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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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EIGENSTRUCTURE ASSIGNMENT
BY PROPORTIONAL-PLUS-DERIVATIVE FEEDBACK
FOR SECOND–ORDER LINEAR CONTROL SYSTEMS

Taha H. S.Abdelaziz and Michael Valášek

This paper introduces a complete parametric approach for solving the eigenstructure
assignment problem using proportional-plus-derivative feedback for second-order linear con-
trol systems. In this work, necessary and sufficient conditions that ensure the solvability for
the second-order system are derived. A parametric solution to the feedback gain matrix is
introduced that describes the available degrees of freedom offered by the proportional-plus-
derivative feedback in selecting the associated eigenvectors from an admissible class. These
freedoms can be utilized to improve robustness of the closed-loop system. The main advan-
tage of the described approach is that the problem is tackled directly in the second-order
form without transformation into the first-order form and without mass matrix inversion
and the computation is numerically stable as it uses only the singular value decompo-
sition and simple matrix transformation. Numerical examples are included to show the
effectiveness of the proposed approach.

Keywords: eigenstructure assignment, second-order systems, proportional-plus-derivative
feedback, feedback stabilization, parameterization

AMS Subject Classification: ???

1. INTRODUCTION

Many physical systems can generally be described by systems of second-order dif-
ferential equations. The second-order system arises naturally in a wide variety of
applications, including, control of large flexible space structures, spacecraft con-
trol, control of mechanical multibody systems, robotics control, vibration control in
structural dynamics and earthquake engineering. In recent years, control design for
the second-order system has gained much attention (e. g. [1 – 9]). The research of
the second-order systems has gradually developed techniques that utilize the special
structure and properties of such systems.

In [9] the criteria for the determination of controllability and observability for
linear second-order systems have been discussed. The dynamic characteristics of
certain types of mechanical systems can be improved effectively by directly assigning
desired eigenvalues and associated eigenvectors that is called eigenstructure assign-
ment. Concerning the eigenstructure assignment of second-order systems, only little
research has been done under proportional and derivative feedbacks ([6, 8]).
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In [8] it was proposed an algorithm of eigenstructure assignment for second-order
systems using proportional and derivative feedbacks. In this approach, a set of target
eigenvectors have to be prescribed, and the aim is to assign a set of closed-loop
eigenvectors which are as close as possible to the prescribed target eigenvectors in a
least-squares sense. The approach does not provide any design degrees of freedom
and the closed-loop eigenvalues are restricted to be different from the open-loop
ones. Moreover, the mass, damping and stiffness matrices are all restricted to be
positive or semi-definite symmetric.

Recently, in [6] it was presented a complete parametric approach of eigenstruc-
ture assignment problem for second-order linear systems using proportional-plus-
derivative controller. Complete parametric expressions for both the closed-loop feed-
back gains and the eigenvector matrices are established in terms of the closed-loop
eigenvalues and a group of free vectors. However, the approach needs the inversion
of the mass matrix. As a consequence, if the mass matrix is ill-conditioned, then the
eigenvalues and eigenvectors will not be computed accurately. Furthermore, some
properties offered by the system matrices such as definiteness, sparseness, banded-
ness, etc., are completely destroyed. In addition, the solution involves two sets of
singular value decompositions, which needs a lot of computations.

The dynamic characteristics of mechanical systems can be improved effectively
by direct assigning desired eigenvalues and associated eigenvectors that is called
eigenstructure assignment (ESA). Assigning eigenvalues allows one to alter the sta-
bility characteristics while assigning eigenvectors alters the transient response of the
system. ESA for the second-order system have developed the design method for a
wide class of systems under proportional and derivative feedbacks [6, 8]. However,
only the proposed ESA solution in this paper is straightforward and fully utilizes
the properties of the second-order system. It involves only one set of singular value
decomposition and the inversion of the mass matrix is not needed. Consequently,
this solution is more accurate. To design a control system for such a dynamic model,
the second-order equations have been usually rearranged into the first-order (state-
space) form. However, for large structural systems, the resulting model suffers from
the increased dimension. Additionally, the sparseness of the matrices is destroyed
by matrix inversion. As a result, computational efficiency and physical insight are
lost.

The other method is recently available for stabilizing second-order models in [7].
It is introduced a new, different approach to robust stabilization of the second-
order systems with proportional-derivative compensators. A sufficient linear matrix
inequality condition for robust stabilizability is obtained.

The purpose of this paper is to present a simple numerical technique to solve
ESA for the second-order system dynamic controller. The feedback control design
based on a combination of proportional and velocity feedbacks. Complete para-
metric expressions for both the closed-loop eigenvector matrices and the controller
feedback gains are established in terms of the closed-loop eigenvalues and a group
of free parameter vectors. The main computation involves only the singular value
decomposition (SVD) that is stable in nature or a series of simple elementary matrix
transformations if the desired eigenvalues not known a priori. The approach utilizes
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directly the original system data. The main advantages of the algorithm, besides
being simple and numerically stable, are that it avoids complex arithmetics and it
is easy to be implemented on a computer.

This paper is organized as follows. In the next section, the ESA problem formula-
tion using proportional-plus-derivative feedback is described. Moreover, a complete
parametric solution to this problem is presented. In Section 3, the illustrative ex-
amples are presented to show the effectiveness of the proposed technique. Finally,
conclusions are discussed in Section 4.

2. EIGENSTRUCTURE ASSIGNMENT BY PROPORTIONAL–PLUS–
DERIVATIVE FEEDBACK FOR SECOND–ORDER LINEAR SYSTEMS

In this section, we present an explicit parametric approach for solving the ESA
problem for the second-order systems using proportional-plus-derivative feedback.

2.1. Eigenstructure assignment problem formulation

Consider a second-order linear, time-invariant, system equation in the form

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), x0, ẋ0 given (1)

where x(t) ∈ Rn is the vector of internal generalized coordinates, u(t) ∈ Rm is
the control vector, M , D, K ∈ Rn×n and B ∈ Rn×m are, respectively, the mass,
damping, stiffness and control matrices, and an overdot represents a differential with
respect to time. The fundamental assumption imposed on the system is that the
system is completely controllable [9]. The corresponding quadratic pencil (charac-
teristic polynomial matrix) is

P (λ) = λ2M + λD + K (2)

and system (1) is regular if and only if det(P (λ)) does not vanish identically. In this
work we restrict ourselves to the regular quadratic pencils. The roots of det(P (λ) =
= 0 are known as the eigenfrequencies of the system and play an important role in
system stability. Stability of the system implies that these zeros must lie in the open
left half plane.

The objective is to stabilize the system by means of a linear proportional and
derivative feedback controller of the form

u(t) = F 1x(t)− F 2ẋ(t), F = [F 1,F 2] (3)

where F 1 and F 2 ∈ Rm×n are, respectively, constant proportional and velocity
feedback matrices, which assigns prescribed closed-loop eigenvalues and eigenvectors
that stabilize the system and achieve the desired performance. By the substitution
of (3) into (1), we obtain the closed-loop system

Mẍ(t) + Dẋ(t) + Kx(t) = −B(F 1x(t) + F 2ẋ(t)). (4)
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Then the problem is to find the matrices F 1 and F 2 such that the eigenvalues and
eigenvectors of the associated closed-loop quadratic pencil

P c(λ) = λ2M + λ(D + BF 2)) + (K + BF 1) (5)

can be altered as required to ensure and improve the stability of the system. The
problem of finding F 1 and F 2 such that the closed-loop quadratic pencil P c(λ) has a
desired set of eigenvalues and eigenvectors is called the ESA problem for the system
(1).

For analysis and design purposes, the system dynamics are usually transformed
to the standard first-order state form by introducing the 2n× 1 dimensional state
vector z(t)T ≡ [x(t)T, ẋT] as follows

ż(t) = Az(t) + B̃u(t) (6)

where

A =
(

0 In

−M−1K −M−1D

)
and B̃ =

(
0

M−1B

)
(7)

where In is the n× n identity matrix. Throughout this paper, M is assumed to be
invertible.

The state controller is of the form

u(t) = −Fz(t), F = [F 1, F 2]. (8)

Then the closed-loop system dynamics becomes

ż(t) = Acz(t) (9)

where

Ac = (A− B̃F ) =

(
0 In

−M−1(K + BF 1) −M−1(D + BF 2)

)
. (10)

In the majority of methods that have been proposed for solving this problem, the
second-order system (1) is rewritten as a first-order system (6) and the techniques
for treating the linear feedback design problem can be applied. However, several
difficulties arise and retaining the model in the matrix second-order form has many
advantages as follows:

1. Physical insight of the original problem is preserved;
2. It is computationally efficient as the dimension of the system is lower than

that of the first-order form; and
3. System matrix sparsity and any other special nature of the original matrices

are preserved, which is useful in analysis and design.
The above concerns favor tackling ESA problem in second-order form directly.

Let Γ = {λi ∈ C, i = 1, . . ., r, 1 ≤ r ≤ 2n} be a set of desired self-conjugate
eigenvalues, where r is the number of distinct eigenvalues, and denote the algebraic
and geometric multiplicity of the ith eigenvalue λi by mi and qi, respectively, (1 ≤
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qi ≤ mi). The length of qi chains of generalized eigenvectors with λi are denoted by
pij , (j = 1, . . . , qi). Then in the Jordan canonical form of the closed-loop matrix,
there are qi blocks associated with the ith eigenvalue λi of orders pij . It satisfies

s∑

i=1

qi∑

j=1

pij = 2n.

Let the right eigenvector and generalized eigenvectors of the closed-loop matrix
with λi be denoted by vij,k ∈ C2n, i = 1, . . . , r, j = 1, . . . , qi, k = 1, . . . , pij .
According to the definition of the right eigenvector and generalized eigenvectors for
a multiple eigenvalue, then

Acvij,k = λivij,k + vij,k−1, vij,0 = 0, ∀ i, j, k. (11)

This equation demonstrates the relation of assignable right eigenvector and gener-
alized eigenvectors with the associated eigenvalue. The notations of the set vij,k are
defined as

V ≡ (V 1, . . . , V r) ≡
(

V 1

V 2

)
≡

(
V 1

1, . . . , V 1
r

V 2
1, . . . , V 2

r

)
∈ C2n×2n,

V l
ij ≡ [vl

ij,1, · · · , vl
ij,pij

] ∈ Cn×pij (12)

where l = 1, 2, and V i ∈ C2n×m contains all right eigenvector and generalized
eigenvectors associated with the eigenvalue λi, and det(V ) 6= 0.

Then the ESA problem for second-order linear systems using proportional and
derivative feedback can be formulated as follows:

ESA Problem. Given the real matrices M , D, K and B, and the desired 2n
self-conjugate set Γ, find real proportional and derivative feedback gain matrices F 1

and F 2 ∈ Rm×n such that the spectrum of the closed-loop quadratic pencil P c(λ)
has admissible eigenvalues and associated eigenvectors.

The aim now is to develop a simple algorithm, which manipulates the system
data, and solve the above problem.

2.2. Solution to eigenstructure assignment problem

In this subsection, the solution to ESA problem for second-order system is intro-
duced.

Utilizing (10), then equation (11) can be rewritten as
(

0 In

−M−1(K + BF 1) −M−1(D + BF 2)

) (
v1

ij,k

v2
ij,k

)

= λi

(
v1

ij,k

v2
ij,k

)
+

(
v1

ij,k−1

v2
ij,k−1

)
, vij,0 = 0, ∀ i, j, k. (13)
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The above equation can be decomposed into

v2
ij,k = λiv

1
ij,k + v1

ij,k−1, v1
ij,0 = 0, ∀ i, j, k (14)

and

−M−1((K + BF 1)v1
ij,k + (D + BF 2)v2

ij,k) = λiv
2
ij,k + v2

ij,k−1, v2
ij,0 = 0, ∀ i, j, k.

(15)
Then the above equation can be rewritten as

(K + BF 1)v1
ij,k + (D + BF 2)v2

ij,k = −λiMv2
ij,k −Mv2

ij,k−1, ∀ i, j, k. (16)

Utilizing (14) and substitute in (16), this leads to

Kv1
ij,k +(λiM +D)(λiv

1
ij,k +v1

ij,k−1)+B(F 1v
1
ij,k +F 2v

2
ij,k) = −Mv2

ij,k−1, ∀ i, j, k.
(17)

Collecting similar terms in (17), we can get

(λ2
i M+λiD+K)v1

ij,k+B(F 1v
1
ij,k+F 2v

2
ij,k) = −(λiM+D)v1

ij,k−1−Mv2
ij,k−1,∀ i, j, k.

(18)
Let the auxiliary vectors

wij,k = F 1v
1
ij,k + F 2v

2
ij,k ∈ Cm, i = 1, . . . , r, j = 1, . . . , qi, k = 1, . . . , pij , (19)

are introduced. The set of wij,k is defined in a similar manner to the set of vij,k as

W ≡ [W 1, . . . , W r] ∈ W i ≡ [W i1, . . . , W iqi ] ∈ Cm×mi ,

W ij ≡ [wij,1, . . . , wij , pij ] ∈ Cm×pij . (20)

This leads to

(λ2
i M+λiD+K)v1

ij,k+Bwij,k = −(λiM+D)v1
ij,k−1−Mv2

ij,k−1, vij,0 = 0, ∀ i, j, k.
(21)

The above equation can be equivalently written in the following compact matrix
form

[λ2
i M +λiD+K,B]

(
v1

ij,k

wij,k

)
= −[λiM +D, M ]vij,k−1, vij,0 = 0, ∀ i, j, k. (22)

Then parameter vectors v1
ij,k ∈ Cn and wij,k ∈ Cm are arbitrary chosen under the

condition that the columns of matrix V are linearly independent.
The auxiliary vectors in (19) can be rewritten as

wij,k = [F 1, F 2]

(
v1

ij,k

v2
ij,k

)
= [F 1, F 2]vij,k. (23)

A parametric solution to the ESA problem by proportional and derivative feedbacks
is derived as

[F 1, F 2] = WV −1. (24)

There exists a real feedback gain matrix F if the following conditions are satisfied:
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1. The desired closed-loop eigenvalues are closed under complex conjugation;
2. The right generalized eigenvectors {vij,k ∈ Cn, i = 1, . . . , r, j = 1, . . . , qi, k =

1, . . . , pij} are linearly independent and for complex-conjugate poles, λ̄i2 = λi1

then v̄i2j,k = vi1j,k; and
3. There exists a set of vectors {wij,k ∈ Cm, i = 1, . . . , r, j = 1, . . . , qi, k =

1, . . . , pij}, satisfying (22) and w̄i2j,k = wi1j,k for λ̄i2 = λi1 .

Then the feedback gain matrix is parameterized directly in terms of the eigen-
structure of the closed-loop system, which can be selected to ensure robustness by
exploiting freedom of these parameters. In the following, we obtain the simple and
more general parametric solutions of vij,k and wij,k in (22). A complete paramet-
ric form is introduced and a new procedure is derived which yields a parametric
expression for F involving free parameter vectors.

2.3. Parameterization approach for the eigenstructure assignment

The aim now is to find a parametric solution to the ESA problem via proportional-
plus-derivative feedback. We remark that developing parametric solutions to this
problem is useful in that one can then think of solving other important variations
of the problem, such as the robust ESA problem by exploiting freedom of these
parameters. Concerning the controllability of second-order system, the following
lemma is introduced [9].

Lemma 1. (See [9].) The second-order system (1) is controllable if and only if

rank[λ2M + λD + K,B] = n, ∀λ ∈ C. (25)

Based on the controllability of the second-order system, the parametric formula
is derived. Applying the singular value decomposition (SVD) to the matrix [λ2

i M +
λiD + K, B] gives

[λ2
i M + λiD + K, B] = XiΓiQ

T
i , Γi = [Σi,0], i = 1, . . . , r (26)

where Γi ∈ Cn×(n+m) is a matrix containing all singular values of the matrix [λ2
i M +

λiD + K], Σi ∈ Cn×n is a nonsingular diagonal matrix, and Xi ∈ Cn×n and
Qi ∈ C(n+m)×(n+m) are two orthogonal matrices. The columns of the matrix Xi

and columns of the matrix Qi are the left and right singular vectors of the matrix
[λ2

i M + λiD + K, B]. Then we have

XT
i [λ2

i M + λiD + K, B] Qi = [Σi, 0], Σi = diag{σi1, · · · , σin}. (27)

Pre-multiplying the above equation by Σ−1
i , yields

P i[λ2
i M + λiD + K, B] Qi = [In,0] (28)

where
P i = Σ−1

i XT
i = diag{1/σi1, · · · , 1/σin}XT

i ∈ Cn×n.
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Further, partition matrix Qi into the following form

Qi =
(

Qi,11 Qi,12

Qi,21 Qi,22

)
, i = 1, . . . , r

where Qi,11 ∈ Cn×n,Qi,12 ∈ Cn×m, Qi,21 ∈ Cm×n and Qi,22 ∈ Cm×m.
Now, we have the following theorem for solution to the ESA problem for second-

order system by proportional and derivative feedback.

Theorem 1. Let the second-order linear system (1) be controllable, and matrix
M is nonsingular. Then all the solutions to v1

ij,k and wij,k in (22) are given by
(

v1
ij,k

wij,k

)
= Qi

( −P i[λiM + D,M ]vij,k−1

fij,k

)
, vij,0 = 0, ∀ i, j, k. (29)

Then the vectors can be written as

v1
ij,k = −Qi,11P i[λiM + D, M ]vij,k−1 + Qi,12fij,k,

v2
ij,k = λiv

1
ij,k + v1

ij,k−1, (30)
wij,k = −Qi,21P i[λiM + D, M ]vij,k−1 + Qi,22fij,k, vij,0 = 0, ∀ i, j, k

where fij,k ∈ Cm, i = 1, . . . , r, j = 1, . . . , qi, k = 1, . . . , pij , are a set of arbitrarily
free parameter vectors satisfying the following constraints:

det(V ) 6= 0 and f̄i2j,k = fi1j,k if λ̄i2 = λi1 , (for real gain)

and P i and Qi are matrices satisfying (28).

P r o o f . We need to prove that the set of vectors satisfying (22) and the set of
vectors given by (29) are equal. Then using (22) and (29), yields

[λ2
i M + λiD + K, B]

(
v1

ij,k

wij,k

)

= [λ2
i M + λiD + K, B]Qi

( −P i[λiM + D,M ]vij,k−1

fij,k

)

= P−1
i [In,0]

( −P i[λiM + D,M ]vij,k−1

fij,k

)
(31)

= −[λiM + D,M ]vij,k−1, vij,0 = 0, ∀ i, j, k.

Therefore, the vectors given by (29) satisfy (22). Now, we show that vectors v1
ij,k

and wij,k in (22) (i = 1, . . . , r, j = 1, . . . , qi, k = 1, . . . , pij) can be expressed in the
form of (29). From (28) one can obtain

P i[λ2
i M + λiD + K, B] = [In,0] Q−1

i , i = 1, . . . , r. (32)

The above equation can be expressed as

P i[λ2
i M + λiD + K, B]

(
v1

ij,k

wij,k

)
= [In,0] Q−1

i

(
v1

ij,k

wij,k

)
, ∀ i, j, k. (33)
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Utilizing (22), then

−P i[λiM + D,M ]vij,k−1 = [In,0]
(

eij,k

fij,k

)
, vij,k = 0, ∀ i, j, k (34)

where (
eij,k

fij,k

)
= Q−1

i

(
v1

ij,k

wij,k

)
, ∀ i, j, k. (35)

Then from (34) we obtain

eij,k = −P i[λiM + D, M ]vij,k−1, vij,0 = 0, ∀ i, j, k. (36)

Substituting (36) into (35) we obtain (29). 2

Theorem 1 gives complete and explicit parametric solutions with the complete
and explicit freedom of the ESA using proportional and derivative feedbacks. These
solutions are expressed by the eigenvalues and a group of free parameter vectors,
fij,k. By especially choosing the free parameter vectors, solutions with desired prop-
erties can be obtained. The vectors fij,k represent the degrees of the freedom of
ESA using proportional and derivative feedback.

Remark 1. It should be noted that for the case of distinct eigenvalues (mi =qi =1,
r = 2n) the computations of vi and wi, take the simple form, and are given by

v1
i = Qi,12fi, v

2
i = λiQi,12fi, wi = Qi,22fi, i = 1, . . . , 2n. (37)

Then the feedback gain is

[F 1, F 2] =
(
Q1,22f1, · · ·Q2n,22f2n

)
(

Q1,12f1 · · · Q2n,12f2n

λ1Q1,12f1 · · · λ2nQ2n,12f2n

)−1

. (38)

Remark 2. For single-input system (m = 1), the parameter vectors fij,k reduce
to scalars and accordingly, the feedback gain is unique regardless of the choice of
fij,k.

Remark 3. In the case that the closed-loop eigenvalues λi, i = 1, . . ., 2n are not
known a priori, one may seek, instead of the matrices P i and Qi satisfying (28), the
unimodular polynomial matrices P (λ) and Q(λ) satisfying the following equation

P (λ)[λ2M + λD + K, B] Q(λ) = [In,0]. (39)

These reductions can be completed by a series of simple elementary matrix trans-
formations. The Smith canonical form is used that exploits the fact that for a con-
trollable second-order system (1) the matrix [λ2M +λD+K,B] maintains full rank
for all values of λ. The Smith canonical form constructs two unimodular matrices
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P (λ) and Q(λ) that diagonalize a given polynomial matrix as (39). Consequently,
the augmented matrix

G =

(
In λ2M + λD + K B

0 In+m

)
(40)

can be changed into the form of

H =

(
P (λ) In 0

0 Q(λ)

)
. (41)

By applying a series of row elementary transformations within the upper n rows and
a series of column elementary transformations within the last n + m columns the
matrices P (λ) and Q(λ) in matrix H are unimodular and automatically satisfying
(39).

Based on the discussion and analysis above, an algorithm for solving the ESA
problem for second-order system can be given as follows:

ESA Algorithm.

Input. Real matrices M ,D, K,B, where the system is controllable and M is
nonsingular, and a set of 2n self-conjugate complex numbers.

Step 1. Using Singular value decomposition (SVD) to obtain the matrices P i and
Qi, i = 1, . . . , r, as in (28), or a series of simple elementary matrix transformations
if the desired eigenvalues are not known a priori.

Step 2. Choose arbitrary parameter vectors fij,k ∈ Cm, i = 1, . . . , r, j = 1, . . . , qi,
k = 1, . . . , pij , in such a way that f̄i2j,k = fi1j,k if λ̄i2 = λi1 .

Step 3. Calculate the eigenvectors vij,k ∈ C2n, i = 1, . . . , r, j = 1, . . . , qi, k =
1, . . . , pij , using (30). If the matrix V

¯
is singular, then return to Step 2 and select

different parameters fij,k, until V is nonsingular.
Step 4. Compute the vectors wij,k ∈ Cm, i = 1, . . . , r, j = 1, . . . , qi, k = 1, . . . , pij ,

using (30) and construct matrix W .

Step 5. Compute the proportional and derivative feedback gain matrix using

[F 1, F 2] = WV −1.

From the above results we can observe that the system poles can always be as-
signed by proportional-plus-derivative feedback controller for any controllable system
if and only if the mass matrix M is nonsingular. Based on the controllability of the
second order system, this work proposes a solution to the ESA problem. Complete
parametric expressions for both the closed-loop eigenvector matrices and the feed-
back gains are established in the terms of the closed-loop eigenvalues and a group
of free parameter vectors. Both the closed-loop eigenvalues and these parameters
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can be properly chosen to produce a closed-loop system with desired system specifi-
cations. The proposed approach is simple because the main computations involved
are only the singular value decomposition and it utilizes directly the original sys-
tem data. In the case of single-input, m = 1, there is only at most one solution.
In the case of multi-input, m > 1, the solution is generally non-unique, and extra
conditions must be imposed to specify the solution.

In the following, two numerical examples are included to demonstrate the effec-
tiveness of this procedure.

3. ILLUSTRATIVE EXAMPLES

In this section, we present numerical examples to illustrate feasibility and effective-
ness of the proposed technique using a MATLAB version 6.5.

Example 1. Consider the mechanical system shown in Figure 1. The system
consisting of five material points linked by elastic springs [7], the points can slide
without friction along their respective axes. Two external forces acting at masses
1 and 5 control the system. Mass, distance to the origin at the equilibrium, and
spring stiffness are given for each point in Table 1.

Fig. 1. Five masses linked by an elastic spring.

Table 1. System data.

Point Mass Distance Spring Stiffness
1
2
3
4
5

0.5093
0.9107
0.7224
0.8077
0.8960

0.8034
0.7430
0.9456
0.8810
0.7282

1–2
2–3
3–4
4–5
5–1

1.461
1.369
1.088
1.203
1.468

The dynamical system equations are given by equations (1) where

M = I5, D = 05,
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K =




2.565 1.080 0 0 1.089
0.6038 0.8206 0.4766 0 0

0 0.6009 1.504 0.4808 0
0 0 0.4300 1.114 0.5131

0.6190 0 0 0.4626 0.8352




and B =




0 1.964
0 0
0 0
0 0

1.116 0




.

The open-loop eigenvalues are all purely imaginary and located at

{± j1.7828, ±j1.3800, ±j1.1451, ±j0.5674 and ±j0.3506}.

They correspond to the eigenfrequences of free vibrations of the masses.

In the following, we consider the assignment of three different cases:

Case 1: The desired closed-loop eigenvalues are

{–1, –1.5, –2, –2.5, –3, –3.5, –4, –4.5, –5 and –5.5}.

Specially choosing

f1 = [1, 6]T, f2 = [1, 3]T, f3 = [3, 2]T, f4 = [5, 1]T, f5 = [4, 5]T,

f6 = [3, 1]T, f7 = [1, 2]T, f8 = [5, 1]T, f9 = [6, 0]T and f10 = [2, 1]T

and using the SVD as in (28) the matrices P i and Qi, i = 1, . . . , 5, can be obtained.

Then the proportional and derivative feedback gain matrices are

F 1 = 103

( −0.0411 1.2666 1.6800 1.0221 0.0150
0.0993 −1.4734 −2.3437 −1.1630 0.0534

)

and

F 2 = 103

( −0.0023 0.4460 −2.2141 0.2378 0.0092
0.0113 −0.7263 1.8127 −0.5468 0.0038

)
.

The computed closed-loop eigenvalues are

–1.00000000000004, –1.50000000000472,

–1.99999999998233, –2.50000000000172,

–3.00000000004541, –3.49999999991008,

–3.99999999996453, –4.49999999999473,

–5.00000000018671, –5.49999999986991.
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Case 2: The desired closed-loop poles are

{1±j, –2±j, –3±j, –4±j and –5±j}.
Choosing

f1 = f2 = [1, 2]T, f3 = f4 = [3, 1]T, f5 = f6 = [2, 1]T, f7 = f8 = [1, 3]T

and
f9 = f10 = [2, 3]T.

A stabilizing controller is obtained as

F 1 =
(

28.6151 −399.3427 −532.2271 −289.2215 55.6172
64.9285 −735.7233 −923.2887 −498.2693 32.5990

)

and

F 2 =
(

2.3729 −218.9939 403.3329 −270.3257 11.2184
8.9003 −416.6206 815.5803 −275.1871 2.9371

)
.

Case 3: The desired eigenvalues are

{–1, –1, –2, –2, –3, –3, –4, –4, –5 and –5}.
Choosing

f11,1 = f21,1 = f31,1 = f41,1 = f51,1 = [1, 2]T

and

f12,1 = f22,1 = f32,1 = f42,1 = f52,1 = [2, 1]T.

Therefore

F 1 =
(

4.2169 14.9640 −28.8808 12.3616 48.6339
58.7223 −439.7042 −790.0286 −279.8865 8.9084

)

and

F 2 =
(

0.4773 −20.8923 −151.3115 −157.2235 11.2471
8.8840 −320.3067 281.9555 −1.3527 0.4311

)
.

Example 2. Consider a linear system with n = 3 and m = 2 (cf. [3]). The
equations of motion can be written in the form of (1) with

M = diag{10, 10, 10}, D = 0, K =




40 −40 0
−40 80 −40
0 −40 80


 , B =




1 2
3 2
3 4


 .

The system has zero damping and the open-loop eigenvalues are

{±j3.6039, ±j2.4940 and ±j0.8901}



674 T.H. S. ABDELAZIZ AND M. VALÁŠEK

again expressing the eigenfrequences of free vibrations of the considered system.
For this system, a pair of unimodular matrices P (λ) and Q(λ) satisfying (39) can

be obtained as

P (λ) =




1 0 0
0 1 0

−1.5 −0.5 1




and

Q(λ) =




0 0 0

0 0
−1

5λ2 + 20

0 0 0

0 1/140

1
30

+
1

5λ2 + 20
1

140
+

1
5λ2 + 20

1/60 1/70

−0.5 0.5 1 +
8

λ2 + 4

0.75 −0.25
−λ2 − 20
2λ2 + 8

−λ2

6
− 8

3
− 8

λ2 + 4
−6

7
− 8

λ2 + 4

1.5 +
λ2

12
+

λ2 + 20
2λ2 + 8

1
14
− λ2

28
+

λ2 + 20
2λ2 + 8




.

In the following, we consider the assignment of three different cases:

Case 1: The desired closed-loop eigenvalues are

{–1, –2, –3, –4, –5 and –6}.
Choosing

f1 = [1, 3]T, f2 = [1, 2]T, f3 = [3, 1]T, f4 = [1, 1]T, f5 = [4, 1]T

and

f6 = [3, 2]T.

The proportional and derivative feedback gain matrices are

F 1 =
( −251.3475 −114.3680 451.0617

150.5340 61.5276 −164.3802

)

and

F 2 =
( −28.9236 30.9118 45.1396

60.8117 −14.3807 −20.5231

)
.

Case 2: The desired closed-loop poles are

{–1±j2, –2±j2 and –3±j2}.
Choosing

f1 = f2 = [1, 2]T, f3 = f4 = [3, 1]T and f5 = f6 = [2, 1]T.
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Then the feedback gains are

F 1 =
(

155.2533 −66.0528 176.7034
−47.0345 49.3438 −63.4364

)

and

F 2 =
(

87.3612 22.2568 14.3689
−12.3185 −8.5007 −8.9000

)
.

Case 3: The desired eigenvalues are

{–1, –1, –2, –2, –3 and –3}.

Taking

f11,1 = f21,1 = f31,1 = [1, 2]T and f12,1 = f22,1 = f32,1 = [2, 1]T.

Therefore

F 1 =
( −8.8357 −43.8065 −39.7076
−8.6067 32.2746 66.6708

)

and

F 2 =
( −99.7076 −6.5444 57.5545

76.6708 3.5775 −23.4548

)
.

4. CONCLUSIONS

In this paper, a complete parametric approach for solving the eigenstructure assign-
ment problem for the second-order linear systems using linear proportional-plus-
derivative feedback is presented. The necessary conditions to ensure solvability are
that the system is completely controllable and the mass matrix is nonsingular. A
complete parametric form for both the closed-loop eigenvector matrices and the
feedback gains are established. This parametric solution describes the available de-
grees of freedom offered by the proportional-plus-derivative feedback in selecting the
associated eigenvectors from an admissible class. The extra degrees of freedom of
the choice of feedback gains are exploited to further improve the closed-loop robust-
ness against perturbation. The main computation involves only the singular value
decomposition and manipulates only the original system matrices. The principle
benefits of the explicit characterization of parametric class of feedback controllers
lie in the ability to directly accommodate various additional design criteria.

(Received July 12, 2004.)
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