak > 0 and bk > 0 mean the losses incurred by neglecting the kth
type of fault and the corresponding false alarm respectively, then the loss function
` assumes the form

`(ν, δ) =





0 when the state νk occurs and the decision δk is made
0 when the state ν0 occurs and the decision δ0 is made
ak when the state νk occurs and the decision δ0 is made
bk when the state ν0 occurs and the decision δk is made.

(80)

If the decision δk is taken, then the value of Bayes loss function (78) is

`b(δk) = akαk, (81)
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whereas in the case of the decision δ0:

`b(δ0) = bkβk, (82)

while

αk = Pk({ω ∈ Ω : Sk(ω, j) ∈ Ak}) = Pk({ω ∈ Ω : fk(Z(ω, j)) ≤ ak}) (83)

βk = P0({ω ∈ Ω : Sk(ω, j) ∈ Bk}) = P0({ω ∈ Ω : fk(Z(ω, j)) > ak})
= 1− P0({ω ∈ Ω : fk(Z(ω, j)) ≤ ak}), (84)

where Pk and P0 denote in succession the probabilities in the case of the occurrence
of the kth type of fault to be diagnosed and for proper working conditions. According
to the principle of the Bayes rule (79), the decision δk should be made if akαk ≤ bkβk,
whereas the decision δ0 whenever akαk ≥ bkβk. The critical value ak is thus to be
specified in such a way as to fulfill the condition

akαk = bkβk, (85)

i. e. ultimately, after taking into account dependencies (83) – (84):

P0({ω ∈ Ω : fk(Z(ω, j)) ≤ ak}) +
ak

bk
Pk({ω ∈ Ω : fk(Z(ω, j)) ≤ ak}) = 1. (86)

The foregoing condition is equivalent to equation (34), whose verification was the
purpose of this section.

Appendix B: Proof of the formal correctness of the procedure for fault
diagnosis

Theorem 1. Let:

(A) c > 0;

(B) X, Y0, Y1 represent n-dimensional random variables, defined on the same prob-
ability space; their distributions have density functions;

(C) fX denote a density function of the distribution of the random variable X,
while f̂X is its strongly consistent kernel estimator, calculated on the basis of
an mX -element random sample, with the application of a kernel such that the
inverse image of any real number is a zero-measure set;

(D) the mappings fX and f̂X be Borelian;

(E) a ∈ IR constitute a unique solution of the equation

FfX◦Y0(a) + cFfX◦Y1(a) = 1, (87)

while FfX◦Y0 and FfX◦Y1 denote distribution functions of the random variables
fX ◦ Y0 and fX ◦ Y1, respectively;
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(F) â ∈ IR be a solution of the equation

F̂f̂X◦Y0
(â) + cF̂f̂X◦Y1

(â) = 1, (88)

where F̂f̂X◦Y0
and F̂f̂X◦Y1

represent kernel estimators of the distribution func-
tions of the variables f̂X ◦ Y0 and f̂X ◦ Y1, calculated on the basis of ran-
dom samples with the sizes m0 and m1, while in both cases the values of the
smoothing parameters are dependent on their sizes in accordance with condi-
tions (11) – (12).

Then, with probability 1:
lim

mX ,m0,m1→∞
â = a; (89)

therefore, â is a strongly consistent estimator of the quantity a.

P r o o f . From the strong consistency of the estimator f̂X it results that with
probability 1:

f̂X ◦ Y0
mX→∞−→ fX ◦ Y0. (90)

This implies the weak convergence, and consequently the convergence of the distri-
bution functions

Ff̂X◦Y0
(t)− FfX◦Y0(t)

mX→∞−→ 0 (91)

at the points of continuity of the mapping FfX◦Y0 .
The following dependence, in turn, is true:

∣∣∣F̂f̂X◦Y0
(t)− Ff̂X◦Y0

(t)
∣∣∣ =

∣∣∣∣
∫ t

−∞
f̂f̂X◦Y0

(s) ds−
∫ t

−∞
ff̂X◦Y0

(s) ds

∣∣∣∣

≤
∫ t

−∞

∣∣∣f̂f̂X◦Y0
(s)− ff̂X◦Y0

(s)
∣∣∣ds ≤

∫ ∞

−∞

∣∣∣f̂f̂X◦Y0
(s)− ff̂X◦Y0

(s)
∣∣∣ds, (92)

where ff̂X◦Y0
and f̂f̂X◦Y0

denote the density function of the random variable f̂X ◦Y0

and its kernel estimator, respectively. (The existence of this function results from
Assumptions (B) – (C) on the basis of the Radon–Nikodym Theorem [4].) If condi-
tions (11) – (12) are fulfilled, then the right-hand side of inequality (92) is convergent
to zero with probability 1, thanks to the strong consistency of the kernel estimators
of the density functions in the norm L1 [6]. This entails the convergence of the left
side as well, i. e.

F̂f̂X◦Y0
(t)− Ff̂X◦Y0

(t) m0→∞−→ 0 (93)

with probability 1.
Now:

F̂f̂X◦Y0
(t)− FfX◦Y0(t) = F̂f̂X◦Y0

(t)− Ff̂X◦Y0
(t) + Ff̂X◦Y0

(t)− FfX◦Y0(t); (94)

thus, thanks to formulas (91) and (93), it results that with probability 1

F̂f̂X◦Y0
(t)− FfX◦Y0(t)

mX ,m0→∞−→ 0 (95)
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at the points of continuity of the mapping FfX◦Y0 .
Analogously, the following dependence is true with probability 1:

F̂f̂X◦Y1
(t)− FfX◦Y1(t)

mX ,m1→∞−→ 0 (96)

at the points of continuity of the mapping FfX◦Y1 .
In order to prove thesis (89) it is necessary to show that with any fixed ε > 0 and

for sufficiently large mX , m0 and m1

â ∈ (a− ε, a + ε) (97)

with probability 1. Since a distribution function of a probability measure can have
at most a countable number of discontinuities, there exist the numbers t∼, t≈ ∈ R, in
which the mappings FfX◦Y0 and FfX◦Y1 are continuous, and the following condition
is fulfilled:

a− ε < t∼ < a < t≈ < a + ε. (98)

The distribution function is also an increasing function, and so, due to the assumed
uniqueness of the solution a, the following inequalities are true

FfX◦Y0(t
∼) + cFfX◦Y1(t

∼) < 1 (99)
FfX◦Y0(t

≈) + cFfX◦Y1(t
≈) > 1, (100)

i. e., thanks to formulas (95) and (96), for sufficiently large mX , m0 and m1, with
probability 1 there also occurs

F̂f̂X◦Y0
(t∼) + cF̂f̂X◦Y1

(t∼) < 1 (101)

F̂f̂X◦Y0
(t≈) + cF̂f̂X◦Y1

(t≈) > 1, (102)

which – taking into account the form of equation (88) and the continuity of the kernel
estimator of the distribution function – directly establishes the truth of condition
(97), and consequently of the thesis to be proved. 2

It results from the foregoing theorem – by means of obvious replacements – that
according to the statement made in Section 4.1, if ak (k = 1, 2, . . . , d) constitutes a
solution of equation (34), then âk, as a solution of dependence (35), is its strongly
consistent kernel estimator.

Appendix C: Proof of the formal correctness of the procedure for fault
detection

Theorem 2. Let:

(A) c ∈ (0, 1);

(B) X, Y represent n-dimensional random variables, defined on the same proba-
bility space; their distributions have density functions;
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(C) fX denote a density function of the distribution of the random variable X,
while f̂X is its strongly consistent kernel estimator, calculated on the basis of
an mX -element random sample, with the application of a kernel such that the
inverse image of any real number is a zero-measure set;

(D) the mappings fX and f̂X be Borelian;

(E) a ∈ IR constitute a unique solution of the equation

FfX◦Y (a) = c, (103)

while FfX◦Y denotes a distribution function of the random variable fX ◦ Y ;

(F) â ∈ IR be a solution of the equation

F̂f̂X◦Y (â) = c, (104)

where F̂f̂X◦Y represents a kernel estimator of the distribution function of the
variable f̂X ◦Y , calculated on the basis of an m-element random sample, while
the value of the smoothing parameter is dependent on its size in accordance
with conditions (11) – (12).

Then, with probability 1:
lim

mX ,m0,m1→∞
â = a; (105)

therefore, â is a strongly consistent estimator of the quantity a.

P r o o f . Just as in the case of dependence (95), it can be shown that with prob-
ability 1:

F̂f̂X◦Y (t)− FfX◦Y (t)
mX , m→∞−→ 0 (106)

at the points of continuity of the mapping FfX◦Y . Analogously to formula (97),
one can prove that with any fixed ε > 0 and for sufficiently large mX and m, with
probability 1 there also occurs

â ∈ (a− ε, a + ε), (107)

which ultimately states the truth of the thesis of the present theorem. 2

Thus it can be inferred that if a0 represents the solution of equation (45), then â0,
being a solution of dependence (48), is its strongly consistent estimator. Reference
was made to this fact in Section 4.2.

(Received April 23, 2001.)
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