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CORE FUNCTIONS AND CORE DIVERGENCES
OF REGULAR DISTRIBUTIONS

Zdeněk Fabián and Igor Vajda

On bounded or unbounded intervals of the real line, we introduce classes of regular
statistical families, called Johnson families because they are obtained using generalized
Johnson transforms. We study in a rigorous manner the formerly introduced concept of core
function of a distribution from a Johnson family, which is a modification of the well known
score function and which in a one-to-one manner represents the distribution. Further, we
study Johnson parametrized families obtained by Johnson transforms of location and scale
families, where the location is replaced by a new parameter called Johnson location. We
show that Johnson parametrized families contain many important statistical models. One
form appropriately normalized L2 distance of core functions of arbitrary distributions from
Johnson families is used to define a core divergence of distributions. The core divergence
of distributions from parametrized Johnson families is studied as a special case.

Keywords: Johnson transforms, generalized Johnson distributions, core function of distri-
butions, core divergences of distributions
AMS Subject Classification: 62E10, 62B10

1. INTRODUCTION

Let for every open set 0 6= S ⊆ R, QS be the class of probability measures (distri-
butions) Q on Borel subsets B of the real line R which are regular in the sense that
they are absolutely continuous with respect to the Lebesgue measure λ on R, and a
version of the density

g =
dQ
dλ

(1)

is differentiable in S and satisfies the relation

g(x) =
{
> 0 for x ∈ S
= 0 for x ∈ R− S.

(2)

In other words, QS is the class of all Lebesgue dominated probability measures Q
on R supported by SQ = S and with well defined derivatives

ġ(y) =
dg(y)
dy

: S → R (3)
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of the respective Lebesgue densities. Since ġ and g are Lebesgue measurable, the
Lebesgue integrals

IQ =
∫

S

(
ġ

g

)2

dQ =
∫

S

(ġ (y))2

g (y)
dy, Q ∈ QS , (4)

are well defined, with values in the extended real line interval [0,∞]. The expression
IQ is a Fisher information of Q ∈ QS .

We are interested in special subfamilies PS ⊂ QS called Johnson families. They
are defined for arbitrary intervals S = (a, b) ⊆ R by the “parent family” QR using
the family ΨS = {ψ = ψx0 : x0 ∈ S} of Johnson functions, where each ψx0 : S → R
is an increasing one-to-one mapping defined for all x ∈ S by the formula

ψx0 (x) =





sinh−1(x− x0) if (a, b) = R

ln x− a
x0 − a if −∞ < a < b = ∞

ln (x− a) (b− x0)
(b− x) (x0 − a) if −∞ < a < b <∞

ln b− x0
b− x

if −∞ = a < b <∞.

(5)

The Johnson functions are nothing but the reversed Johnson transformations ψ−1 =
ψ−1
x0

, x0 ∈ S1, which are increasing one-to-one mappings R→ S defined for all y ∈ R
by the formula

ψ−1
x0

(y) =





x0 + sinh y if (a, b) = R

(x0 − a)ey if −∞ < a < b = ∞
a (b− x0) + b(x0 − a)ey
b− x0 + (x0 − a)ey if −∞ < a < b <∞

(b− x0)ey if −∞ = a < b <∞.

(6)

(see Johnson [3], Johnson and Kotz [4] and a generalization in Fabián [1]).

Definition 1. A Johnson family PS is for every S = (a, b) ⊆ R defined by

PS = {P = Qψ : Q ∈ QR, ψ ∈ ΨS} (7)

where Qψ(B) = Q(ψ(B)) and ψ(B) = {ψ(x) : x ∈ B} for every Borel subset B ⊆ S.

The Johnson families PS are supported by S and they are regular in the sense
that the Lebesgue densities f of P ∈ PS are positive and differentiable on S (see
Proposition 1 in Section 2).

If Q = QR (a “parent family”) then the ratio

sQ = −ġ/g (8)

is the well known score function of Q supported by S = R.
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Recently, Fabián [2] introduced the core functions TP of distributions P ∈ PS on
arbitrary supports S = (a, b) ⊆ R by the formula

TP = sQ(ψ) (9)

where ψ ∈ ΨS is the Johnson function and Q = Pψ−1 ∈ QR. The core functions
sPψ−1(ψ) differ from the score functions sQ. Fabián [2] demonstrated that the point
estimation in some parametrized subfamilies of PS based on the core functions leads
to robust versions of the estimation based on the score functions with acceptable
levels of asymptotic inefficiencies. We show that such subfamilies of PS include many
important models of mathematical statistics. This motivates our deeper interest in
the Johnson families and their parametrized subfamilies, and in the related core
functions.

In Section 2 we study more rigorously the concept of core function. In particular,
for P ∈ PS , S 6= R we study the pairs ψ ∈ ΨS and Q ∈ QR satisfying the relation
P = Qψ considered in (7) and prove that (9) defines TP unambiguously in the sense
that it does not depend on the particular choice of the pair ψ and Q. We also prove
rigorously that the core functions TP are related in a one-to-one manner to the score
functions sP of Johnson distributions P ∈ PS and, consequently, to the distributions
themselves. This justifies the terminology “core function of P”.

In Section 3 we introduce a core divergence D(P1, P2) of distributions P1, P2 ∈
PS and study its basic properties. In a number of examples we evaluate the core
divergence and the well known Kullback divergence of distributions. In some of
them we compare these two divergences and analyze differences between them from
the point of view of statistical applications.

2. CORE FUNCTION

The first proposition summarizes for references later some properties of the Johnson
families introduced by Definition 1.

Proposition 1. For every S = (a, b) ⊆ R, the Johnson family PS is a subset of
the regular family QS . For every P ∈ PS there exist Q ∈ QR with a differentiable
density g on R, and a Johnson function ψ = ψx0 from ΨS , such that the density
f = dP/dλ satisfies the relation

f(x) = g(ψ(x))ψ̇(x), x ∈ S, (10)

where

ψ̇(x) =
d
dx
ψ(x) =





1√
1 + x2

if (a, b) = R

1
x− a if −∞ < a < b = ∞

(b− a)
(x− a) (b− x) if −∞ < a < b <∞

1
b− x

if −∞ = a < b <∞

(11)
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is the derivative of ψ = ψx0 on S which is independent of x0 ∈ S. The density (10)
is differentiable on S too, with the derivative

ḟ(x) =
df(x)

dx
= ġ(ψ(x))(ψ̇(x))2 + g(ψ(x))ψ̈(x), x ∈ S, (12)

where ġ is the derivative of g on R and

ψ̈(x) =
d2ψ(x)

dx2
=





(
ψ̇(x)

)2

xψ̇(x) (a, b) = R

(
ψ̇(x)

)2

− 2xψ̇(x)
(x− a) (b− x) if −∞ < a < b <∞

(
ψ̇(x)

)2

otherwise.

(13)

P r o o f . By definition, P = Qψ for some Q ∈ QR and ψ ∈ ªS . Since ψ is strictly
monotone and continuous on S, the image ψ(B) of a Lebesgue null set B ⊂ S is
a Lebesgue null set. Therefore any P ∈ PS is absolutely continuous with respect
to the Lebesgue measure and its density f satisfies (10). The formula (11) is easily
verified and implies ψ̇ > 0 on S, and even

min
x∈S

ψ̇(x) = ψ̇ ((a+ b)/2) =
4(b− a)
(a+ b)2

> 0 (14)

if −∞ < a < b <∞. Consequently, f is positive on S. Since the differentiability of
f and formulas (12) and (13) are obvious, one can conclude that P belongs to QS .
This completes the proof. 2

In the next proposition, and in the sequel, we denote by B + c translations of
subsets B ⊂ R by constants c ∈ R, i. e.

B + c = {y + c : y ∈ B}.

Proposition 2. Let P ∈ PS where S = (a, b) ⊆ R. For every x0 ∈ S there exists
unique Q = Qx0 in PR with the property P = Qx0ψx0 where ψx0 is the Johnson
function corresponding to x0. If P = Qx0ψx0 then P = Qx1ψx1 for some x1 ∈ S if
and only if every Borel set B ⊂ R satisfies the relation

Qx1 (B) = Qx0(B + c), (15)

where

c =





sinh−1(x− x0) if (a, b) = R

ln x1 − a
x0 − a if −∞ < a < b = ∞

ln (b− x0) (x1 − a)
(x0 − a) (b− x1)

if −∞ < a < b <∞

ln b− x0
b− x1

if −∞ = a < b <∞.

(16)
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P r o o f . By Definition 1, for P under consideration there exist x0 ∈ S and Qx0 ∈
PR with the property P = Qx0ψx0 . The equality Qx1ψx1 = Qx0ψx0 for any given
x1 ∈ S is equivalent to

Qx1 = Qx0(ψx0ψ
−1
x1

).

As is easy to verify from (5) and (6), the composed mapping ψx0ψ
−1
x1

is a translation
on the real line by the constant c given by (16),

ψx0ψ
−1
x1

(x) = x+ c, x ∈ R.

Therefore P = Qx1ψx1 if and only if (15) holds for c given by (16). This proves
the second assertion. The second assertion implies that for every x1 ∈ S (including
x1 = x0) there exists unique Qx1 (namely, the c-translated version of Qx0 , defined
by (15)) such that P = Qx1ψx1 , which proves the first assertion. 2

Proposition 3. Consider P ∈ PS with a Lebesgue density f . Then the score
function sP (x) = −d(ln f(x))/dx on the support S of P is given by the formula

sP = −ψ̇ ġ(ψ)
g(ψ)

− ψ̈

ψ̇
, (17)

where ψ is any Johnson function from ΨS , g is the Lebesgue density of Q = Pψ−1 ∈
PR, and ġ, ψ̇, ψ̈ are the derivatives introduced above. The ratio

TP = − ġ(ψ)
g(ψ)

(18)

does not depend on the particular choice of ψ ∈ ΨS , i. e. if P = Qx0ψx0 = Qx1ψx1

for different x0, x1 ∈ S then, for every x ∈ S,

ġx0(ψx0(x))
gx0(ψx0(x))

=
ġx1(ψx1(x))
gx1(ψx1(x))

. (19)

Further, if −∞ < a < b < ∞ then the ratio ψ̈/ψ̇ in decomposition (17) is a score
function of a probability distribution supported by S = (a, b), namely

− ψ̈(x)
ψ̇(x)

= sPa,b(x) =
b+ a− 2x

(x− a)(b− x)
, x ∈ (a, b), (20)

where Pa,b is absolutely continuous on the support (a, b) with the Lebesgue density

fa,b(x) =
6(x− a)(b− x)

(b− a)3
, x ∈ (a, b). (21)

The equality (20) remains valid also for −∞ = a < b < ∞ or −∞ < a < b = ∞ if
the function sPa,b(x) is extended by continuity to a = −∞ or b = ∞, respectively.
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P r o o f . The decomposition (17) follows directly from formulas (10) and (12) for
f and ḟ by taking the ratio sP = −ḟ/f . The second assertion (19) follows from the
fact that if c is defined by (16) then

ψx1(x) = ψx0(x)− c, x ∈ S,
and that, by (15),

gx1(x) = gx0(x+ c), x ∈ S.
Indeed, then for every x ∈ S also ġx1(x) = ġx0(x+ c) so that

ġx1(ψx1(x))
g(ψx1(x))

=
ġx1(ψx0(x)− c)
gx1(ψx0(x)− c)

=
ġx0(ψx0(x))
gx0(ψx0(x))

.

The third assertion (20) follows from formulas (11) and (13) for ψ̇(x) and ψ̈(x), and
from the easily verifiable fact that the function fa,b defined by (21) is a probability
density on the bounded interval S = (a, b). If this interval is unbounded below or
above then the validity of (20) for

lim
a→−∞

sPa,b or lim
b→∞

sPa,b

follows again from formulas (11) and (13). 2

Note that the distributions P−∞,b or Pa,∞ figuring in the continuous extensions
of sPa,b to a = −∞ or b = ∞ cannot be defined by a similar extension of the density
(21).

If P ∈ PR then the score function on R is

sP = − ḟ
f
, (22)

where f is the Lebesgue density of P . If P ∈ PS where S = (a, b) ⊆ R then
Proposition 3 guarantees a canonical decomposition

sP = ψ̇TP + sPa,b (23)

of the score function on the support S where ψ̇, TP and sPa,b are given by (11), (18)
and (20) (with the corresponding limits if a = −∞ or b = ∞). We see from (11)
and (20) that ψ̇ and sPa,b depend only on the support S and not on the density f
of P defined on this support. Thus a complete information about the score function
sP is contained in the function TP . This leads to the following definition.

Definition 2. The core function of P ∈ PS , S ⊆ R, is defined on the support
interval S by formula

TP = − ġ(ψ)
g(ψ)

(24)

where g is the Lebesgue density of Q = Pψ−1 on R and ψ is an arbitrary Johnson
function defined by (5).
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Remark 1. Obviously, the definition (24) agrees with the more concise form used
in (9). If P ∈ PS then, as said above, TP specifies in a simple one-to-one manner
the score function sP for all Johnson distributions P ∈ PS , S ⊆ R. Since the score
function sP (x) = −d(ln f(x))/dx, x ∈ S, uniquely specifies the Lebesgue density
f of any Johnson distribution P ∈ PS , S ⊆ R, the interpretation of TP as a core
function of Johnson distribution P ∈ PS in Definition 2 is fully justified for all
S ⊆ R.

In the following proposition we study the second moments EP (TP )2 of the core
functions of Johnson distributions. This proposition refers to the Fisher information
defined by (4).

Proposition 4. For all Johnson distributions P ∈ PS , S ⊆ R

EP (TP )2 = IQ

where IQ is the Fisher information of the parent distribution Q = Pψ−1 for arbitrary
Johnson function ψ ∈ ΨS .

P r o o f . If P ∈ PS then P = Qψ,Q ∈ QR and

EP (TP )2 =
∫

S

(
ġ(ψ)
g(ψ)

)2

dP =
∫

R

(
ġ(ψ)
g(ψ)

)2

d(Qψ) =
∫

R

(
ġ

g

)2

dQ,

where the last equality follows from the substitution rule in Lebesgue integrals. 2

In Table 1 are listed some Johnson distributions P defined by their densities
f(x) for S = (0,∞) and S = (0, 1), densities of their parent distributions and
corresponding core functions.

Table 1. Johnson distributions P = Qψx0 ∈ PS , S 6= R, with densities f(x),

parent densities g = dQ/dλ and corresponding core functions TQ, TP .

Name f(x), x ∈ (0,∞) g(y), y ∈ R Name TQ(y) TP (x)

Lognormal 1√
2πx

e−
1
2 ln2 x 1√

2π
e−

1
2y

2
Normal y lnx

Exponential e−x eye−e
y

Gumbel ey − 1 x− 1

Extr. v. II 1
x2 e

−1/x e−ye−e
−y

Extr. v. I 1− e−y 1− 1/x

Wald-type 1
Kxe

− 1
2 (x+1/x) 1

K e
− cosh y no name sinh y 1

2 (x− 1/x)

Log-logistic 1
(x+1)2

ey

(ey+1)2 Logistic ey−1
ey+1

x−1
x+1

Beta-prime 1
B

xα−1

(x+1)α+β
1
B

eαy

(ey+1)α+β no name αey−β
ey+1

αx−β
x+1

Gamma(α, γ) γα

Γ(α)x
α−1e−γx γα

Γ(α)e
αye−γe

y

no name αey − γ αx− γ

Johnson 10,1(x)√
2πx(1−x)e

− 1
2 ln2 x

1−x 1√
2π
e−

1
2y

2
Normal y ln x

1−x

Beta(α, β) 10,1(x)
B xα−1(1− x)β−1 1

B
eαy

(ey+1)α+β no name αey−β
ey+1 (α+ β)x− α
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Here K = 2K0(1) and B = B(α, β), where Kν(u) is the Bessel function of the
third kind and B(u, v) is the beta function.

3. JOHNSON LOCATION

In this section we describe a method leading to parametrized families P ⊂ PS
of Johnson distributions. We show that these families include many important
parametric statistical models such as lognormal, Weibull and gamma distributions
and therefore they play an important role in statistical applications. Distributions
from these families will be used in the next section.

If Q ∈ PR then it is well known that the automorphisms [µ, σ]: R → R defined
for (µ, σ) ∈ R× (0,∞) by

[µ, σ] (y) = µ+ σy, y ∈ R (25)

specify a location and scale family Q = {Qµ,σ = Q [µ, σ]−1 : (µ, σ) ∈ R × (0,∞)}.
The distribution Q is a parent of Q and it holds Q ⊂ PR and

gµ,σ(y) =
dQµ,σ

dλ
(y) =

1
σ
g

(
y − µ

σ

)
, y ∈ R, (26)

for the Lebesgue parent density g = dQ/dλ.

Definition 3. Define for (τ, σ) ∈ S × (0,∞) one-to-one mappings {τ, σ} : S → R
by

{τ, σ} = ψ(τ) + σψ(x), x ∈ S. (27)

Then for any P ∈ PS the mapping (27) defines a Johnson location and scale family

P =
{
Pτ,σ = P {τ, σ}−1 : (τ, σ) ∈ S × (0,∞)

}
(28)

The distribution P is a parent of P and the parameter τ ∈ S is a Johnson location.

Proposition 5. All distributions Pτ,σ from the above defined Johnson location
and scale family P satisfy the relation

Pτ,σ = Qψ(τ),σψ, (29)

where ψ ∈ ΨS is a Johnson function and Qψ(τ),σ is the element of the location and
scale family Q with the parent Q = Pψ−1. It holds P ⊂ PS and the Lebesgue
densities fτ,σ = dPτ,σ/dλ of distributions Pτ,σ ∈ P are given by formulas

fτ,σ(x) =
1
σ
g

(
ψ(x)− ψ(τ)

σ

)
ψ̇(x), x ∈ S, (30)

for the density g = dQ/dλ.
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P r o o f . Let P = Qψ for some ψ ∈ ΨS . It is easy to verify from (25) and (27)
that [ψ(τ), σ]−1 = ψ

({τ, σ}−1
)
. Therefore Pτ,σ = Q

(
ψ{τ), σ}−1

)
= Q [ψ(τ), σ]−1 =

Qψ(τ),σ, which proves (29). The inclusion P ⊂ PS follows from the relation Pτ,σ =
Qψ(τ),σψ, where Qψ(τ),σ ∈ PR by the definition of the Johnson class PS in Defi-
nition 1. Relation (30) follows from equality Pτ,σ = Qψ(τ),σψ and from the fact
that

gψ(τ),σ(y) =
1
σ
g

(
y − ψ(τ)

σ

)
, y ∈ R

(see (26) for g = dQ/dλ). 2

Remark 2. The last proposition implies that fτ,σ is the density of P if (and only
if) (τ, σ) = (ψ−1(0), 1). This is a neutral element of the group S × (0,∞) under the
associative multiplication

(τ, σ)(τ̃ , σ̃) = (ψ−1 [ψ(τ) + σψ(τ̃)] , σσ̃)

with the inverse element (τ, σ)−1 =
(
ψ−1(−ψ(τ)/σ), 1/σ

)
. This group structure of

S does not define the equivariance structure on the family P in the common sense
considered e. g. in Chapter 7 of Zaks [5].

Proposition 6. The core functions TPτ ,σ of distributions Pτ,σ with density fτ,σ
from the above defined Johnson location and scale family P are given by formula

TPτ ,σ (x) = −
ġ

(
ψ(x)−ψ(τ)

σ

)

g
(
ψ(x)−ψ(τ)

σ

) = TQ

(
ψ(x)− ψ(τ)

σ

)
, x ∈ S, (31)

where Q and g are the same as in the previous proposition. Moreover, a relation
between the efficient score ∂

∂τ ln fτ,σ(x) and the core function (31) is

∂

∂τ
ln fτ,σ(x) =

1
σ
ψ̇(τ) TPτ,σ (x).

P r o o f . The first part is clear from (29) and from Definition 2. Put u = ψ(x)−ψ(τ)
σ .

Since
∂

∂τ
ln fτ,σ(x) =

1
fτ,σ(x)

dfτ,σ(x)
du

∂u

∂τ

and fτ,σ(x) = 1
σ g(u)ψ̇(x) by (30), and ∂u

∂τ = 1
σ ψ̇(τ), it holds by (31) that

∂

∂τ
ln fτ,σ(x) =

1
σ
ψ̇(τ)TQ(u) =

1
σ
ψ̇(τ)TPτ,σ (x). 2

In Table 2 are listed densities and core functions of some Johnson location and
scale families and their parents.
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Table 2. Johnson families Pτ,σ with densities fτ,σ(x), parent densities f(x) and

corresponding core functions TP and TPτ,σ . The scale σ is reparametrized by β = 1/σ.

Name fτ,σ(x), x ∈ (0,∞) f(x), x ∈ (0,∞) TP TPτ,σ

Lognormal β√
2πx

e−
1
2 log2( xτ )β 1√

2πx
e−

1
2 ln2 x lnx ln(xτ )β

Weibull β
x (xτ )βe−( xτ )β 1

xxe
−x x− 1 (xτ )β − 1

Extr. v. II β
x (xτ )−βe−( xτ )−β 1

x2 e
−1/x 1− 1/x 1− (xτ )−β

Wald-type 1
Kxe

− 1
2 [( xτ )β+( xτ )−β ] 1

Kxe
− 1

2 (x+1/x) 1
2 (x− 1/x) 1

2 [(xτ )β − (xτ )−β ]

Log-logistic β
x

( xτ )β

(1+( xτ )β)2
1

(x+1)2
x−1
x+1

( xτ )β−1

( xτ )β+1

Gamma(α) βαα

Γ(α)x (xτ )βαe−α( xτ )β αα

Γ(α)x
α−1e−αx α(x− 1) α

[
(xτ )β − 1

]

Formulas for the Gamma(α) distribution follows from the relation Gamma(α, γ) =
γα

Γ(α)x
α−1e−αx = αα

Γ(α)x

(
x
τ

)α
e−α

x
τ = Gamma(α) where τ = γ/α.

Proposition 6 shows the significance of the core function for statistical inference.
The core function is the inner part of the efficient score for the Johnson location pa-
rameter and appears to be the most important characteristic of distributions P ∈ PS .
As is shown below, it also provides an interesting characterization of divergence in
parametric families which is analogous but often simpler than the Kullback diver-
gence.

4. CORE DIVERGENCE

By Remark 1 in the previous section, the core functions TP characterize in a one-
to-one manner all distributions P ∈ PS , S = (a, b) ⊆ R. Therefore any measure
of divergence (dissimilarity, or distance if the metric axioms hold) in the space
TS = {TP : P ∈ PS} will serve as a measure of divergence in the space PS itself.

The most natural of the distances between measurable functions TP , TP̃ defined
on S is the common L2-norm |TP − TP̃ | = (

∫
S
(TP − TP̃ )2dµ)1/2 where the integral

is taken with respect to a measure µ defined on Borel subsets of S. To achieve a
better comparability with the asymmetric Kullback divergence

K(P, P̃ ) =
∫

S

ln(dP/dP̃ ) dP, P, P̃ ∈ P,

we propose to take µ = P and to normalize the resulting norm by ‖TP ‖ = (
∫
S
T 2
P dP )1/2

= (IP )1/2, where IP is the Fisher information of P , see Proposition 3 above. This
motivates the following definition, as well as the fact that, in order to avoid undefined
expressions, we restrict ourselves to the subspaces

P0
S = {P ∈ PS : 0 < IP <∞} and TS = {TP : P ∈ P0

S}. (32)



Core Functions and Core Divergences of Regular Distributions 39

Definition 4. For every S = (a, b) ⊆ R, the core divergence D(P, P̃ ) of ordered
pairs P, P̃ of distributions from P0

S is defined as a divergence of the corresponding
core functions TP , TP̃ ∈ TS , namely

D(P, P̃ ) =
1

2IP

∫

S

(TP − TP̃ )2dP. (33)

Remark 3. Since
∫

(TP−TP̃ )2 dP may be infinite when P 6= P̃ , the core divergence
takes on in general the values from the extended real line interval [0,∞].

The following proposition simplifies evaluation of the core divergence. It also
implies (cf. Proposition 8) that the core divergence is a squared distance in the
important Johnson location families with fixed scales.

Proposition 7. If S = (a, b) 6= R then for every P, P̃ ∈ P0
S and ψ ∈ ΨS it holds

D(P, P̃ ) = D(Q, Q̃), (34)

where Q, Q̃ are elements of P0
R defined by Q = Pψ−1 and Q̃ = P̃ψ−1.

P r o o f . By Proposition 4, IP = IQ for Q = Pψ−1. If Q̃ = P̃ψ−1 then (24)
implies that TP = TQ(ψ) and TP̃ = TQ̃(ψ). Therefore, by the substitution rule for
integrals,

∫

S

(TP − TP̃ )2dP =
∫

S

(TQ(ψ)− TQ̃(ψ))2 dQψ =
∫

R

(TQ − TQ̃)2 dQ

which completes the proof. 2

In the following assertion we consider the location and scale families Q and P
with respective parents Q and P defined in Section 3.

Proposition 8. If Q ∈ P0
R and Q is the location and scale family with parent Q,

then Q ⊂ P0
R and for every Qµ,σ and Qµ̃,σ̃ from Q

D(Qµ,σ, Qµ̃,σ̃) =
1

2IQ

∫

R

(
TQ(y)− TQ

(
σ

σ̃
y +

µ− µ̃

σ̃

))2

dQ(y). (35)

If S 6= R, and P = Qψ−1 for some P ∈ P0
S , Q ⊂ P0

R and ψ ∈ ΨS , and if P is the
Johnson location and scale family with parent P , then P ⊂ P0

S and for every Pτ,σ
and Pτ̃ ,σ̃ from P

D(Pτ,σ, Pτ̃ ,σ̃) =
1

2IQ

∫

S

(
TQ(y)− TQ

(
σ

σ̃
y +

ψ(τ)− ψ(τ̃)
σ̃

))2

dQ(y). (36)
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P r o o f . We shall prove (36). Proof of (35) is simpler. Fix arbitrary (τ, σ) and
(τ̃ , σ̃) from S × (0,∞). By (29) and Proposition 7,

D(Pτ,σ, Pτ̃ ,σ̃) = D(Qψ(τ),σ, Qψ(τ̃),σ̃)

=
1

2IQ

∫

R

(TQψ(τ),σ − TQψ(τ̃),σ̃ )
2 dQψ(τ),σ.

The assumption Q ∈ P0
R together with Proposition 3 implies that IP = IQ is finite

and nonzero. Further, (31) and (26) imply the relation

TQψ(τ),σ (u) = − ġ(
u−ψ(τ)

σ )

g(u−ψ(τ)
σ )

= TQ

(
u− ψ(τ)

σ

)
, u ∈ R,

so that it suffices to apply in the last integral the substitution y = (u− ψ(τ))/σ to
get the desired equality (35). 2

In Tables 3 – 5, we compare formulas of Kullback divergences and core divergences
in some Johnson families. In these tables, C is the Euler constant, ψ(u) = Γ′(u)/Γ(u)
is the psi function, and for the Bessel function of the third kind Kν(u) it holds
α = K2(1)/K0(1)− 1 .= 2.68, C1 = 1

2K1(1)/K0(1) .= 0.72, C2 = K2(1)/(4K0(1)α) .=
0.34, C3 = 1/2α .= 0.174.

Table 3. Kullback divergences and core divergences in some Johnson families
from Table 2, reparametrized by ω = σ/σ̃ = β̃/β and γ = (τ/τ̃)1/σ̃.

Name K(Pτ,σ, Pτ̃ ,σ̃) D(Pτ,σ, Pτ̃ ,σ̃)
Lognormal 1

2 [− lnω2 + (ln γ)2 + ω2 − 1] 1
2 [(ln γ)2 + (ω − 1)2]

Weibull γΓ(ω + 1)− ln(ωγ) + (ω − 1)C − 1 γ2Γ(2ω)− γΓ(ω + 2) + 1
Extr. v. II 1

γΓ(ω + 1)− ln ω
γ + (ω − 1)C − 1 1

γ2 Γ(2ω)− 1
γΓ(ω + 2) + 1

Table 4. Similar as in Table 4 for the special case σ = σ̃ = 1
and also different Johnson families.

Name K(Pτ,1, Pτ̃ ,1) D(Pτ,1, Pτ̃ ,1)
Lognormal 1

2 (ln γ)2 1
2 (ln γ)2

Weibull γ − ln γ − 1 (γ − 1)2

Wald-type 4C1(γ + 1/γ − 2) C2[(γ − 1)2 + (1− 1/γ)2]
+C3(γ + 1/γ − 2)/

Log-logistic (γ + 1) ln γ/(γ − 1)− 2 2[(γ − 1)(γ2 + 10γ + 1)
−6γ(γ + 1) ln γ]/(γ − 1)3

Gamma(α) −α̃ ln α̃− (α̃− α)[ψ(α)− lnα]
+α lnα+ ln Γ(α̃)

Γ(α)

−α̃ ln γ + α̃γ − α 1
2

[
α̃2

α2 (γ − 1)2α+ ( α̃αγ − 1)2
]
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Table 5. Kullback divergences and core divergences in some special cases
of gamma and beta distributions.

Name K(Pα, Pα̃) D(Pα, Pα̃)
Gamma(α) −α̃ ln α̃+ α lnα
(τ = 1) −(α̃− α)[ψ(α)− lnα− 1] 1

2 ( α̃α − 1)2

Beta (α, 1) α̃
α − ln α̃

α − 1 α
α+1

(
α̃
α − 1

)2

Beta (α, α) − ln Γ(2α̃)
Γ(2α) + 2 ln Γ(α̃)

Γ(α)

+2|α̃− α|(ψ(2α)− ψ(α)) 1
2 (α̃− α)2

By Proposition 7, if Qµ,σ = Pτ,σψ
−1 where µ = ψ−1(τ), it holds

D(Qµ,σ, Qµ̃,σ̃) = D(Pτ,σ, Pτ̃ ,σ̃). In the case of the normal distribution, for example,
one can use the formulas for the lognormal distribution with ln γ = (µ− µ̃)/σ̃.

Comparison of Kullback (K) and core (D) divergences for logistic distributions
with different location parameters is given in Figure 1. Similar comparison for
Weibull (exponential) distributions with different Johnson locations is given in Fig-
ure 2. This figures are typical in the sense that for small deviation of parameters
both divergences almost coincide, but they differ in the sensitivity to large deviations
of the parameters. Figure 1 illustrates that for distributions with heavy tails, the
core divergence is much less sensitive to large deviations of the parameters than the
Kullback divergence.
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Fig. 1. K(Qµ,σ, Qµ̂,σ) (dotted line) and D(Qµ,σ, Qµ̂,σ) (full line) of logistic distributions

as functions of γ = exp((µ− µ̂)/σ).



42 Z. FABIÁN AND I. VAJDA

0

1

2

3

4

5

0.1 1 10γγγγ

D

K

Fig. 2. K(Qµ,σ, Qµ̂,σ) (dotted line) and D(Qµ,σ, Qµ̂,σ) (full line) of extreme value II

distributions as functions of γ = (1/τ̂)1/σ.
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